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Abstract. Many robotics applications involve motion planning with uncertainty. In
this paper, we focus on path planning for planar systems by optimizing the proba-
bility of successfully arriving at a goal. We approach this problem with a modified
version of the Path-of-Probability (POP) algorithm. We extend the POP algorithm to
allow for a moving target and to optimize the number of steps to reach the goal. One
tool that we develop in this paper to increase efficiency of the POP algorithm is a
second order closed-form uncertainty propagation formula. This formula is utilized
to quickly propagate the mean and covariance of nonparametrized distributions for
planar systems. The modified POP algorithm is demonstrated on a simple rolling
disc example with a moving goal.

1 Introduction

A fundamental problem in robotics is the question what is the best way to get from
here to there? This problem is known as motion planning, in which one tries to
optimize the path for a robot to arrive at a goal. Motion planning is important for
many applications such as autonomous cars, unmanned aerial vehicles, manufac-
turing robots, domestic robots and robotic surgery manipulators. If we had perfect
knowledge of the robot and its environment, we could simply integrate the velocity
commands from a known starting point to obtain an exact position of the robot at
some future time. However, uncertainty in actuation, models and the environment
will inevitably produce errors between the actual position and this integration mak-
ing it difficult to follow a deterministic path. As a result, a more pertinent question
is what path has the greatest probability of reaching the goal? A strategy that we
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employ in this paper is to represent all possible poses (position and orientation) with
probability density functions (pdfs). The key then is to maintain and update these
pdfs as the robot moves along a path. With this strategy, we can then begin to choose
paths with higher probability of reaching a desired goal pose.

The main focus of this paper is with regards to motion planning for planar sys-
tems with uncertainty. Generally, planners try to minimize the execution time or
minimize the final covariance. In this paper, we are concerned with maximizing the
probability of successfully arriving at a goal. This objective has been considered
by [1] and [2] with the stochastic motion road map (SRM). In our approach, we
utilize a modified version of the Path-of-Probability (POP) algorithm to maximize
this probability of success. In previous POP algorithms ([10], [18]), there was an as-
sumption that the goal pose was fixed in time and that the planner knew how many
discrete steps should be taken to reach the goal. We modify this algorithm to allow
for a moving target and to optimize the number of steps.

Our algorithm relies on the ability to efficiently propagate uncertainty along a
path. A tool that we develop in this paper is a set of closed-form recursive formulas
for planar systems that can be utilized to quickly propagate the mean and covariance
of nonparameterized distributions. Our formulas are nonparametric since they do not
assume a specific distribution. The formulas are different than those of the Kalman
methods because we use the theory of Lie algebras and Lie groups and propagate
the error to second order.

The remainder of this section consists of related work and an outline of the paper.

1.1 Related Work

In the last two decades, there has been significant research into motion planning
with uncertainty. Motion planning in general has been studied extensively as demon-
strated in [14] and [9]. Several techniques that specifically incorporate uncertainty
include back propagation [15], Linear Quadratic Gaussian (LQG) motion planning
[22], stochastic dynamic programming [4], [3] and partially observable Markov de-
cision processes (POMDPs) [21]. A bottleneck of these approaches is the compu-
tation time, especially as the length of the path increases. Another approach uses
an extended space consisting of poses and covariances, allowing utilization of stan-
dard search techniques such as A∗ or sampling-methods [6], [13], [19]. In the area
of sampling-based methods, the well-known rapidly exploring random trees (RRTs)
has been extended to the belief space in a search algorithm known as RRBT [5].

One problem that must be considered in these algorithms is how to propagate the
uncertainty. Small errors can be propagated for linear systems with the Kalman fil-
ter [12] or for nonlinear systems with Jacobian-based methods such as in the classic
work of [20]. For larger errors with unknown distributions, the standard technique
is the particle filter [21], which consists of randomly selecting a large number of
particles from the distribution and propagating these particles in time. The robot’s
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true position has a higher probability of occurring in the denser areas. However, the
particle filter may require a large number of samples and can become computation-
ally expensive. Recently, Wang and Chirikjian derived second-order propagation
formulas for the Euclidean motion group SE(3) [23] which can be used to effi-
ciently propagate uncertainty without sampling. The propagation work presented in
this paper is similar to their work but is focused on the planar motion group SE(2).

The POP algorithm first appeared for manipulator arms to solve inverse kine-
matics problems by representing the reachable workspace with probability densities
[10]. The idea of using reachable-state density functions was then applied to trajec-
tory planning problems using the theory of Lie groups in [16]. A problem with the
approach in [16] is that it is computationally expensive and is difficult to implement
in real-time. With the closed-form propagation formulas for SE(3) from [23], the
POP algorithm was implemented more quickly and was applied to needle-steering
in [18]. In this paper, we take a similar approach as [18] but remove the requirement
of a fixed goal pose and a known number of steps to reach the goal.

1.2 Outline

In Sec. 2, we review important concepts and definitions from rigid-body motions,
probability and statistics. We derive the second-order error propagation formulas
for the planar motion group in Sec. 3. We describe the modified POP algorithm in
Sec. 4. In Sec. 5, we demonstrate the propagation formulas and the POP algorithm
on a simple rolling disc example. Our conclusions are discussed in Sec. 6.

2 Terminology and Notation

2.1 Rigid-Body Motions

The elements of the planar special Euclidean group, SE(2), are the semidirect prod-
uct of the plane, R2 with the special orthogonal group, SO(2). G = SE(2) is an
example of a matrix Lie group where G is a set of square 3 x 3 square matrices and
the group operation ◦ is matrix multiplication. For a full review of Lie groups see
[17] and [7]. The elements of SE(2) and their inverses are given respectively as

g =

(
R t
0T 1

)
and g−1 =

(
RT −RT t
0T 1

)
(1)

where R is the rotational part, t is the translational part and 0 is a zero-vector.
In this paper, we also make use of se(2), the Lie algebra associated with SE(2).

For a vector x = [v1,v2,α]T , we define the ∧ and ∨ operators for se(2) by
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x̂ = X =

⎛
⎝ 0 −α v1

α 0 v2

0 0 0

⎞
⎠ and X∨ = x, (2)

to allow us to map from R
3 to se(2) and back. We can obtain the group elements of

SE(2) by applying the matrix exponential exp(·) to elements of the Lie algebra to
give the following [7]

g(x) = exp(X) =

⎛
⎝ cosα −sinα t1

sinα cosα t2
0 0 1

⎞
⎠ , where (3)

t =
(

t1
t2

)
=

1
α

(
sinα −(1− cosα)

(1− cosα) sinα

)
v, (4)

and where v = [v1,v2]
T . Since we use the matrix exponential to obtain the elements

of SE(2), we refer to the vector x as exponential coordinates. With the matrix loga-
rithm log(·), we can obtain the vector x from a group element g ∈ SE(2) with

x = (log(g))∨. (5)

We define two adjoint operators Ad(g) and ad(X) to satisfy

Ad(g)x =
(
log(g ◦ exp(X)◦ g−1)

)∨
, and ad(X)y = ([X ,Y ])∨ (6)

where g ∈ SE(2), (X ,Y ) ∈ se(2) and [X ,Y ] = XY −YX is the Lie bracket. These
two adjoint operators are related by

Ad(exp(X)) = exp(ad(X)). (7)

The adjoint matrices for SE(2) and se(2) are given explicitly as [7]

Ad(g) =

(
R Mt
0T 1

)
, and ad(X) =

(−αM Mv
0T 0

)
where M =

(
0 1
−1 0

)
.

(8)
The special Euclidean group SE(2) is a connected unimodular matrix Lie group
[17]. As a result, for any function f : G → R for which the integral

∫
G f (g)dg exists

the following properties hold for any fixed h ∈ G
∫

G
f (g)dg =

∫
G

f (h ◦ g)dg =
∫

G
f (g ◦ h)dg =

∫
G

f (g−1)dg. (9)

For a discussion of integration on groups see [7]. These properties of unimodular
matrix Lie groups will be used extensively for changing coordinates in this paper.
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2.2 Means, Covariances and Gaussians

A probability density function (pdf) for a Lie group (G,◦) can be defined by

f (g)≥ 0 ∀ g ∈ G and
∫

G
f (g)dg = 1.

The definitions of the mean and covariance can be naturally extended to matrix Lie
groups as in [23]. Given a group G, the mean μ ∈ G of a pdf f (g) satisfies

∫
G

[
log∨

(
μ−1 ◦ g

)]
f (g)dg = 0. (10)

The covariance about the mean is defined as

Σ =
∫

G
log∨(μ−1 ◦ g)[log∨(μ−1 ◦ g)]T f (g)dg. (11)

A Gaussian in these coordinates is then given by

f (g; μ ,Σ) =
1

c(Σ)
exp
(− 1

2 [log∨(μ−1 ◦ g)]T Σ−1[log∨(μ−1 ◦ g)]
)

(12)

where c(Σ) is a normalizing factor. Although there is no closed-form formula for
c(Σ) in this Gaussian, when ||Σ || is small

c(Σ)≈ (2π)n/2|det Σ | 1
2 . (13)

We use this normalizing factor to allow us to use a closed-form formula for (12).

3 Propagation of Mean and Covariance of Pdfs on SE(2)

In this section, we are interested in developing closed-form formulas that can be
used to propagate the mean and covariance of pdfs on the special Euclidean group
SE(2). Imagine that a robot has the option of performing Action 1 which has a
pdf f1(g; μ1,Σ1) or Action 2 which has a pdf f2(g; μ2,Σ2). Given only the means
(μ1,μ2) and the covariances (Σ1,Σ2) of these two pdfs, we seek the mean and co-
variance of the resulting distribution of performing Action 1 then Action 2. This
new distribution can be represented with the convolution of the two pdfs.

The convolution of two pdfs on groups is defined as [8]

( f1 ∗ f2)(g) =
∫

G
f1(h) f2(h

−1 ◦ g)dh. (14)

Let ρi(g) be a unimodal pdf with mean at the identity. Then ρi(μ−1
i ◦ g) is a distri-

bution with the same shape centered at μi. We can then rewrite the definition of the
convolution in (14) as
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( f1 ∗ f2)(g) =
∫

G
ρ1(μ−1

1 ◦ h)ρ2(μ−1
2 ◦ h−1 ◦ g)dh. (15)

If we make the change of coordinates h → μ1 ◦ μ2 ◦ k ◦ μ−1
2 , then

( f1 ∗ f2)(g) =
∫

G
ρ μ2

1 (k)ρ2(k
−1 ◦ μ−1

2 ◦ μ−1
1 ◦ g)dk (16)

= (ρ μ2
1 ∗ρ2)(μ−1

2 ◦ μ−1
1 ◦ g), (17)

where ρ μ2
1 (g) = ρ1(μ2 ◦g◦μ−1

2 ) is a transformed version of ρ1(g) with its argument
conjugated by μ2. It can be shown that this pdf ρ μ2

1 (g) has its mean at the identity
and covariance given by

Σρμ2
1

= Ad(μ2)
−1Σρ1Ad(μ2)

−T . (18)

In [23], ‘order’ is defined to be the number of terms that were kept in the BCH
expansion (see Appendix). We seek the second-order error propagation formulas
using this same definition. No assumptions are made here about fi(g) except that

||Σi||= O(ν) where ν << 1 and that || log μi||= O(1). (19)

The condition in (19) means that the density is “highly focused.”

Theorem 1. If fi(g) is a pdf on SE(2) that has mean μi and covariance Σi about the
mean for i = 1,2, then to second order, the mean and covariance of ( f1 ∗ f2)(g) are

μ1∗2 = μ1 ◦ μ2 and (20)

Σ1∗2 = A+B+F(A,B) where (21)

F(A,B) =
1
4

C(A,B)+
1

12

[
A′′B+(A′′B)T +B′′A+(B′′A)T ] ,

A = Ad(μ−1
2 )Σ1AdT (μ−1

2 ), and B = Σ2,

where the double-prime operator ′′ takes a matrix A and rearranges it to obtain

A′′ =

⎛
⎝−a33 0 a31

0 −a33 a32

0 0 0

⎞
⎠

and C(A,B) is computed from

C(A,B) =

⎛
⎝ c11 c12 0

c12 c22 0
0 0 0

⎞
⎠ , where

c11 = b33a22 − b32a23 − b23a32 + b22a33

c12 = −b33a21 + b31a23 + b23a31 − b21a33

c22 = b33a11 − b31a13 − b13a31 + b11a33.
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(a) (b)

Fig. 1 (a) shows a planar robot with three noisy path options for a single step with means μi
and covariances Σi. The combined distribution of all possible trajectories for a single step has
mean μ∗ and covariance Σ∗. (b) depicts an ideal tree of possible poses after three steps.

The proof of this theorem is similar to that in [23] except that it is for the planar
case. The derivation of the covariance expression is shown in the Appendix.

4 Path-of-Probability (POP) Algorithm

We are interested in finding a path consisting of N intermediate steps that maxi-
mizes the probability of moving from a starting pose to a final pose. We assume that
we have a finite set ζ of small trajectories that we can choose to use for a given
step. For example, as shown in Fig. 1(a), we can choose from three different seg-
ments. Due to uncertainty, each segment has a distribution of possible poses with
mean μi and covariance Σi as illustrated by the red ellipses. We can then add mul-
tiple steps to begin to cover the environment as shown in Fig. 1(b) for three such
steps. It can be computationally expensive to keep track of all possible trajectories
and to propagate the uncertainty along each of these trajectories, especially as the
number of choices in ζ and number of steps increases. In this section, we present
the Path-Of-Probability (POP) algorithm, which is a computationally efficient way
of determining which option we should choose for each step. The POP algorithm
has been applied previously in slightly different manners for manipulator arms [10]
and needle steering [18].

Let gi ∈ ζ be the mean of the selected trajectory for the ith step. Suppose that the
first (i− 1) steps have been selected. In the POP algorithm, we want to select the
step gi ∈ ζ that has the highest probability of reaching the goal with the remaining
(N − i) steps. This can be written as

gi = arg max
g∈ζ

f ((g1 · · ·gi−1 ◦ g)−1 ◦ ggoal; μN−i∗···∗N ,Σ1∗···∗N), (22)
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where ζ is the set of possible moves. If we have a way of exactly measuring
(Σact = 0) the actual pose gact before choosing a step, then the formulation is

gi = arg max
g∈ζ

f ((gact ◦ g)−1 ◦ ggoal; μN−i∗···∗N ,ΣN−i∗···∗N). (23)

Another variant of this algorithm could be to fuse uncertainty in measurements with
the uncertainty in propagation. Here we restrict our attention to the problems in (22)
and (23). The key in the POP algorithm is to calculate the convolved means and
covariances of the remaining steps quickly.

In this paper, we assume that we do not have any prior knowledge of the type
of path we would like to use for the remaining steps. Therefore, we combine all
the individual distributions for a single step into a new distribution with mean μ∗
and covariance Σ∗ as shown with the blue contour in Fig. 1(a). We can then use the
propagation formulas in (20) and (21) recursively to propagate the distribution for
the remaining steps. In a sense, this allows us to calculate the probability of arriving
at the goal pose given all possible remaining trajectories.

We can sample data points from each individual distribution then use the follow-
ing formulas to estimate the mean and covariance for a single step

μ∗ = μ∗ ◦ exp

(
1
Q

Q

∑
j=1

log(μ−1
∗ ◦ g j)

)
(24)

Σ∗ = 1
Q

Q

∑
j=1

log∨(μ−1
∗ ◦ g j)[log∨(μ−1

∗ ◦ g j)]
T (25)

where Q is the total number of data points from all trajectories in a single step.
Depending on the number of samples, this can become computationally expensive,
especially since the mean equation is recursive. However, if the individual distri-
butions are highly focused around the individual means, we observed that we can
obtain approximately the same results if we use

μ∗ = μ∗ exp

(
1
Z

Z

∑
j=1

log(μ−1
∗ ◦ μ j)

)
and (26)

Σ∗ = 1
Z

Z

∑
j=1

log∨(μ−1
∗ ◦ μ j)[log∨(μ−1

∗ ◦ μ j)]
T (27)

where Z is the total number of possible trajectories in one step. With the latter
method, we do not need to sample from the individual distributions, we only need
the means {μi}. If the set ζ is known beforehand, the mean μ∗ and Σ∗ can be calcu-
lated numerically before beginning the POP algorithm.

The previous versions of the POP algorithm in [10] and [18] assume that the goal
is fixed through out time and that the number of steps to reach the goal is known.
We can remove these assumptions by using a two-part POP algorithm. In the first
part, for step i with a maximum number of steps N, we estimate the best number of
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remaining steps M to reach the target with

M = arg max
m∈1...N−i

f ((gact )
−1 ◦ ggoal((i+m)T ); μ1∗···∗m,Σ1∗···∗m) (28)

where we use m convolutions of (μ∗,Σ∗) and T is the time of a single step. Note that
the goal pose is evaluated at different discrete times in this part. After selecting the
best number of steps to take, we choose a trajectory for a single step with

gi = arg max
g∈ζ

f ((gact ◦ g)−1 ◦ ggoal((i+M)T ); μi+2∗···∗(M+i),Σi∗···∗(i+M)). (29)

By breaking the problem into a two-part algorithm, we only have to evaluate (N −
i + Z) pdfs for each step i. We repeat this two-step process for each step until
the current pose is within some tolerance of the goal pose. In the next section, we
demonstrate this POP algorithm on a simple numerical example.

5 Example: Stochastic Kinematic Disc

In this section, we are interested in numerically testing a couple key aspects of this
paper with the simple example of a disc that can roll but not slip in the plane. First,
we verify that a Gaussian in exponential coordinates is a good fit. Second, we verify
that the second-order propagation formulas can be used to calculate the mean and
covariance of the convolution of two distributions. Finally, we demonstrate the POP
algorithms outlined above.

The governing stochastic differential equation for this example is given by

(g−1ġ)∨dt = hdt +Hdw =

⎛
⎝ v

0
ω

⎞
⎠ dt +

⎛
⎝

√
Dv 0
0 0
0

√
Dω

⎞
⎠( dwv

dwω

)
. (30)

where (g−1ġ)∨ are body fixed velocities [7], v and ω are translational and angular
velocities, respectively, Dv and Dω are noise coefficients and dw = [dwv,dwω ]

T are
unit-strength Wiener processes.

For small diffusion, the mean and covariance defined in (10) and (11) can be
approximated with [18]

μ(t) = exp

(∫ t

0
ĥdτ

)
and Σ(t) =

∫ t

0
Ad−1(μ(τ))HHT Ad−T (μ(τ))dτ, (31)

which are essentially the deterministic path from integrating hdt and covariance
propagation with only the A and B terms in (21) with infinitesimal steps. For an
ideally straight trajectory (ω = 0), the mean and covariance at time t is given by

μ(t) =

⎛
⎝1 0 vt

0 1 0
0 0 1

⎞
⎠ and Σ(t) =

⎛
⎝Dvt 0 0

0 1
2 Dωv2t3 1

2 Dωvt2

0 1
2 Dω vt2 Dω t

⎞
⎠ . (32)
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For a trajectory with constant angular and translational velocity, the disc ideally
moves along a circular path. The mean and covariance of this case are

μ(t) =

⎛
⎝ cos(ωt) −sin(ωt) v

ω sin(ωt)
sin(ωt) cos(ωt) v

ω (1− cos(ωt))
0 0 1

⎞
⎠ and Σ(t) =

⎛
⎝σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ ,

(33)
where

σ11 = 1
4ω3

[
2tω(3Dωv2 +Dvω2)− 8Dωv2 sin(ωt)+ (Dwv2 +Dvω2)sin(2ωt)

]
,

σ12 = 1
ω3

[
Dωv2 −Dvω2 − (Dωv2 +Dvω2)cos(ωt)

]
sin2(ωt

2 ),

σ13 = 1
ω2 Dωv(ωt − sin(ωt)), σ22 =

1
4ω3 (Dωv2 +Dvω2)(2ωt − sin(2ωt),

σ23 = 1
ω2 Dωv(1− cos(ωt)), and σ33 = Dω t.

To verify that the integral version of the means and covariances are accurate, we
numerically integrated the stochastic differential equation in (30) using a modified
version of the Euler-Maruyama method [11] with a time step of dt = 0.001 for T = 1
for 25000 samples with noise levels of Dv = 0.001 and Dω = 0.1. We can calculate
an estimate of the actual mean and covariance from (24) and (25), respectively,
where Q is the number of sample data points.

For the ideal straight path with v = 1 and ω = 0, we obtain from sample data

μdata=

⎛
⎝1.000 −0.001 1.000

0.001 1.000 −0.000
0 0 1

⎞
⎠ and Σdata=

⎛
⎝ 0.001 −0.000 −0.000

−0.000 0.034 0.050
−0.000 0.050 0.100

⎞
⎠ ;

from the integral propagation formula,

μprop =

⎛
⎝ 1 0 1

0 1 0
0 0 1

⎞
⎠ and Σprop =

⎛
⎝ 0.001 0 0

0 0.033 0.050
0 0.050 0.100

⎞
⎠ .

For an ideal circular path with v = 1 and ω = π
2 we have from data

μdata =

⎛
⎝0.000 −1.000 0.637

1.000 0.000 0.637
0 0 1

⎞
⎠ and Σdata =

⎛
⎝ 0.010 0.012 0.023

0.012 0.021 0.041
0.023 0.041 0.101

⎞
⎠ .

The integral propagation formulas provide

μprop =

⎛
⎝ 0 −1 0.637

1 0 0.637
0 0 1

⎞
⎠ and Σprop =

⎛
⎝ 0.010 0.013 0.231

0.013 0.021 0.041
0.023 0.041 0.100

⎞
⎠ .

Given the sample data from each example, we can calculate normalized histogram
contours and compare them to the contours generated from the Gaussian in (12)
marginalized over the heading as shown in Fig. 2. Note that if we used the standard
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Fig. 2 25,000 sample points after integrating the stochastic differential equation of a noisy
rolling disc for a straight path (left) and a circular path (right). Gaussian pdf contours
marginalized over the heading from a propagated mean and covariance are compared to the
contours from a histogram of the sample points.

formula for a Gaussian in R
n we would have elliptical contours, which does not fit

the data as well.
Now let’s verify that the second-order propagation formulas are accurate for con-

volving two distributions. Here we assume the robot follows the straight example
followed by the arc example with the same parameters as above. The mean and
covariance from sample data following these paths were calculated to be

μdata =

⎛
⎝−0.003 −1.000 1.636

1.000 −0.003 0.636
0 0 1

⎞
⎠ and Σdata =

⎛
⎝ 0.145 0.083 0.137

0.083 0.065 0.104
0.137 0.104 0.201

⎞
⎠ .

By using the propagation formulas in (20) and (21) with the means and covariances
from (32) and (33) we obtain

μprop =

⎛
⎝0.000 −1.000 1.638

1.000 0.000 0.637
0 0 1

⎞
⎠ and Σprop =

⎛
⎝0.146 0.083 0.137

0.083 0.065 0.104
0.137 0.104 0.200

⎞
⎠ .

Finally, we want to demonstrate the POP algorithm. Given a set ζ of ideally straight
and circular trajectories, we can approximate the mean and covariance of each in-
dividual trajectory in closed form using the expressions in (32) and (33). Before
applying the POP algorithm, we numerically calculate the mean μ∗ and covariance
Σ∗ for a single step. In the remaining examples, we use Dv = 0.0001 and Dω = 0.01
as well as a constant translational velocity v = 1 and a range of angular velocities
ω ∈ [−π/3 : π/12 : π/3] for a step time of T = 1. When planning a path open loop
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Fig. 3 (a) shows the open-loop optimal trajectory of the POP algorithm in green. Dead-
reckoning trajectories are shown in black executing this sequence of steps. (b) shows ten
paths executing the POP algorithm with absolute measurements.
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Fig. 4 The modified POP algorithm with absolute measurements implemented for two ex-
amples of a moving target and a variable number of steps to intercept

(no measurements) for a fixed goal, we use the POP algorithm with (22) to obtain
the desired trajectories for each step. Fig. 3(a) shows an ideal path with five in-
termediate steps for an example goal pose with several dead-reckoning trajectories
that try to follow this trajectory. Note that due to noise in the velocities the trajecto-
ries move away from the goal. When we have access to exact full pose information
at each step, we select different step segments according to (23). Fig. 3(b) shows
several actual trajectories using measurements at the end of each step.

The modified POP algorithm from (28) and (29) with measurements was tested
with moving targets and a variable number of steps as shown in the two examples of
Fig. 4 for approximately 25 steps with the same parameters as above. For both exam-
ples, the velocity of the moving target was chosen to be 50 percent of translational
velocity of the robot to enable the robot to intercept it. This example demonstrates
the propagation formulas as well as the modified POP algorithm.
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6 Conclusion

In this paper, we focus on motion planning with uncertainty for planar systems. We
represent all distributions with probability density functions. By using Lie group
theory, we are able to derive closed-form expressions to efficiently propagate the
mean and covariance of these distributions. We discuss the Path-of-Probability al-
gorithm with these tools and extend this algorithm to include moving targets and a
variable number of steps. This algorithm and propagation formulas were tested on a
disc that can roll but not slip in the plane. In future work, we plan to introduce ob-
stacles in the planning and to incorporate noisy measurements of both the robot and
the target. We are also interested in applying these techniques to more complicated
planar systems. Overall, these propagation formulas and the POP algorithm allow
for quick and efficient motion planning of uncertain planar systems.

7 Appendix

7.1 Covariance Formula Proof

The proof of the expression for the mean to second order was shown in [23]. The
proof of the covariance expression is slightly different than in [23] since we are
working with SE(2) instead of SE(3). The covariance of the convolution ( f1 ∗ f2)(g)
about the mean μ1∗2 is given by

Σ f1∗ f2 =

∫
G

log∨(μ−1
1∗2 ◦ g)

[
log∨(μ−1

1∗2 ◦ g)
]T

( f1 ∗ f2)(g)dg. (34)

With a change of coordinates g → μ1 ◦ μ2 ◦ g, this can be rewritten as

Σ f1∗ f2 =
∫

G
log∨(μ−1

ρμ2
1 ∗ρ2

◦ g)

[
log∨(μ−1

ρμ2
1 ∗ρ2

◦ g)

]T

(ρ μ2
1 ∗ρ2)(g)dg = Σρμ2

1 ∗ρ2
.

(35)
Define the covariance C about the identity to be

C =

∫
G

log∨(g)
[
log∨(g)

]T
f (g)dg. (36)

If a pdf f (g) has mean μ and covariance Σ , then expanding (36) with the Baker-
Campbell-Hausdorff formula (BCH) (see next subsection)

C = Σ + log∨(μ)
[
log∨(μ)

]T
+

1
2

(
ΣadT (log(μ))+ ad(log(μ))Σ

)
. (37)

Since μρμ2
1 ∗ρ2

is second order, this means to second order

Cρμ2
1 ∗ρ2

= Σρμ2
1 ∗ρ2

. (38)
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The covariance C about the identity for f (g) = (ρ μ2
1 ∗ρ2)(g) is given by

Cρμ2
1 ∗ρ2

=

∫
G

∫
G

log∨(g)
[
log∨(g)

]T ρ μ2
1 (h)ρ2(h

−1 ◦ g)dhdg

Applying a change of coordinates g → h−1 ◦ g,

Cρμ2
1 ∗ρ2

=

∫
G

∫
G

log∨(h ◦ g)
[
log∨(h ◦ g)

]T ρ μ2
1 (h)ρ2(g)dhdg.

Let X = log(h) and Y = log(g). In the expansion of the log terms with the BCH, any
terms in linear in X or Y will integrate to zero, which leaves the even terms as

{
(Z(X ,Y ))∨

[
(Z(X ,Y ))∨

]T}
even

=xxT + yyT + 1
4 ad(X)yyT adT (X)

+ 1
12 ad(X)ad(X)yyT + 1

12 yyT adT (X)adT (X)

+ 1
12 ad(Y )ad(Y )xxT + 1

12 xxT adT (Y )adT (Y )+ . . .

(39)

Integrating the first two terms, we obtain the matrix A from

A =

∫
G

xxT ρ μ2
1 (h)dh = Σρμ2

1
= Ad(μ−1

2 )Σρ1AdT (μ−1
2 ) (40)

and the matrix B from
B =

∫
G

yyT ρ2(g)dg = Σρ2 . (41)

Integration of the third term over g gives us
∫

G
ad(X)yyT adT (X)ρ2(g)dg = ad(X)BadT (X)

and after integration over h we obtain

C(A,B) =
∫

G
ad(X)BadT (X)ρ μ2

1 (h)dh.

Additionally, we have
∫

G
ad(X)ad(X)ρ μ2

1 (h)dh
∫

G
yyT ρ2(g)dg = A′′B,

where the ′′ operator rearranges the covariance matrix A. The remaining terms in
the log expansion can be found similar to (7.1) by switching the order of A and B
and using transposes.
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7.2 Baker-Campbell-Hausdorff Formula

The Baker-Campbell-Hausdorff formula (BCH) [7] is a useful expression that will
be used extensively in this paper to relate between the matrix exponential and the
Lie bracket. The BCH is given by

Z(X ,Y ) = log(eX eY )

= X +Y +
1
2
[X ,Y ]+

1
12

([X , [X ,Y ]]+ [Y, [Y,X ]])+
1

24
([X , [Y, [Y,X ]]])+ . . .

If the ∨ operator is applied to this formula, we obtain

z =x+ y+
1
2

ad(X)y

+
1

12
(ad(X)ad(X)y+ ad(Y )ad(Y )x)+

1
24

ad(X)ad(Y )ad(Y )x+ . . .
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