
186 doi:10.1107/S2053273314024358 Acta Cryst. (2015). A71, 186–194

research papers

Mathematical aspects of molecular replacement. III.
Properties of space groups preferred by proteins in
the Protein Data Bank

G. Chirikjian,a* S. Sajjadi,a D. Toptyginb and Y. Yana

aDepartment of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Hackerman Hall 116,

Baltimore, USA, and bDepartment of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, 144 Mudd

Hall, 3400 N. Charles St., Baltimore, MD 21218, USA. *Correspondence e-mail: gregc@jhu.edu

The main goal of molecular replacement in macromolecular crystallography is to

find the appropriate rigid-body transformations that situate identical copies of

model proteins in the crystallographic unit cell. The search for such

transformations can be thought of as taking place in the coset space �\G where

� is the Sohncke group of the macromolecular crystal and G is the continuous

group of rigid-body motions in Euclidean space. This paper, the third in a series,

is concerned with viewing nonsymmorphic � in a new way. These space groups,

rather than symmorphic ones, are the most common ones for protein crystals.

Moreover, their properties impact the structure of the space �\G. In particular,

nonsymmorphic space groups contain both Bieberbach subgroups and sym-

morphic subgroups. A number of new theorems focusing on these subgroups are

proven, and it is shown that these concepts are related to the preferences that

proteins have for crystallizing in different space groups, as observed in the

Protein Data Bank.

1. Introduction

This series of papers is concerned with the mathematical

properties of the coset space �\G where G ¼ SEð3Þ is the

continuous ‘special Euclidean group’ consisting of all rigid-

body motions in three dimensions that preserve handedness,

and �<G is isomorphic to any of the 65 Sohncke1 three-

dimensional space groups.2 The first two papers in this series

(Chirikjian, 2011; Chirikjian & Yan, 2012) explored the alge-

braic and geometric properties of this manifold in general, and

explored choices for the associated fundamental domain

F�\G � G in the symmorphic case. In those papers it was also

shown that F�\G is the space in which rigid-body searches in

molecular replacement (Rossmann, 2001) are performed.

[While traditional molecular-replacement methods break the

problem up into a three-dimensional rotation search followed

by a three-dimensional translation one, our approach char-

acterizes the six-dimensional search space, as does that of

Kissinger et al. (1999).] In this third paper in the series we

focus on the case where � is nonsymmorphic and analyze

which space groups are more common amongst the roughly

80 000 proteins crystallized to date.

Though G is the (outer) semidirect product of the contin-

uous translation group with the continuous rotation group
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[written as G ¼ X �R where X ffi ðR3;þÞ and R ffi SOð3Þ],

� can only be written as a semidirect product of a discrete

translation group and finite rotation group for the 24

symmorphic Sohncke groups. In the second paper in this

series, it was explained that for a symmorphic Sohncke group

�P ¼ T � P, where T is the finest group of lattice translations3

and P ffi �
T is a chiral point group with jPj ¼ ½� : T� (the index

of T in �), searching in F�\G is equivalent to a search in

F�\X �R or FT\X � FP\R. And if S / P, then intermediate

choices exist to perform a search over a translational domain

of the form F�S\X where �S ¼ T � S. The domain F�S\X is

larger in terms of volume than F�\X and smaller than FT\X . And

if such an intermediate choice is made, then the corresponding

searches over rotation domains are smaller than R and larger

than FP\R in a way that depends on S\P.

In the current paper, we establish the foundations for

similar decompositions of � for the 41 nonsymmorphic

Sohncke groups. This builds on the concept of a Bieberbach

group (or torsion-free space group). A Bieberbach group can

be thought of as the opposite extreme from a symmorphic

group, in that none of its elements (other than the identity)

form a point subgroup. With Bieberbach groups at one

extreme and symmorphic groups at the other, all of the

remaining space groups lie somewhere in the middle. We

show that inside of every nonsymmorphic Sohncke

group are both Bieberbach and symmorphic subgroups. We

define the concepts of minimal-index Bieberbach and

minimal-index symmorphic subgroups, and show how the

coset decomposition of space groups by Bieberbach

subgroups relates to the relative frequency of occurrence

of the various space groups in the Protein Data Bank (PDB).

The topics of characterizing search spaces in molecular

replacement and the statistical preferences of proteins are

treated together in the same paper for a reason: the number

of possible arrangements of physical proteins in an environ-

ment with crystallographic symmetry is related to the difficulty

of the computational problem of searching for these

arrangements. In a sense, these problems are dual to each

other in that the more possibilities a protein has, the more

likely it should be for an energetically favorable arrangement

to exist, whereas the more space one needs to search, the

higher the computational cost will be. And the issue of how

much free space a protein has to roam in the configuration

space �\G is intimately related to the structure of � studied

here.

Our motivation for this study fits the theme of this series for

the following reason. One can view an ideal macromolecular

crystal as either an infinite number of identical bodies in X, or

½� : T� bodies in T\X , or a single body in �\X . In all cases, the

smallest nonredundant space of motions of these bodies is not

G, but rather �\G. When it is possible to write � ¼ �B � S

where �B is a subgroup consisting only of translations and

screw motions, and S is a point subgroup of the abstract point

group P ffi �=T, then since as a group G ¼ X �R (or

equivalently G ¼ R� X), and as a set G ¼ X �R, the

fundamental domain corresponding to �\G can be decom-

posed naturally as

F�\G ¼ F�B\X � FS\R: ð1Þ

The significance of this is that �B\X is a flat manifold (also

called a Euclidean space form) and S\R is a spherical space

form. And both of these objects can be sampled in an efficient

way.

The remainder of this paper is structured as follows. In x2

definitions and theorems related to the structure of space

groups containing Bieberbach subgroups are provided. x3

addresses the concept of a minimal-index symmorphic

subgroup of a space group and that of a minimal-index

Bieberbach subgroup. x4 presents a summary of all normal

Bieberbach and normal symmorphic subgroups in tabular

form. In x5 the preferences of all proteins in the PDB (Berman

et al., 2000, 2002; Berman, 2008; Bernstein et al., 1977) are

tabulated and analyzed in light of the definitions and results

of x2.

2. Bieberbach subgroups: related definitions and new
theorems

As a matter of convention in crystallography, the position of a

point in a unit cell is given by values of x; y; z each ranging

from 0 to 1, regardless of whether the unit cell is primitive or

not. Therefore, for a space group in the primitive setting, P1

means a translation of the primitive lattice, and P1 ¼ TP. In

contrast, for a space group in a nonprimitive (conventional

centered) setting, TP <T (a proper subgroup), and TP is the

translation group of a sublattice of the one defined by T. Since

in protein crystallography roughly 20% of the most common

space groups encountered are nonprimitive, it makes sense to

consider TP � T where equality holds only in the case of

P-type space groups.

Let �N denote a space group of nonprimitive

(N 2 fC; I;F;Rg) type. In this case let T ¼ TN denote the

corresponding minimal-index translation subgroup. It is

�N=TN that is isomorphic to the point group, P, and not the

quotient �N=TP, since the latter cosets will contain repre-

sentatives that are pure (fractional) translations. Moreover, it

is a fundamental domain of TN\X that can always be identified

with the primitive unit cell whereas when discussing non-

primitive space groups a fundamental domain of TP\X

corresponds to the conventional nonprimitive cell, and

VolðTP\XÞ

VolðTN\XÞ
¼

TN

TP

����
����¼: n; ð2Þ

where n ¼ 2; 2; 4; 3 depending on the type C, I, F or R,

respectively.

The translation group of a primitive lattice, TN , is related to

the translation group TP ¼ P1 of the sublattice corresponding

to the nonprimitive (centered) conventional unit cells by

conjugation with respect to affine transformations of the form

�N ¼ ðA; 0Þ where A is the inverse of the centering matrices
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given in Hahn (2002) and Wondratschek & Müller (2010).

That is, TN ¼ ðTPÞ
�N ¼
:
�NTP�

�1
N .

As a matter of convention, we view the point group

P ffi �=T as a subgroup of the rotation group, P<R. Strictly

speaking then, P is not a subgroup of �, not even in the

symmorphic case. But if �P is symmorphic, then when each

R 2 P is appended with a zero translation vector, then

ðR; 0Þ 2 �P. Similarly, if S� T<� then S� f0g<� also.

Since S� f0g ffi S the distinction between these two objects is

often blurred in the literature, and both are called point

subgroups. When this distinction is important in our formu-

lation we will indicate so.

Definition 2.1. A Bieberbach group, �B, is a space group

that has no torsion elements. That is, there is no � 2 �B such

that for any given x 2 X the equality � 	 x ¼ x holds other

than � ¼ e. In other words, a Bieberbach group cannot

contain a nontrivial point group of the form S� f0g as a

subgroup. And if a Bieberbach group is also a Sohncke group,

then the generators are either pure screw motions or pure

translations.

Definition 2.2. A Bieberbach group, �B, and a symmorphic

space group, �S, are called nontrivial if they are not pure

translation groups.

As with any space group, two Bieberbach groups are

considered to be equivalent if they are equal under conjuga-

tion by an affine transformation that preserves handedness.

Recall that the set of all such transformations is

Affþð3Þ ¼ fðA; tÞjA 2 GLþð3Þ; t 2 R3
g ¼ GLþð3Þ � R3

with the semidirect-product group law ðA1; t1ÞðA2; t2Þ =

ðA1A2;A1t2 þ t1Þ where GLþð3Þ denotes the group of inver-

tible 3� 3 matrices with real entries and positive determi-

nant.4

Explicitly, the conjugation action of Affþð3Þ on � can be

defined easily when representing elements of both groups as

4� 4 matrices. After fixing an origin and choosing a basis for

R
3, every space group can be represented as a 4� 4 matrix of

the form

� ¼
R� t� þ vðR�Þ

0T 1

� �
;

where 0T ¼ ½0; 0; 0� and vðR�Þ is the translational part of a

screw displacement. Similarly, every affine transformation can

be represented as

� ¼
A a

0T 1

� �
;

where A 2 GLþð3Þ and a 2 R3. Conjugating � by � is then

equivalent to the matrix operation ����1 for all � 2 �.

When referring to Bieberbach groups in the literature, what

is often meant is classes of Bieberbach groups. The classes of

Bieberbach groups in three dimensions are important in

differential geometry, see e.g. Szczepański (2012) or Wolf

(2010), because each quotient of Euclidean space by a

Bieberbach group, �B\X , produces a flat compact manifold

(with fundamental group isomorphic to �B), and there are no

flat compact manifolds other than those produced in this

way. In contrast, the quotient of Euclidean space by a non-

Bieberbach space group is not a manifold, but rather is an

orbifold (Thurston, 1997; Montesinos, 1987).5 In particular, we

are concerned with Sohncke Bieberbach space groups, and

these result in quotients �B\X that are not only flat, but also

orientable manifolds.

Definition 2.3. The classes of Sohncke Bieberbach groups in

three dimensions have representatives in the set

F ¼
:
fP1;P21;P31;P32;P41;P43;P61;P65;P212121g

where the enantiomorphic pairs ðP31;P32Þ, ðP41;P43Þ,

ðP61;P65Þ are equivalent under affine transformations but

inequivalent under affine transformations that preserve

handedness. This set is called the full family of Sohncke–

Bieberbach-group representatives, and an individual repre-

sentative is denoted as �B 2 F . If F0 � F then F0 is called a

subfamily of Sohncke–Bieberbach-group representatives. In

particular, fP1g is called the trivial subfamily.

Definition 2.4. Every translation subgroup of the form

�ðP1Þ��1 2 � where � 2 Affþð3Þ is called a trivial Bieberbach

subgroup.

Let ��B¼
:
��B�

�1. Suppose that it is possible to find

�; �0 2 Affþð3Þ such that ��B;�
�0

B0 � �. The notation

½� : ��B� ¼
:
j��B\�j ¼ j�=��Bj

is used for the index of ��B in � (without presupposing

normality). If for some � 2 Affþð3Þ and �B 2 F
0 it is the case

that

½� : ��B� � ½� : ��
0

B0 � ð3Þ

for all �B0 2 F
0 and all �0 2 Affþð3Þ, then ��B is called a

minimal-index Bieberbach subgroup of � represented by

the subfamily F0. If F0 is replaced with the full family F, then

��B is simply called a minimal-index Bieberbach subgroup of

elb]>� and is denoted as ��BM
. By this definition, there can

be multiple minimal-index Bieberbach subgroups. Here the

term ‘minimal-index’ is used to denote the the largest amongst

the Bieberbach subgroups in the sense of equation (3). But

these are not always ‘maximal subgroups’ in the classical

sense.

Theorem 2.1. The minimal-index translation subgroup,

T � �, is the unique minimal-index Bieberbach subgroup of �
represented by the trivial subfamily.

Proof. Every member of the trivial family has elements of

the form t ¼ ðI;BzÞ where Bz ¼ z1b1 þ z2b2 þ z3b3 2 L with

zi 2 Z and fbig being a set of lattice vectors. For the finest
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lattice L of a given crystal, by definition these vectors have the

shortest length possible. The conjugation by an affine trans-

formation ��1 ¼ ðA�1;�A�1aÞ gives ��1 
 t 
 � ¼ ðI;A�1BzÞ.

The constraint that A�1Bz 2 L for all possible z 2 Z3 forces

A�1 to have integral coefficients, and all of the eigenvalues of

A�TA�1 have the property �ðA�TA�1Þ � 1. Then, from the

elementary properties of the Euclidean norm,

jjA�1Bzjj � ½�minðA
�TA�1Þ�

1=2
jjBzjj � jjBzjj;

indicating that affine transformation cannot produce a finer

lattice. &

If a nontrivial Bieberbach group (��B 6¼ T) exists with

� 2 Affþð3Þ and is minimal-index according to equation (3)

amongst all �B0 2 F , then in addition to being denoted as ��BM
,

it is called a minimal-index nontrivial Bieberbach subgroup of

�.

In Table 1 the indices of minimal-index nontrivial Bieber-

bach subgroups of symmorphic Sohncke groups are computed

and compared with the minimal-index trivial ones,

½� : T� ¼ jPj. This is broken down into the symmorphic and

nonsymmorphic cases. Note that from Lagrange’s theorem

and one of the isomorphism theorems, in the case of nonpri-

mitive settings ½�N : TN� ¼ ½�N : TP�=½TN : TP�.

The affine transformations � that can cause ��BM
��1 to be

contained in � can be found easily by using the ‘MAXSUB’

function (Aroyo et al., 2006) in the Bilbao Crystallographic

Server (Kroumova et al., 2003).

From Table 1, we conclude the following:

Remark 2.2. For every symmorphic space group, T is a

minimal-index Bieberbach subgroup (i.e., not only minimal-

index in the trivial subfamily fP1g but also in the entire family

F ). This follows by observing that ½� : T� � ½� : ��BM
� in every

column of Table 1.

This situation is different for the nonsymmorphic Sohncke

groups, as can be observed in Table 2, and the theorem

that results from observing this table. Here it is possible for

the minimal-index Bieberbach subgroup not to have T as a

subgroup.

Theorem 2.3. In every nonsymmorphic space group a

minimal-index Bieberbach group is never the trivial one.

Proof. ½� : ��BM
�< ½� : T� in each entry in Table 2. &
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Table 1
The symmorphic case.

International
No. � T ½� : T� �BM

½� : ��BM
�

1 P1 TP 1 P1 1
3 P2 TP 2 P21 2
5 C2 TC 2 P21 2

16 P222 TP 4 P21 4
21 C222 TC 4 P21;P212121 4
22 F222 TF 4 P21;P212121 4
23 I222 TI 4 P21;P212121 4
75 P4 TP 4 P21;P41;P43 4
79 I4 TI 4 P21;P41;P43 4
89 P422 TP 8 P21;P41;P43;P212121 8
97 I422 TI 8 P21;P41;P43;P212121 8

143 P3 TP 3 P31;P32 3
146 R3 TR 3 P31;P32 3
149 P312 TP 6 P21;P31;P32 6
150 P321 TP 6 P21;P31;P32 6
155 R32 TR 6 P21;P31;P32 6
168 P6 TP 6 P21;P31;P32;P61;P65 6
177 P622 TP 12 P21;P31;P32;P61;P65,

P212121

12

195 P23 TP 12 P21;P31;P32 12
196 F23 TF 12 P21;P31;P32;P212121 12
197 I23 TI 12 P21;P31;P32;P212121 12
207 P432 TP 24 P21;P31;P32;P212121,

P41;P43

24

209 F432 TF 24 P21;P31;P32;P41;P43,
P212121

24

211 I432 TI 24 P21;P31;P32;P41;P43,
P212121

24

Table 2
The nonsymmorphic case.

Note that in this table we did not consider the normality of subgroups, but only
the relative size of quotients.

International
No. � T ½� : T� �BM

½� : ð�BM
Þ
�
�

4 P21 TP 2 P21 1
17 P2221 TP 4 P21 2
18 P21212 TP 4 P21;P212121 2
19 P212121 TP 4 P212121 1
20 C2221 TC 4 P21;P212121 2
24 I212121 TI 4 P212121 2
76 P41 TP 4 P41 1
77 P42 TP 4 P41;P43 2
78 P43 TP 4 P43 1
80 I41 TI 4 P41;P43 2
90 P4212 TP 8 P21;P212121 4
91 P4122 TP 8 P41 2
92 P41212 TP 8 P41;P212121 2
93 P4222 TP 8 P41;P43 4
94 P42212 TP 8 P21;P41;P43;P212121 4
95 P4322 TP 8 P43 2
96 P43212 TP 8 P43;P212121 2
98 I4122 TI 8 P41;P43;P212121 4

144 P31 TP 3 P31 1
145 P32 TP 3 P32 1
151 P3112 TP 6 P31 2
152 P3121 TP 6 P31 2
153 P3212 TP 6 P32 2
154 P3221 TP 6 P32 2
169 P61 TP 6 P61 1
170 P65 TP 6 P65 1
171 P62 TP 6 P32;P61 2
172 P64 TP 6 P31;P65 2
173 P63 TP 6 P21;P61;P65 3
178 P6122 TP 12 P61 2
179 P6522 TP 12 P65 2
180 P6222 TP 12 P32;P61 4
181 P6422 TP 12 P31;P65 4
182 P6322 TP 12 P21;P61;P65 6
198 P213 TP 12 P212121 3
199 I213 TI 24 P212121 6
208 P4232 TP 24 P41;P43 12
210 F4132 TF 24 P41;P43;P212121 12
212 P4332 TP 24 P43;P212121 6
213 P4132 TP 24 P41;P212121 6
214 I4132 TI 24 P41;P43;P212121 12



3. Minimal-index symmorphic subgroups

Let T be the minimal-index translation subgroup of the space

group � and let �=T denote the factor group with P denoting

the corresponding abstract point group. We can construct a

fundamental domain F�=T � � with jPj distinguished coset

representatives chosen with the smallest possible translational

part. Recall that �=T ffi P, but in general F�=T 6¼ P, with

equality only possible in the symmorphic case, and this only

after removing the zero translation vectors from the repre-

sentatives in F�=T .

Corresponding to each space group � with point group P,

there is another space group �P ¼ P� T that will only be

equal to � when � is symmorphic. �P contains the proper

subgroup P� f0g ¼ P� f0g, which in crystallography is

identified with P itself, and so one writes P� f0g<�P. Though

this is not true for nonsymmorphic �, nevertheless

�<G>�P, and since the intersection of subgroups is a

subgroup, � \ �P <G.

Definition 3.1. Let �SM
be a symmorphic space group

such that for some � 2 Affþð3Þ it holds that for the

nonsymmorphic space group � we have ��SM
<� and ½� : ��SM

�

is minimized over all such �SM
. Then ��SM

is called a minimal-

index symmorphic subgroup of type �SM
.6

��SM
can be obtained easily using the Bilbao Server or

International Tables for Crystallography and checking the

index of each symmorphic subgroup. For every Sohncke group

we have tabulated the minimal-index symmorphic subgroup

(Table 3). For the symmorphic space groups, the minimal-

index symmorphic subgroup is the group itself. For nonsym-

morphic space groups, the minimal-index symmorphic

subgroups are given. Note that minimality of the index does

not imply uniqueness or normality.

For each entry in Table 3, there exists some � 2 Affþð3Þ

such that �SM
is a symmorphic space-group type with smallest

index ½� : ð�SM
Þ
�
�. But there is no a priori guarantee that T is a

subgroup of ð�SM
Þ
�.

4. Normal Bieberbach and symmorphic subgroups

This section characterizes normal Bieberbach and sym-

morphic subgroups of space groups. Those that are normal are

not always minimal-index, and those that are minimal-index

are not always normal. We use heavily the following general

results.

Lemma 4.1. (Senechal, 1985) Let � be a space group with

space subgroups N and H, such that N / � and N � H � �,

then

H

N
/

�

N
()H / �:

This can be used to prove the following theorem.

Theorem 4.2. Let � be a space group with point group P and

let �SM
be a minimal-index symmorphic subgroup of �. Then,

if T<�SM
and if S � SM � P ffi �=T, then

S / �=T () S� T / �

regardless of whether � is symmorphic or nonsymmorphic.

Proof. It follows directly from the definition of SM � 0

¼ F�=T \ ðP� 0Þ and Lemma 4.1. &

We now provide some examples to illustrate these concepts.

Example 4.1. For any symmorphic space group, SM ¼ P,

setting S ¼ SM ¼ P satisfies the theorem trivially, and in this

case � ¼ P� T.

Example 4.2. If �S ¼ S� T<� and ½� : �S� ¼ 2, then

�S / �.
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Table 3
Minimal-index symmorphic subgroups for nonsymmorphic space groups.

International
No. � T ½� : T� �SM

½� : ð�SM
Þ
�
�

4 P21 TP 2 P1 2
17 P2221 TP 4 P2 2
18 P21212 TP 4 P2 2
19 P212121 TP 4 P1 4
20 C2221 TC 4 C2 2
24 I212121 TI 4 C2 2
76 P41 TP 4 P1 4
77 P42 TP 4 P2 2
78 P43 TP 4 P1 4
80 I41 TI 4 C2 2
90 P4212 TP 8 P4;C222 2
91 P4122 TP 8 P2;C2 4
92 P41212 TP 8 C2 4
93 P4222 TP 8 P222;C222 2
94 P42212 TP 8 C222 2
95 P4322 TP 8 P2;C2 4
96 P43212 TP 8 C2 4
98 I4122 TI 8 F222 2

144 P31 TP 3 P1 3
145 P32 TP 3 P1 3
151 P3112 TP 6 C2 3
152 P3121 TP 6 C2 3
153 P3212 TP 6 C2 3
154 P3221 TP 6 C2 3
169 P61 TP 6 P1 6
170 P65 TP 6 P1 6
171 P62 TP 6 P2 3
172 P64 TP 6 P2 3
173 P63 TP 6 P3 2
178 P6122 TP 12 C2 6
179 P6522 TP 12 C2 6
180 P6222 TP 12 C222 3
181 P6422 TP 12 C222 3
182 P6322 TP 12 P321;P312 2
198 P213 TP 12 R3 4
199 I213 TI 24 R3 4
208 P4232 TP 24 P23 2
210 F4132 TF 24 F23 2
212 P4332 TP 24 R32 4
213 P4132 TP 24 R32 4
214 I4132 TI 24 R32 4

6 We use ‘a’ rather than ‘the’ here, because in some cases it is possible to find
other symmorphic subgroups with the same minimal value of index.



This is a very common case, but not every normal symmorphic

subgroup falls into the categories of Examples 4.1 and 4.2. The

next two examples illustrate other cases.

Example 4.3. Consider the nonsymmorphic space group No.

171;P62. When � ¼ P62 and T ¼ P1, then

�

T
¼

ðx; y; zÞ; ð�y; x� y; zþ 2=3Þ;
ð�xþ y;�x; zþ 1=3Þ; ð�x;�y; zÞ;
ðy;�xþ y; zþ 2=3Þ; ðx� y; x; zþ 1=3Þ

8<
:

9=
;:

The subgroup

S ¼ x; y; zð Þ; �x;�y; zð Þ
� �

;

which is isomorphic to P2=P1, is normal in �=T, and so

P2 / P62. In this case P2 is both the minimal-index

symmorphic subgroup and it is normal, but ½P62 : P2� ¼ 3.

Example 4.4. Consider the nonsymmorphic space group No.

180;P6222. When � ¼ P6222 and T ¼ P1, then

�

T
¼

ðx; y; zÞ; ð�y; x� y; zþ 2=3Þ;
ð�xþ y;�x; zþ 1=3Þ; ð�x;�y; zÞ;
ðy;�xþ y; zþ 2=3Þ; ðx� y; x; zþ 1=3Þ;
ðy; x;�zþ 2=3Þ; ðx� y;�y;�zÞ;
ð�x;�xþ y;�zþ 1=3Þ; ð�y;�x;�zþ 2=3Þ;
ð�xþ y; y;�zÞ; ðx; x� y;�zþ 1=3Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

Using the Bilbao Server, we find that an Affþ-conjugated

version of C222 is the minimal-index symmorphic subgroup of

P6222, and has index 3. But this is not normal. However,

S ¼ x; y; zð Þ; �x;�y; zð Þ
� �

;

which is isomorphic to P2=P1, is normal in �=T and so

P2 / P6222 even though ½P6222 : P2� ¼ 6.

It is also worth mentioning that there are nonsymmorphic

groups with relatively large symmorphic subgroups which are

not normal. For example, P4322 has an Affþ-conjugated

version of R32 as a minimal-index symmorphic subgroup of

index 4, but this is not normal. In fact, the only symmorphic

subgroup of P4322 that is normal is P1.

Similar examples can be constructed for Bieberbach

subgroups. In the PDB it is often the case that a protein

crystallizes in a Bieberbach group. And when � 6¼ ��B it is

often the case that ½� : ��BM
� ¼ 2, indicating both minimal-

index and normality. But there are cases for which

½� : ��BM
� 6¼ 2 and yet ��BM

/ �. One such case is given below.

Example 4.5. Again consider the nonsymmorphic space

group No. 180;P6222. Representatives of �=T were given in

Example 4.4. Here �B ¼ P32 and T ¼ P1, then

�B

T
¼ x; y; zð Þ; �y; x� y; zþ 2=3ð Þ; �xþ y;�x; zþ 1=3ð Þ
� �

:

(In this example no conjugation by � is required.) It is not

difficult to show that �B

T / �
T, and hence by Lemma 4.1 in this

case P32 / P6222 even though ½P6222 : P32� ¼ 4.

Finally, there are cases in which a nonsymmorphic Sohncke

group has a nontrivial minimal-index Bieberbach subgroup

which is not normal. For example, P4232, which has

½P4232 : P1� ¼ 24, has affine-conjugated versions of P41 and

P43 as subgroups with index 12. But the only Bieberbach

subgroup of P4232 which is normal is P1.

The following theorem summarizes Table 4 regarding the

normality of both Bieberbach and symmorphic subgroups of

Sohncke groups.

Theorem 4.3. Every nontrivial Sohncke group, �>T, either

contains a normal nontrivial Bieberbach subgroup (��B / �),

in which case �=��B ffi S<P, or it contains a normal nontrivial

symmorphic subgroup (��S / �), where ��S � S� T and

S� 0 � ðP� 0Þ \ F�=T , in which case S / P and �=��S
ffi ��B=T. And these conditions are not mutually exclusive.

Moreover, if jPj is not prime and if �B 6¼ � 6¼ �S then / can be

replaced with /.

Proof. By direct evaluation of each representative of the 65

classes of Sohncke groups we arrive at Table 4, which contains

the information summarized in the above theorem. &

In Table 4 only nontrivial �B are listed. �0 in place of �
indicates that a nonrigid affine transformation was required to

place it as a subgroup. Parentheses indicate that, though

normal, the subgroup is either not minimal-index or not

proper. Improper ones are listed on the left side of each

column, and those that are not minimal-index are listed on the

right.

From Table 4 we see that for each space group we can find

either a nontrivial normal �B or a nontrivial normal �S. And in

some cases we have both. And comparing this table with the

tables for minimal-index symmorphic and minimal-index

Bieberbach subgroups, we see that:

Theorem 4.4. Every nonsymmorphic space group except for

No. 208;P4232 and No. 210;F4132 has a nontrivial minimal-

index normal Bieberbach subgroup.

The indices of these normal subgroups are listed in Table 4

and can be compared with those of the minimal-index

subgroups of each type given in the previous tables.

5. Macromolecular crystallography statistics

We tabulated the space groups of all 80 083 protein structures

obtained from X-ray crystallography reported in the PDB as

of 14 January 2014 and report these results in Table 5. The first

column is the number of proteins in the PDB with a particular

symmetry, followed by the percentage and the international

name of the space group. The third column asks if the space

group contains as normal subgroups conjugated versions of

P21 or P222. The next two columns ask if the group is

nonsymmorphic or Bieberbach. The final three columns

compute the indices of three factor groups: the quotient of �
by the minimal-index normal Bieberbach subgroup, � by the

minimal-index normal symmorphic subgroup, and finally the

index of the quotient by the largest translation subgroup.
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Nucleic acid structures were not included in this

analysis. From Table 5, we make the following

observations:

Observation 5.1. Although Bieberbach groups

comprise less than 14% of the Sohncke groups (9 of

65), 47.18% of proteins crystallize with Bieberbach-

group symmetry (including the trivial P1 Bieberbach

group).

Observation 5.2. More than 99.83% of proteins

crystallize in a space group containing a nontrivial

normal Bieberbach subgroup.

Observation 5.3. Space groups containing P21

subgroups are favorable, constituting 64.66% of the

total, and those that contain normal P222 subgroups

are generally unfavorable, constituting 5.59% of the

total.

Fifteen of 80 083 proteins with nonstandard names

‘I �421’, ‘I �4C2’, ‘P 121=N1’, ‘P 121=C1’, ‘I 41=A’

and ‘P �1’ were excluded from this analysis.

Additional proteins reported in the PDB with

nonstandard names were renamed and counted

according to Table 6.

Note also that if each of the 11 enantiomorphic

pairs ðP31;P32Þ, ðP41;P43Þ, ðP61;P65Þ, ðP3212,

P3112Þ, ðP3221;P3121Þ, ðP4322;P4122Þ, ðP43212,

P41212Þ, ðP4332;P4132Þ, ðP6122;P6522Þ, ðP62;P64Þ,

ðP6222;P6422Þ are considered equivalent and their

numbers are pooled, then this will also alter the

statistics toward an even greater preference of

proteins toward Bieberbach groups and nonsym-

morphic groups. In other words, pooling gives

Table 7.

Here the top 16 classes are chosen, which cumu-

latively cover 89.56% of all proteins in the PDB.

These percentages are consistent with those reported

earlier on smaller data sets in Wukovitz & Yeates

(1995) and Rupp (2010).

A natural question to ask is ‘Why do proteins in

the PDB appear to favor Bieberbach groups so

heavily?’ Different variants of this question have

been asked previously using both the full PDB (as

we have done), and with specialized subsets of

nonredundant structures (Allen, 2002; Pidcock et al.,

2003; Filippini & Gavezzotti, 1992; Padmaja et al.,

1990). In all cases, space-group frequencies show a

strong preference for P212121 and P21 as we have

observed.

Three kinds of arguments have been put forth in

the past in an attempt to explain these. The first is

concerned with the solvent content in a crystal, which

is a topic first analyzed in Matthews (1968). See for

example Chruszcz et al. (2008) and Weichenberger &

Rupp (2014) for a discussion of these arguments. The

second kind of argument is concerned with the
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Table 4
Nontrivial normal Bieberbach and symmorphic subgroups.

Group ��B�
�1 / � ��S�

�1 / �

ð1;P1Þ ðP1Þ ðP1Þ
ð3;P2Þ P1 ðP2Þ
ð4;P21Þ ðP21Þ P1
ð5;C2Þ TC ðC2Þ
ð16;P222Þ P1 ðP222Þ;P2;P0222;C0222;F 0222
ð17;P2221Þ P21 P2
ð18;P21212Þ P21;P0212121 P2
ð19;P212121Þ ðP212121Þ;P21 P1
ð20;C2221Þ P021;P212121 C2
ð21;C222Þ TC ðC222Þ;C0222;C2; I 0222;P222;P02
ð22;F222Þ TF ðF222Þ;C222;C02
ð23; I222Þ TI ðI222Þ;P222;C02
ð24; I212121Þ P212121 C02
ð75;P4Þ P1 ðP4Þ;P2;P04; I 04
ð76;P41Þ ðP41Þ;P21;P041 P1
ð77;P42Þ P041;P043 P2
ð78;P43Þ ðP43Þ;P21;P043 P1
ð79; I4Þ TI ðI4Þ;P4;C02
ð80; I41Þ P41;P43 C02
ð89;P422Þ P1 ðP422Þ;P4;P222;C0222;P0422; I0422;

ðP2; I 04;C0222;P0222;P04;P04222Þ
ð90;P4212Þ P21 P4;C0222; ðP2;P222;C0222; I 0222;P04Þ
ð91;P4122Þ P41; ðP21;P0212121;P041Þ P1
ð92;P41212Þ P41;P212121; ðP21;P0212121Þ P1
ð93;P4222Þ P041;P043 P222;C0222; ðP2;F 0222Þ
ð94;P42212Þ P041;P043;P0212121 C0222; ðP2;P0222Þ
ð95;P4322Þ P43; ðP21;P0212121;P043Þ P1
ð96;P43212Þ P43;P212121; ðP21;P0212121Þ P1
ð97; I422Þ TI ðI422Þ;P422; I4; I222;F 0222;

ðP4;P222;C0222;C02Þ
ð98; I4122Þ P212121;P41;P43 F 0222; ðC02Þ
ð143;P3Þ P1 ðP3Þ
ð144;P31Þ ðP31Þ P1
ð145;P32Þ ðP32Þ P1
ð146;R3Þ TR ðR3Þ
ð149;P312Þ P1 ðP312Þ;P3;P0312
ð150;P321Þ P1 ðP321Þ;P3;P0321
ð151;P3112Þ P31 P1
ð152;P3121Þ P31 P1
ð153;P3212Þ P32 P1
ð154;P3221Þ P32 P1
ð155;R32Þ TR ðR32Þ;R3;R032; ðP321Þ
ð168;P6Þ P1 ðP6Þ;P3;P06; ðP2Þ
ð169;P61Þ ðP61Þ;P31; ðP21Þ P1
ð170;P65Þ ðP65Þ;P32; ðP21Þ P1
ð171;P62Þ P32;P061 P2
ð172;P64Þ P31;P065 P2
ð173;P63Þ P21;P061;P065 P3
ð177;P622Þ P1 ðP622Þ;P6;P312;P321;P0622; ðP2;P3Þ
ð178;P6122Þ P61; ðP31;P21Þ P1
ð179;P6522Þ P65; ðP32;P21Þ P1
ð180;P6222Þ P32;P061 P2
ð181;P6422Þ P31;P065 P2
ð182;P6322Þ P061;P065;P21 P312;P321; ðP3Þ
ð195;P23Þ P1 ðP23Þ;F 023; ðP222Þ
ð196;F23Þ TF ðF23Þ;F222; ðP23Þ
ð197; I23Þ TI ðI23Þ;P23; ðI222;F 023;P222Þ
ð198;P213Þ P212121 P1
ð199; I213Þ P212121 TI

ð207;P432Þ P1 ðP432Þ;P23;P0432;F 0432;
ðP222;F 023;F 0222; I0222Þ

ð208;P4232Þ P1 P23; ðF 023;F 0222;P222;C0222; I023Þ
ð209;F432Þ TF ðF432Þ;F23; ðF222Þ
ð210;F4132Þ TF F23; ðF222Þ
ð211; I432Þ TI ðI432Þ;P432; I23; ðI222;P23;P222;F23Þ
ð212;P4332Þ P212121 P1
ð213;P4132Þ P212121 P1
ð214; I4132Þ P212121 TI



interplay of molecular shape and the

number of stabilizing contacts that form

between proteins, as articulated in Wuko-

vitz & Yeates (1995) and Andersson &

Hovmöller (2000). The third is a purely

geometric argument, one version of which

can be found in Kitaev et al. (2003) and a

more detailed version of which is given

below. This argument centers around the

fact that high-symmetry Wyckoff positions

correspond to locations where bodies

cannot be placed without colliding with

other bodies.

Stated mathematically, the reason why

Bieberbach groups are favored is that the

quotients �B\X are manifolds because the

action of �B on X has no fixed points. It is

shown in Chirikjian & Shiffman (2014) in

the planar case that for objects moving in

concert with wallpaper symmetry groups

p2 or p3 large regions of the space p2\X or

p3\X (where here X ¼ R2) correspond to

bodies being in collision. These ‘collision

zones’ are centered on the special posi-

tions of the wallpaper groups p2 and p3.

That paper shows that even for symmetry-

related bodies that are very small in

comparison to lattice distances, large

percentages of the space �\X (viewed as

the translation part of �\G) are inacces-

sible as they correspond to bodies in

collision.

Since Bieberbach groups do not have

fixed points (and hence no special posi-

tions), the collision zones corresponding to

non-Bieberbach space groups with fixed

points are nonexistent for Bieberbach

space groups. This means that all other

things being equal, there is ‘more room to

move’ for a body in �B\X (under the

quasigroup action of �B\G) than there is in

a general �\X (under the quasigroup

action of �\G). This is why we said in the

introduction that the problem of protein

preferences and the cost of a molecular-

replacement search are dual to each other

in the sense that the bigger the unhindered

search space is, the more likely it is

that bodies can find lower-energy

packing arrangements, and simultaneously,

a molecular-replacement search must

cover more space that cannot be elimi-

nated by simply removing from consid-

eration collision zones.

This mathematical observation relates

to both the arguments of Rupp (2010),

since more room to move means more
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Table 5
Space groups of all 80 083 protein structures in the PDB as of 14 January 2014.

No. % Name
International
No. P21;P222 NS B ½� : ð�BÞ

�
� ½� : ð�SÞ

�
� j �T j

12 0.01 P222 16 N,Y N N 4 1 4
14 0.02 P312 149 N,N N N 6 1 6
22 0.03 P4232 208 N,Y Y N 24 2 24
35 0.04 P422 89 N,Y N N 8 1 8
39 0.05 P432 207 N,Y N N 24 1 24
46 0.06 P23 195 N,Y N N 12 1 12
50 0.06 P4222 93 N,Y Y N 4 2 8
63 0.08 F4132 210 N,N Y N 12 2 24
73 0.09 P3112 151 N,N Y N 2 6 6
74 0.09 P622 177 N,Y N N 12 1 12
75 0.09 F23 196 N,N N N 12 1 12
76 0.09 P3212 153 N,N Y N 2 6 6
77 0.10 P42 77 N,N Y N 2 4 4
79 0.10 I4132 214 N,N Y N 12 24 24
79 0.10 P4332 212 Y,N Y N 6 24 24
88 0.11 P4 75 N,N Y N 4 1 4
100 0.12 I432 211 N,Y N N 24 1 24
102 0.13 F222 22 N,Y N N 4 1 4
114 0.14 P2221 17 Y,N Y N 2 2 4
120 0.15 P4132 213 Y,N Y N 6 24 24
151 0.19 P64 172 N,N Y N 2 3 6
152 0.19 P3 143 N,N N N 3 1 3
164 0.20 C222 21 N,Y N N 4 1 4
171 0.21 P62 172 N,N Y N 2 3 6
172 0.21 F432 209 N,Y N N 24 1 24
175 0.22 P4122 91 Y,N Y N 2 8 8
187 0.23 I212121 24 N,N Y N 2 2 4
190 0.24 P2 3 N,N N N 2 1 2
206 0.26 P6 168 N,N N N 6 1 6
216 0.27 P4322 95 Y,N Y N 2 8 8
230 0.29 I213 199 N,N Y N 6 12 12
242 0.30 I41 80 N,N Y N 2 2 4
255 0.32 P6422 181 N,Y Y N 4 6 12
291 0.36 P6222 180 N,Y Y N 4 6 12
325 0.41 P321 150 N,N N N 6 1 6
326 0.41 I23 197 N,Y N N 12 1 12
342 0.43 P4212 90 Y,N Y N 4 2 8
454 0.57 I4 79 N,N N N 4 1 4
467 0.58 P213 198 Y,N Y N 3 12 12
477 0.60 P6322 182 Y,N Y N 6 2 12
495 0.62 P43 78 Y,N Y Y 1 4 4
498 0.62 P31 144 N,N Y Y 1 3 3
501 0.63 I4122 98 N,N Y N 4 2 8
507 0.63 P32 145 N,N Y Y 1 3 3
521 0.65 P42212 94 Y,Y Y N 4 4 8
526 0.66 I422 97 N,Y N N 8 1 8
603 0.75 P63 173 Y,N Y N 3 2 6
623 0.78 P41 76 Y,N Y Y 1 4 4
843 1.05 P65 170 Y,N Y Y 1 6 6
863 1.08 P61 169 Y,N Y Y 1 6 6
986 1.23 P6522 179 Y,N Y N 2 12 12
1152 1.44 R32 155 N,N N N 6 1 6
1193 1.49 R3 146 N,N N N 3 1 3
1361 1.70 P6122 178 Y,N Y N 2 12 12
1740 2.17 I222 23 N,Y N N 4 1 4
2521 3.15 P41212 92 Y,N Y N 2 8 8
2605 3.25 P3121 152 N,N Y N 2 6 6
2799 3.50 P3221 154 N,N Y N 2 6 6
3013 3.76 P43212 96 Y,N Y N 2 8 8
3058 3.82 P1 1 N,N N Y 1 1 1
3883 4.85 C2221 20 Y,N Y N 2 2 4
4216 5.26 P21212 18 Y,N Y N 2 2 4
7876 9.83 C2 5 N,N N N 2 1 2
12600 15.73 P21 4 Y,N Y Y 1 2 2
18297 22.85 P212121 19 Y,N Y Y 1 4 4
80068 of

80083
99.98 Total



entropy is allowed, and to Wukovitz & Yeates (1995), who

argued that the preferred space groups are those that maxi-

mize the number of inter-body contacts. Our argument, which

is akin to that of Kitaev et al. (2003), is simply that if as a

crystal forms the first few proteins manage to dance around

each other with Bieberbach symmetry, they will have more

freedom to find stabilizing contacts that lead to forming a

crystal. This also means that in the molecular-replacement

problem, there will be more space that must be searched.

6. Conclusions

A new view of nonsymmorphic Sohncke groups as being a

hybrid of symmorphic and Bieberbach subgroups is intro-

duced here. It is shown from the relative frequency of space

groups observed in the Protein Data Bank that protein crys-

tals have a strong preference for space groups containing

nontrivial normal Bieberbach subgroups, and a strong dislike

for space groups with large symmorphic subgroups. In the next

paper in this series we will examine how the decomposition of

nonsymmorphic space groups into symmorphic and Bieber-

bach subgroups influences the choice of fundamental domain

for �\G in the molecular-replacement problem.
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Szczepański, A. (2012). Geometry of Crystallographic Groups.

Singapore: World Scientific Publishing Company.
Thurston, W. P. (1997). Three-Dimensional Geometry and Topology,

edited by S. Levy. Princeton University Press.
Weichenberger, C. X. & Rupp, B. (2014). Acta Cryst. D70, 1579–1588.
Wolf, J. A. (2010). Spaces of Constant Curvature, 6th ed. Providence,

RI: AMS Chelsea Publishing.
Wondratschek, H. & Müller, U. (2010). Editors. International Tables

for Crystallography, Vol. A1, Symmetry Relations Between Space
Groups, 2nd ed. Chichester: Wiley.

Wukovitz, S. W. & Yeates, T. O. (1995). Nat. Struct. Biol. 2, 1062–1067.

194 G. Chirikjian et al. � Mathematical aspects of molecular replacement. III Acta Cryst. (2015). A71, 186–194

research papers

Table 6
Mapping of nonstandard names to standard names.

No. Nonstandard name Standard name

1 A1 P1
1 B112 C2
1 C21 C2
2 A2 C2
5 C1211 C2
5 I1211 C2
9 I21 C2
94 I121 C2
7759 C121 C2
35 B2 P2
155 P121 P2
11 P1121 P21

12589 P1211 P21

1145 H32 R32
1185 H3 R3
4 P21212A P212121

Table 7
Most-common space groups with enantiomorphic pairs grouped.

No. % Name

526 0.66 I422
1005 1.25 P31;P32

1152 1.44 R32
1193 1.49 R3
1188 1.48 P41;P43

1706 2.13 P61;P65

1740 2.17 I222
2346 2.93 P6122;P6522
3058 3.82 P1
3883 4.85 C2221

4216 5.26 P21212
5404 6.75 P3221;P3121
5534 6.91 P43212;P41212
7876 9.83 C2
12600 15.73 P21

18297 22.85 P212121

71724 89.56 Total
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