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Abstract. The “AX=XB” sensor calibration problem is ubiquitous in the
fields of robotics and computer vision. In this problem A, X , and B are
each homogeneous transformations (i.e., rigid-body motions) with A and
B given from sensor measurements, and X is the unknown that is sought.
For decades this problem is known to be solvable for X when a set of ex-
actly measured compatible A’s and B’s with known correspondence is
given. However, in practical problems, it is often the case that the data
streams containing the A’s and B’s will present at different sample rates,
they will be asynchronous, and each stream may contain gaps in informa-
tion. We therefore present a method for calculating the calibration trans-
formation, X , that works for data without any a priori knowledge of the
correspondence between the As and Bs.

Keywords: AX = XB, Sensor Calibration, Information Fusion, Proba-
bilistic Modeling

1 INTRODUCTION

The “AX=XB” sensor calibration problem is well-known in the fields of robotics
and computer vision. In this problemA,X , andB are each homogeneous trans-
formations (i.e., elements of the special Euclidean group, SE(3)) with A and B
given from sensor measurements, and X unknown.

In this paper we present a method to solve for an X wherein there does
not need to be any a priori knowledge of the correspondence between A’s and
B’s. In other words, the sets of A’s and B’s each can be given as unordered
“batches”.

The remainder of this section is devoted to reviewing the literature, and
establishing notation. Section 2 presents the theory for our new batch solution
method. Section 3 shows the results of the batch solution method for simulated
data.
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1.1 Literature Review

Any (proper) rigid-body motion in three-dimensional space can be described
as a 4× 4 homogeneous transformation matrix of the form

H(R, t) =

(
R t
0T 1

)
(1)

where R ∈ SO(3) is a 3× 3 (proper) rotation matrix and t ∈ R3 is a translation
vector. The set of all such matrices can be identified with SE(3), the group of
rigid-body motions, where the group law is matrix multiplication. Our empha-
sis in this paper is solving the problem

AX = XB (2)

for X ∈ SE(3) when multiple pairs of (A,B) ∈ SE(3) × SE(3) are presented,
but when the correspondence between them has been lost. The version of the
problem with known correspondence has a history that goes back more than
a quarter of a century [2]-[4], and applications involving this problem remain
active today [5]-[7].

It is well known that, in non-degenerate cases, there are two unspecified
degrees of freedom to the problem for a single pair of sensor measurements,
(A,B). This situation is rectified by considering two pairs of exact measure-
ments of the form in (2), i.e., A1X = XB1 and A2X = XB2, provided that
some mild conditions are observed for the selection of the pairs (A1, B1) and
(A2, B2) [1, 3, 4]. Additionally, if there is sensor error, then it may not be possi-
ble to find compatible pairs that reproduce the exact value ofX . For this reason,
minimization and least squared approaches are often taken over large sets ofAs
and Bs.

However, this procedure assumes that there is exact knowledge of the Ai

and Bi correspondence, which is not always the case. There are many instances
in the literature when the sensor data used in calibration becomes “unsynchro-
nized”. Different attempts have been implemented to solve this problem, such
as time stamping the data, developing dedicated software modules for syncing
the data [9], and analyzing components of the sensor data stream to determine
a correlation [10], to varying effects. Our solution methodology bypasses these
issues altogether without tracking, or recomputing, correspondence.

1.2 Notation and Mathematical Problem Formulation

Given a large set of pairs (Ai, Bi) ∈ SE(3) × SE(3) for i = 1, ..., n that exactly
satisfy the equation

AiX = XBi (3)

numerous algorithms exist to find X ∈ SE(3), as discussed earlier. Here we
address a generalization of this problem in which the sets {Ai} and {Bj} are
provided with elements written in any order and it is known that a correspon-
dence exists between the elements of these sets such that (3) holds, but we do
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not know a priori this correspondence between each Ai and Bj . We seek to find
X in this scenario.

The group of proper rigid-body motions, SE(3), is a Lie group, and hence
concepts of integration and convolution exist. If H ∈ SE(3) is a generic 4 × 4
homogeneous transformation of the form in (1) where the rotation is param-
eterized in terms of Euler angles as R = R3(α)R1(β)R3(γ) (where Ri(θ) is a
counterclockwise rotation by θ around coordinate axis i) and the translation is
t = [tx, ty, tz]

T , then the ‘natural’ integral of any rapidly decaying function is
computed as ∫

SE(3)

f(H) dH =

∫
R3

∫
SO(3)

f(H(R, t)) dRdt

where dR = sinβdαdβdγ and dt = dtxdtydtz , with −∞ < tx, ty, tz < ∞ and
(α, β, γ) ∈ [0, 2π]× [0, π]× [0, 2π]. This integral is ‘natural’ in the sense that it is
the unique one (up to scaling of the volume element by an arbitrary constant)
such that∫

SE(3)

f(H)dH =

∫
SE(3)

f(H−1)dH =

∫
SE(3)

f(HH0)dH =

∫
SE(3)

f(H0H)dH

(4)

for any fixed H0 ∈ SE(3). This choice of integral, being invariant under shifts
on the left and on the right in the above equation, is called the bi-invariant, or
Haar, measure. The above instantiation of the bi-invariant integral for SE(3) us-
ing Z-X-Z Euler angles and Cartesian coordinates for translation is not unique.
Any parametrization of SE(3) will do.

If
∫
SE(3)

|f(H)|pdH <∞ then we say f ∈ Lp(SE(3)). Most of our discussion
will be limited to functions f ∈ L1(SE(3)) ∩ L2(SE(3)), together with the spe-
cial case of a Dirac delta function, which will be defined shortly. In this context,
the convolution of two such functions is defined as

(f1 ∗ f2)(H) =

∫
SE(3)

f1(H)f2(H−1H)dH (5)

whereH ∈ SE(3) is a dummy variable of integration.
A Dirac delta function can be defined for SE(3) just like in the case of Rn. It

is defined by the properties
∫
SE(3)

δ(H)dH = 1 and (f ∗ δ)(H) = f(I4) where
I4 = H(I3,0) is the 4 × 4 identity matrix (and the identity element of SE(3)),
whereas I3 is the 3 × 3 identity. Intuitively a Dirac delta can be thought of as
a function that has a spike with infinite height at the identity and vanishes
everywhere else.

A shifted Dirac delta function can be defined as δA(H) = δ(A−1H) which
places the spike at A ∈ SE(3). Note that the inverse operation, A−1, must be
applied to the argument of the function to move the spike from the identity to
A.
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2 BATCH SOLUTION

In this light we can think of (3) as the equation

(δAi
∗ δX)(H) = (δX ∗ δBi

)(H). (6)

The addition of this mathematical terminology provides freedom to do some-
thing that we cannot do with (3). Namely, whereas the addition (as opposed
to multiplication) of homogeneous transformation matrices is nonsensical, the
addition of real-valued functions f1(H) + f2(H) is a perfectly reasonable oper-
ation. And since convolution is a linear operation on functions, we can write all
n instances of (6) into a single equation of the form

(fA ∗ δX)(H) = (δX ∗ fB)(H) where fA(H) =
1

n

n∑
i=1

δ(A−1i H) (7)

and fB(H) is of a similar form computed from {Bj}.
When written in this way, it does not matter if we know the correspondence

between each Ai and Bj or not. The above functions are normalized to be prob-
ability densities:

∫
SE(3)

fA(H)dH =
∫
SE(3)

fB(H)dH = 1. Of course, the func-
tions fA(H) and fB(H) are not in L2(SE(3)), but for our purposes this will not
be a problem.

Let us assume that the set ofAi’s and the set ofBj ’s are each clumped closely
together. In other words, given a measure of distance between reference frames,
d : SE(3)× SE(3)→ R≥0, we have that d(Ai, Aj), d(Bi, Bj) < ε << 1. This as-
sumption can be made true for example, if we are using small relative motions
between consecutive reference frames, regardless of whether the whole trajec-
tory is long or not.

The convolution of “highly focused” distributions corresponding to closely
clumped sets of reference frames have some interesting properties that we can
exploit to solve forX . In particular, let the mean and covariance of a probability
density f(H) be defined by the conditions [8],[15]

∫
SE(3)

log(M−1H)f(H)dH = O and

Σ =

∫
SE(3)

log∨(M−1H)[log∨(M−1H)]T f(H)dH. (8)

where explicit formulas for the matrix logarithm, log(H), and its vectorized
form, log∨(H), are given in [8, 15]. The operation log(H) takes any element in
SE(3) (with rotational part that has an angle of rotation, θ, in the range 0 ≤
θ < π) into the the corresponding unique element in the Lie algebra se(3) such
that exp(log(H)) = H , where exp(·) is the matrix exponential. Since SO(3) can
be viewed as a solid three-dimensional ball of radius π with antipodal points
identified, the exclusion of the 2D bounding sphere of radius π in SO(3) defines
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a 5D set of measure zero in SE(3) that has no effect on the computation of Σ in
the above equation.

It is always the case that log(H) =

(
Ω v
0T 0

)
where Ω = −ΩT ∈ so(3). The

map ∨ : se(3) → R6 is then composed with the log to give log∨(H) = [ωT ,vT ]T

where ω ∈ R3 is the vector corresponding to Ω such that Ωx = ω × x for any
x ∈ R3, where × is the vector cross product.

The definition of mean used above differs from that most often used in
the literature when taking a Riemannian-geometric (rather than Lie-group) ap-
proach [11–14] which is of the form M ′ = argminM

∫
SE(3)

[d(M,H)]2f(H)dH

where d(M,H) is a Riemannian distance function (d(M,H) = ‖ log(M−1H)‖2W ,
for example) and W is a weighting matrix related to the Riemannian metric
tensor that is chosen. There are two reasons for our definition. First, in our defi-
nition there is no need to introduce a weighting matrix, and therefore we avoid
coloring the result by an arbitrary choice. Second, in the context of robotics
problems in which reference frames are attached to rigid links it is more natu-
ral in the following sense. If a single rigid link has a world frame attached to
its base, and a reference frame attached to its distal end, and that distal refer-
ence frame is recorded at two different times as a joint at the base rotates, then
the translation part of the average of these two reference frames should lie on
the arc that joints the two. M will have this property, but M ′ will not. Hav-
ing said this, if we were considering data on SO(3) rather than SE(3), and if
W = I were chosen, the two definitions would become the same thing since for
SO(3) the distance (metric) function d(R1, R2)

.
= ‖ log(R−11 R)‖ is bi-invariant

andAd(R) = R. But for SE(3) neither of these statements are true:Ad(H) 6= H ,
and there does not exist a bi-invariant metric (though there does exist a bi-
invariant integration measure).

If f(H) is of the form of fA(H) given above, then discrete versions of (8) are

n∑
i=1

log(M−1A Ai) = O and ΣA =
1

n

n∑
i=1

log∨(M−1A Ai)[log
∨(M−1A Ai)]

T (9)

where explicit formulas for log(H) and log∨(H) and exp are given in [8].
An iterative procedure for computing MA was presented in [15] in which

an initial estimate of the form M0
A = exp( 1n

∑n
i=1 log(Ai)) is chosen, and then a

gradient descent procedure is used to update so as to minimize the costC(M) =∥∥∑n
i=1 log(M

−1Ai)
∥∥2 , and the minimum defines MA.

It can be shown that if these quantities are computed for two highly focused
functions, f1 and f2, that the same quantities for the convolution of these func-
tions can be computed as [15]

M1∗2 =M1M2 and Σ1∗2 = Ad(M−12 )Σ1Ad
T (M−12 ) +Σ2 (10)

where Ad(H) =

(
R O
t̂R R

)
.
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Here for any a ∈ R3, â is the skew-symmetric matrix such that âb = a × b.
And by a slight abuse of notation, we use ∨ as the reverse map which gives
(â)∨ = a. The use of ∨ to denote maps from the Lie algebra so(3) into R3 and
from se(3) into R6 should not be a source of confusion, as the version being
used is defined by the argument to which it is applied.

The mean of δX(H) isMX = X , and its covariance is the zero matrix. There-
fore, (7) together with (10) gives two equations:

(a) MAX = XMB and (b) Ad(X−1)ΣAAd
T (X−1) = ΣB (11)

These two equations can be solved in a similar way to how the two equations
A1X = XB1 and A2X = XB2 are solved.

First, we seek the rotational component, RX , of X . From (11a) we have that,

nMA
= RXnMB

(12)

where nH is the direction of the screw axis of the homogeneous transformH [1].

If we decompose ΣMA
and ΣMB

into blocks as Σi =

(
Σ1

i Σ2
i

Σ3
i Σ4

i

)
where Σ3

i = (Σ2
i )

T , then we can take the first two blocks of (11b) and write

Σ1
MB

= RT
XΣ

1
MA

RX and Σ2
MB

= RT
XΣ

1
MA

RX(R̂T
Xtx) +RT

XΣ
2
MA

RX (13)

We can then find the eigendecomposition, Σi = QiΛQ
T
i , where Qi is the

square matrix whose ith column is the eigenvector of Σi and Λ is the diagonal
matrix with corresponding eigenvalues as diagonal entries and write the first
block equation of (13) as,

Λ = QT
MB

RT
XQMA

ΛQT
MA

RXQMB
= QΛQT (14)

The set of Qs that satisfy this equation is given as,

Q =


1 0 0

0 1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 1

 ,

−1 0 0
0 1 0
0 0 −1

 ,

1 0 0
0 −1 0
0 0 −1


with the simple condition that Qi is constrained to be a rotation matrix. This
means that the rotation component of X is given by,

Rx = QMA
QQT

MB
(15)

The correct solution, from the set of 4 possibilities of RX (given (15)) can be
found by applying (12) and choosing the one that minimizes ‖nMA

−RXnMB
‖.

Once RX is found in this way, tX can be found easily from blocks the 2 and 4
of (11)(b).
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Fig. 1. Solution error with increasing permutations

3 APPLYING THE BATCH METHOD

A traditional least-squares solution to the AX = XB problem, for given multi-
ple pairs (Ai, Bi), is to use a method based on the Kronecker product [16].

Using properties of the Kronecker product,⊗, (3) can be written as I9 −RBi ⊗RAi O9×3

tTBi
⊗ I3 I3 −RAi

vec(RX)

tX

 =

 09

tAi

 (16)

where vec(RX) ∈ R9 is the vector obtained by stacking the columns ofRX , Im is
the m×m identity, Om×n is the m× n zero matrix, and 0n is the n-dimensional
zero vector. By stacking multiple such equations for different pairs (Ai, Bi), a
least-squares solution can then be found using SVD methods or using a pseudo-
inverse. This solution can be easily projected back into the group using well
known methods [16]. We use this common approach as a baseline to compare
the performance of our method.

In the numerical experiments in this section, we fix a true baselineX (which
is a priori unknown to our algorithm), generate a series of small motion Bi’s,
and for each compute Ai = (XBiX

−1). We then scramble some fraction of the
correspondences and compare our algorithm with the Kronecker solver.

The Batch method can handle any level of permutation (ie. non-correspondence)
placed on the data sets of A and B. Figure 1 shows the error of the computed
X for both the Kronecker Product solver and the Batch Method as a function of
the amount of scrambling. The rotational and translational error are measured
as ‖ log∨(RT

Xcalculated
RXtrue

)‖ and ‖tXcalculated
− tXtrue

‖ respectively.
It can easily be seen that while the Kronecker Product Solver solution de-

generates quickly with even a slight permutation of the As and Bs, the Batch
Solver finds the correct solution with any amount of permutation.
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4 CONCLUSIONS

We establish that the AX = XB sensor calibration problem can be solved with
a new “Batch Method” that does not require a priori knowledge of the A and B
correspondence. The Batch Method is shown to solve forX for any level of mis-
match between As and Bs, performing much better than traditional methods,
which require correspondences, under similar circumstances.
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