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Abstract— We propose a new method for sampling the
rotation group that involves decomposing it into identical
Voronoi cells centered on rotational symmetry operations of the
Platonic solids. Within each cell, Cartesian grids in exponential
coordinates are used to achieve almost-uniform sampling at any
level of resolution, without having to store large numbers of co-
ordinates, and without requiring sophisticated data structures.
We analyze the shape of these cells, and explain how this new
method can be used in the context of conformational searches
in the fields of Robotics and Structural Biology.

I. INTRODUCTION

In many application areas ranging from robot motion

planning to computational structural biology, the issue of

how to uniformly sample rotations arises. Moreover, the

problem of sampling uniformly at random is a very different

problem than constructing schemes to uniformly sample

deterministically. The former can be achieved by using

the standard inverse-function technique in, for example, the

Euler angle parameterization, or by using one of the many

other techniques described in [1], [2], [3]. Random uniform

sampling on the rotation group, SO(3), is much easier

than deterministic uniform sampling, the latter of which

does not even have an exact solution (except for the very

coarse samplings corresponding to the rotational symmetry

operations of the Platonic solids). This is because random

sampling only depends on the Jacobian determinant, |J(q)|,
when a particular parameterization of rotation matrices, R(q),
is used. In contrast, a measure of equal spacing depends

on the invariant distance metric that is used. A distortion

measure then can be constructed that measures how different

the metric tensor is from the identity matrix as

C(q) =
1√
3
‖G(q)− I‖. (1)

Here G(q) = JT (q)J(q), ‖ · ‖ denotes the Frobenious norm,

and
√

3= ‖I‖ is used as a normalizing factor. It is known that

it is not possible to construct perfectly uniform finely spaced

samples in the sense of having C(q) = 0 for all possible

values of q for R(q) to densely fill SO(3). The next natural

question to then ask is “how good of a fine sampling of

SO(3) is achievable ?”

The issue of “as uniform as possible” sampling on SO(3)
is very closely related to the analogous problem on the

sphere. Several related problems have been studied in very

different bodies of literature. On the one hand, spherical

designs and spherical codes [4], [5], [6], [7] seek to place
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points on the sphere in order that the distance between

nearest neighbors is as uniform as possible. This is related

to, but not exactly the same as, the problem of packing equal

sized circles on the surface of the sphere as described in [8],

[9], [10], [11]. So-called “cubature” rules [12], [13] seek to

define points on the surface of the sphere so as to sample

bandlimited spherical harmonic expansions and turn integrals

into discrete sums (as in quadrature rules).

The issue of how to uniformly sample the rotation group,

SO(3), which also goes by different names in other fields

(such as the “orientational space,” “Eulerian space”, etc.) has

received attention in various fields from robotics and com-

puter graphics to problems in crystallography and biomolec-

ular structure determination. In many cases, variants of the

ZXZ or ZYX Euler angles q = [α,β ,γ]T are used in which,

for example, the two Z rotations are sampled uniformly

and the middle Euler angle is sampled according to a β =
cos−1(x) rule where x is sampled uniformly from [−1,1]. In

this way equal volume partitions of SO(3) are achieved, since

the integration measure for SO(3) in these parameterizations

has a sinβ factor, much like the unit sphere S2. But equal

volume partition (as studied in [14]) is not the same as equal

spacing of sample points. For example, cells that are box-like

regions can be long and narrow or close to cubical and still

have the same volume, but the vertices of the cells in the

former case would not be uniformly distributed. Therefore,

placing constraints on equal volume cells is not the same

as placing constraints on equal shape cells. And even having

cells of equal shape does not imply that points on the vertices

of these cells are uniformly spaced.

The Euler angles are particularly bad when it comes to

uniform sampling as measured by (11). A variant on the

Euler angles is the so-called Lattman angles [15]. These

angles are defined relative to the Euler angles as (φ ,θ ,ψ) =
(α + γ,β ,α − γ). This means that G(φ ,θ ,ψ) will at least

be diagonal in the computation of the cost function in (11),

and thereby cancel with more of the identity matrix than

G(α,β ,γ), which is not even diagonal.

More recently, a number of papers have addressed how

to generate close-to-uniform samplings on the sphere, torus,

rotation group, and other manifolds by minimizing various

energy functions [16], [17], recursive subdivisions [18], [19],

interpolation using distance metrics [20], [21], quadrature-

based methods [22], [23], and a fibration approach [24], [25].

These approaches all have merit, but in some cases require

sophisticated recursion schemes or storing coordinates. We

take a very different group-theoretic approach rather than the

geometric approaches discussed above. Namely, we partition
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the rotation group into Voronoi cells, where the distance

metric used is one of those reviewed in [26], and the center

points of each cell is an element of one of the rotational

symmetry groups of the platonic solids. Then, in the Voronoi

cell centered on the identity, we construct a Cartesian grid

in exponential coordinates. Because the exponential param-

eterization is almost linear near the identity, the distortion

measure is close to zero. The contents of the Voronoi cell

near the identity are then replicated in the other cells by left-

shifting the contents by each rotational-symmetry operation

corresponding to the symmetry group used to construct the

cells. We study the shapes of these cells for the tetrahedral,

octahedral, and icosahedral groups. The icosahedral case is

particularly interesting because SO(3) is divided into 60

small identical units, and the distortion in the exponential

parameterization is very small over each one. This means

that rotations can be sampled very simply on a Cartesian

grid in the Lie algebra and exponentiated.

II. OUR METHOD OF SAMPLING ON SO(3)

A. Parameterization SO(3) as a Solid Ball in R3 in Expo-

nential coordinates

The rotation group SO(3), i.e., the special orthogonal

group, is the set of all rotations about the origin of three-

dimensional Euclidean space R3 together with the operation

of composition. By definition, a rotation about the origin is a

linear transformation that preserves length of vectors, angles

between vectors, and handedness of space. The elements of

SO(3) can be represented as 3×3 orthogonal matrices with

unit determinant, in which case the group operation becomes

matrix multiplication. Different coordinates can be used to

parametrize SO(3). The commonly used ones are axis-angle

representation (also known as exponential coordinates), Euler

angles, hyper-spherical coordinates, quaternions and etc..

In this paper, we parameterize SO(3) as a solid ball in

R3 with radius π in exponential coordinates [27]. In this

description, the radius of each concentric spherical shell

within the ball represents a rotation angle. With a unit vector

n indicating the rotation axis and an angle θ describing the

amount of rotation around n, any rotation matrix R ∈ SO(3)
can be represented as

R = exp(n̂θ ) = I + n̂sinθ + n̂2(1− cosθ ), (2)

where

n̂ =





0 −n3 n2

n3 0 −n1

−n2 n1 0





is the skew-symmetry matrix corresponding to n. This can be

viewed as spherical coordinates in the Lie algebra so(3) ∼=R3

in which θ takes the place of the radius. The corresponding

Cartesian coordinates are x = θ n where θ = ‖x‖ and n =
x/‖x‖. In component form,

x(θ ,α ′,β ′) = θ





sinα ′ cosβ ′

sinα ′ sinβ ′

cosα ′



=





x

y

z



=





n1θ
n2θ
n3θ



 ,

(3)

where −π ≤ θ ≤ π , 0 ≤ α ′ ≤ π , 0 ≤ β ′ ≤ 2π and x =
[x, y, z]T are the Cartesian coordinates for the points inside

the ball. We can obtain the same rotation matrix in (2) by

exponentiating the skew-symmetric matrix corresponding to

x(θ ,α ′,β ′). (Here we use α ′ and β ′ to distinguish from the

first two Euler angles α and β mentioned earlier).

B. Discrete subgroups of SO(3)

A subset H ∈ G is said to be a discrete subgroup of

G if it contains only isolated elements of G and is closed

under the group operation. Three discrete subgroups of the

rotation group SO(3) correspond to symmetry operations of

the Platonic solids —the tetrahedral group T , the octahedral

group O, and the icosahedral group I. Another family of

discrete subgroups of SO(3) are the cyclic groups Cn which

result from sampling rotations around a fixed axis at angles of

2π/n. The rotational symmetry groups of the platonic solids

can be described in terms of cyclic groups of different orders

applied to their faces, edges, and vertices so as to leave the

volume occupied by the solids unchanged.

A regular tetrahedron has four 4 C3 axes through each ver-

tex to the center of the opposite face, and 3 C2 axes through

the centers of pairs of opposite edges. Including the identity,

the total number of group elements of T is 4(3−1)+3(2−
1)+1= 12. The cube and its dual, the octahedron, have 3 C 4

axes through the centers of opposite faces, 4 C3 axes through

opposite vertices, and 6 C2 axes through the centers of pairs

of opposite edges. The total number of group elements of O

is 3(4− 1)+ 4(3− 1)+ 6(2− 1)+ 1= 24. The icosahedron

and its dual dodecahedron have 6 C5 axes through opposite

vertices, 10 C3 through the centers of opposite faces, and

15 C2 axes through the centers of opposite edges. Thus, the

subgroup I has 6(5− 1) + 10(3− 1) + 15(2− 1) + 1 = 60

elements.

C. Generating Voronoi Cells of SO(3)

In this paper, we decompose SO(3) into Voronoi cells

centered on elements of its discrete subgroup Γ (Γ can be

T , O or I), with each Voronoi cell consisting of the points

contained in SO(3) closer to one element of Γ than to any

other. A common metric to define the distance between any

two points R1,R2 ∈ SO(3) is

d(R1,R2) = θ (RT
1 R2) = ‖(log(RT

1 R2))
∨‖ (4)

where log(·) is the inverse of the exponential mapping in (2),

which is valid when θ ∈ [0,π). This is extended to the closed

solid ball by simply setting θ (RT
1 R2) = π on the boundary.

Here, as earlier, ‖ ·‖ is the Euclidean norm, and ∨ is defined

by the property that (x̂)∨ = x.

The Voronoi cells of SO(3) represented in the exponential

coordinates can partition the solid ball in R3 into separate

regions, denoted as S1,S2, · · · ,Sm, where m is the number

of elements in Γ (see Fig. 1 for the octahedral group).

These regions are mildly ambiguous at their borders, but this

represents a set of measure zero. The region S1 located in

the center of the solid ball corresponds to the Voronoi cell of

the identity matrix. Because the exponential parameterization
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is relatively flat near the identity, i.e., exp x̂ ≈ I+ x̂ when

‖x‖<< 1, the metric tensor becomes G(x)≈ I, and the dis-

tortion measure C(x) of the samples on SO(3) parametrized

by Cartesian grids on the S1 is close to zero. And the

smaller size of S1, the smaller the overall distortion will be.

Subsequently, the samples of other Voronoi cells of SO(3)
can be obtained from the samples computed for the “center”

Voronoi cell (i.e., the one that corresponds to the identity

element of SO(3) and Γ) by multiplying with the other

rotation matrices in Γ. In other words, after we generate N

samples for the center Voronoi cell, for every other Voronoi

cell Sk ⊂ SO(3), we replicate the N samples by shifting those

from the center cell, S1. This can be done by either left or

right shift:

{exp(x̂ki
)|i = 1, · · · ,N} = {exp(x̂1i

)Rk|i = 1, · · · ,N} (5)

or

{exp(x̂′ki
)|i = 1, · · · ,N} = {Rk exp(x̂1i

)|i = 1, · · · ,N}, (6)

for all k = 2, · · ·m where {x̂ki
|i = 1, · · · ,N} and {x̂′ki

|i =
1, · · · ,N} are the N samples for the center Voronoi cell

generated by these shifts, and Rk is the element of the

discrete subgroup Γ. Note that while in general at the level

of individual samples xki
�= x′ki

, at the level of whole cells

Sk = Rk ·S1 = S1 ·Rk

where Sk denotes the closure of cell Sk and · denotes the

application of Rk to each point in Sk.

Thus, without loss of generality, we can focus on sampling

the center Voronoi cell, and samples of the rest of SO(3)
can be obtained by shifting the samples from the center

one, without introducing more distortion. The reason why

we can shift from either the left or the right is that the

metric in (4) used to generate the Voronoi cells is left and

right invariant, i.e., d(R1,R2) = d(AR1,AR2) = d(R1A,R2A)
for any A ∈ SO(3). Therefore, the Voronoi cells that we are

considering can be viewed as the “fundamental domains”

constructed from representative group elements that in total

correspond to the left and right coset spaces SO(3)/Γ and

Γ\SO(3).
In this paper, the shape of Voronoi cells for the tetrahedral

group, the octahedral group, and the icosahedral group are

studied. The discrete subgroup with the smallest Voronoi

cells should be used for the sampling to minimize the

distortion; a small-sized cell centered on the identity will be

good for almost-uniform sampling because near the identity,

exp x̂ ≈ I+ x̂, and with x sampled uniformly in Cartesian

coordinates, exponentiation does not warp the resulting rota-

tions very much. Since the icosahedral group I has the largest

number of group elements, SO(3) is divided into smallest

Voronoi cells compared to other discrete subgroups. Thus,

to achieve best sampling results, the icosahedral group is

used to generate the Voronoi cells in SO(3). Fig. 2 shows

that the center Voronoi cell shifted by a rotation matrix in

the icosahedral group is overlapped with the Voronoi cell

that corresponds to this rotation matrix. The Voronoi cells

are visualized in the exponential coordinates.

(a) (b)

Fig. 1. (a) Voronoi cells of the octahedral group in SO(3) are represented
in exponential coordinates. Each color represents a Voronoi cell in SO(3).
We note that because the exterior Voronoi cells cover the interior ones in
the figure, the regions with different colors may appear to be patches on a
sphere but actually represent for sites in a solid ball. (b) The center Voronoi
cell that corresponds to the identity matrix is represented in exponential
coordinates. The yellow-shaded ball represents the solid ball in R3 with
radius π.
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Fig. 2. The center Voronoi cell shifted by a rotation matrix R in the
icosahedral group VS the Voronoi cell that corresponds to R. The complete
overlapping between the two sites shows that the contents of the Voronoi
cell on R can be replicated by the contents of the Voronoi cell on the identity
by shifting the contents by R.

The shape of the Voronoi cells centered on the identity for

the tetrahedral, octahedral and icosahedral groups are close

to being polyhedra themselves; more specifically, they are

almost cropped octahedron, cropped cube and dodecahedron

[28]. We say “almost polyhedra” because the boundaries

between the central cell and its neighbors are slightly curved

inward, making the cell slightly rounded. But by considering

the polyhedra that enclose the actual Voronoi cells, we can

be guaranteed to cover SO(3) with samples without gaps.

And redundant points can easily be removed.

For the tetrahedral group, the center Voronoi cell is an

octahedron cropped by surfaces normal to the axes through

opposite vertices, with the distance hC2
= π/2 from the origin

(see Fig. 3 (a)). The Cartesian coordinates of the vertices on

the cropped octahedron are

(±
√

3hC3
∓ (

√
3hC3

− hC2
),±(

√
3hC3

− hC2
),0), (7)

(±
√

3hC3
∓ (

√
3hC3

− hC2
),0,±(

√
3hC3

− hC2
)),

(±(
√

3hC3
− hC2

),±
√

3hC3
∓ (

√
3hC3

− hC2
),0),

(0,±
√

3hC3
∓ (

√
3hC3

− hC2
),±(

√
3hC3

− hC2
)),

(±(
√

3hC3
− hC2

),0,±
√

3hC3
∓ (

√
3hC3

− hC2
)),

(0,±(
√

3hC3
− hC2

),±
√

3hC3
∓ (

√
3hC3

− hC2
)).
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For the octahedral group, the center Voronoi cell is a cube

with the center-to-face distance hC4 = π/4, cropped at each

corner by a surface of a distance hC3
= π/3 from the origin

(see Fig. 3 (b)). The Cartesian coordinates of the vertices on

the cropped cube are

hC4
(±1∓ t,±1,±1) (8)

hC4
(±1,±1,±1∓ t)

hC4
(±1,±1∓ t,±1),

where t = 3π/4−
√

3hC3
.

For the icosahedral group, the center Voronoi cell is a

dodecahedron with the center-to-face distance hC5
= π/5 (see

Fig. 3 (c)). The Cartesian coordinates of the vertices on the

dodecahedron are

c(±1,±1,±1), (9)

c(0,±1/ϕ ,±ϕ),

c(±1/ϕ ,±ϕ ,0),

c(±ϕ ,0,±1/ϕ),

where c = 20hC5
/(
√

250+ 110
√

5(
√

5− 1)).

D. Curvature of Cell Boundaries

Here we consider the shape of the boundary between the

cell S0 and and adjacent cell Sk centered on γk = exp(θkn̂k).
This boundary is defined by the set of all x ∈R3 defined by

the condition

d(I,exp(x̂)) = d(exp(x̂),γk). (10)

When θk < 1, this condition can be approximated by ‖x‖=
‖x−θknk‖, which defines a plane passing through (θk/2)nk

with normal in the direction of nk. However, when θk is not

small, (10) describes a surface with potentially significant

curvature. This surface curves inward toward the origin from

the plane described above, with which it shares the single

point x = (θk/2)nk. This surface is a surface of revolution

with axis nk. This can be seen from (10) and the bi-invariance

of the metric, which implies invariance under conjugation

(similarity transformations) as well. In particular, applying a

similarity transformation to each entry in (10) with respect

to Q(φ) = exp(φ n̂k) where φ is an arbitrary angle of rotation

gives

d(I,exp(Q̂(φ)x)) = d(exp(Q̂(φ)x),γk)

because (Q(φ)x̂QT (φ))∨ = Q(φ)x and Q(φ)γkQT (φ) = γk.

Since these boundaries curve in, polyhedral descriptions of

the cells are conservative, in that they contain all sample

points in Sk, and can be depleted appropriately so as to avoid

redundancy in sampling.

E. Distortion of Sampling

In this section, we calculate the distortion of our proposed

sampling method and compare it with a widely used ap-

proach, the sampling based on Euler angles parametrization.

Both methods are evaluated as (11),

C(q) =
1√
3
‖G(q)− I‖, (11)
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Fig. 4. The distortion of the samples on SO(3) using (a) our sampling
method and (b) ZXZ Euler angles. In our sampling method, all the three
discrete subgroups are evaluated on the norm of the Cartesian coordinates
under exponential parameterization, ||x||. The maximum distortion for each
discrete subgroup is marked in the figure. The icosahedron group should
be used since it has the smallest Voronoi cell and results in the smallest
distortion. By using the ZXZ Euler angles, the two Z rotations α and γ
are sampled uniformly and the middle Euler angle β is sampled based on
β = cos−1(t), where t is sampled uniformly. In this case, the distortion is
evaluated on each value of β from 0 to π.

The Jacobians for the SO(3) exponential parameterization

R(x) = exp(x̂) are known [29], [30]

Jl(x) = I+
1− cos ||x||

||x||2 X +
||x||− sin ||x||

||x||3 X2, (12)

Jr(x) = I− 1− cos ||x||
||x||2 X +

||x||− sin ||x||
||x||3 X2,

where x is the Cartesian coordinates in exponential coordi-

nates for SO(3). Note that

Jl(x) = JT
r (x) and Jl(x) = R(x)Jr(x)

and G(x) = JT
r (x)Jr(x) = JT

l (x)Jl(x). It can be shown that

for ‖x‖< π that

C(x)≈ 1

12

√

2

3

(

‖x‖2 − (
‖x‖
3

)3

)

. (13)

In our sampling approach, the distortion by using the

icosahedral group is shown in Fig. 4 (a). We can see that

since the exponential parameterization is almost flat near the

identity, when ||x|| ≤ 0.1, the distortion is almost zero. As

||x|| increases, the distortion becomes larger. But even at the

furthest point of the center Voronoi cell, ||x|| = 0.73, the

distortion is only 3.52%. Since shifting the center Voronoi

cell by rotational symmetry operation introduces no more

distortion, it is the largest sampling distortion on SO(3) and

independent of the resolution of the Cartesian grids.
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Fig. 3. The wire frame plots and an example of uniform Cartesian grids on the center Voronoi cells for the (a) tetrahedral, (b) octahedral and (c)
icosahedral group. The plots are visualized in exponential coordinates.

Using the same measure, we also evaluate the distortion

for ZXZ Euler angles (see Fig. 4 (b)). The Jacobians for the

ZXZ Euler angles are [30]

Jl(α,β ) =





0 cosα sinα sinβ
0 sinα −cosα sin(β )
1 0 cosβ



 , (14)

Jr(β ,γ) =





sinβ sinγ cosγ 0

sinβ cosγ −sinγ 0

cosβ 0 1



 .

The two Z rotations α and γ are sampled uniformly and the

middle Euler angle β is sampled based on β = cos−1(t),
where t is sampled uniformly. The distortion remains the

same using either the left or the right Jacobian. By using the

sampling method based on Euler angles, even if the equal

volume partitions of SO(3) are achieved, we can see that the

distortion is significantly large. As the value of β close to the

singularity, i.e., β = π , the distortion increases and reaches

the peak value 81.65%.

III. IMPLEMENTATION TO PROTEIN CRYSTAL PACKING

PROBLEM

In applications ranging from robot motion planning to

computational structure biology, generating a good set of

samples is very important, particularly in the operations such

as optimization, conformation searching, and path genera-

tion. A good set of sampling can substantially improve their

computational speed and performance.

In this paper, we apply our sampling method to the

problem of computing collision-free arrangements of articu-

lated models of macromolecules packed in a crystal. This

is important because crystallography is the main method

used for obtaining structural and conformational information

in the biomolecular sciences. Molecular replacement (MR)

is a computational method that seeks to place a homolo-

gous/similar molecule in the crystallographic unit cell and

search in the whole configuration space so as to maximize

the correlation with x-ray diffraction data. See [28], [31]

and references therein for a complete description of the

MR method, including our approach, which involves the

enumeration of all collision-free conformations.

In this “protein packing” problem, both collision checking

and stochastic searching are involved, and their performance

heavily relies on the sampling quality in the conformation

space. To evaluate our sampling method, we look into a

simplified toy model (similar to the one used in [31]) that

simulates the packing of protein crystals. The rabbit-shaped

toy model has fixed position and can rotate freely in space,

in other words, the motion of the toy model is in SO(3). The

copies of the model tile the space in P1 symmetry, in which

the copies retain the same motion (translation and rotation)

with their positions shifted by the unit cell (see Fig. 5). Our

goal is to obtain a sufficient candidate set of collision-free

packing arrangements by using as few conformation searches

as possible. We generate a similar number of samples on

SO(3) using both our proposed method and ZXZ Euler

angles. In Fig. 6, we can see that when the number of

samples is small (≤ 500), using Euler angles, no collision-

free conformation is found while 42 are found using our

sampling method. Even as the number of samples increases,

we can always find more collision-free conformations using

our method than sampling by Euler angles. The efficiency in

finding collision-free candidates using our sampling method

comes from the fact that the samples we generate in SO(3)
are more evenly spaced and have less distortion. Besides this

protein crystal packing problem, our sampling method also

have great potential in robot motion planning problem, which

involves finding feasible conformations in high dimensional

space.

IV. CONCLUSIONS

A new sampling method for the rotation group SO(3) is

proposed. In this method, SO(3) is partitioned into Voronoi

cells based on the rotational symmetry operations of the

Platonic solids. Uniform Cartesian grids in exponential co-

ordinates are generated on the Voronoi cell centered on

the identity, and samples on the surrounding Voronoi cells

are then replicated by shifting by the rotational symmetry

operations. The shape of the Voronoi cells centered on the

identity for the tetrahedral, octahedral and icosahedral groups

are close to being polyhedra themselves. For the icosahedral

group, the one has the smallest Voronoi cells, the largest
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Fig. 5. (a) Illustration of 3 degrees of freedom in the packing model.
Examples of packing configurations (b) without collisions (c) with collisions
(indicated in yellow) [31].
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Fig. 6. The number of collision-free conformations VS the number of
sample points on SO(3) generated by (a) our sampling method, (b) sampling
of Euler angles.

distortion is only 3.52%, independent of resolution of the

Cartesian grid. This sampling method can achieve almost-

uniform sampling at any level of resolution, without having

to store large numbers of coordinates or requiring sophisti-

cated data structures. In the implementation to protein crystal

packing problem, the sampling method shows efficiency in

finding collision-free conformations, and it can also apply to

robot motion planning problem with great potential.
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