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Binary Manipulators in Our Lab

215  3.3104

configurations

236  6.91010

configurations
2.1106

configuration
s



Workspace Density

• It describes the density of 
the reachable frames in the 
work space. 

• It is a probabilistic measure-
ment of accuracy over the     
workspace.

Ebert-Uphoff, I., Chirikjian, G.S., ``Inverse Kinematics of Discretely Actuated 

Hyper-Redundant Manipulators Using Workspace Densities,'' ICRA’96, pp. 139-145

Long, A.W., Wolfe, K.C., Mashner, M.J., Chirikjian, G.S., ``The Banana Distribution 

is Gaussian: A Localization Study with Exponential Coordinates,'‘ RSS, Sydney, 

NSW, Australia, July 09 - July 13, 2012.



SDE for the Kinematic Cart

(Zhou and Chirikjian, ICRA 2003)



A. Long, K. Wolfe, M. Mashner, G. 

Chirikjian, ``The Banana Distribution 

is Gaussian’’ RSS 2012





Examples of Lie Groups



PART 1: INTRODUCTORY MATHEMATICS 
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PART 1(a): Probability and Statistics
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Gaussian Distribution on the Real Line



Convolution of Gaussians



Classical Fourier Analysis



Gaussians Wrapped Around the Circle

This is exactly equivalent to 



Gassian as Solution to Heat Equation 
(circle case)



Gassian as Solution to Heat Equation 
(R^n case)



Multivariate Gaussian



Convolution on R^n



A Little Bit of Information Theory

Entropy

Kullback-Leibler Divergence



Entropy Power Inequality



PART 1(b): Lie Groups and Lie Algebras
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Rigid-Body Motion Group

• Special Euclidean motion group SE(N)

– An element of  G=SE(N): 

– Group operation: matrix multiplication

• For example, an element of SE(2) in polar 
coordinates:
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• Lie algebra of SE(2)

• Lie algebra of SE(3)

• Infinitesimal motions
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A Little Bit of Lie Group Theory



exp and log for SO(3)
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Lie-group-theoretic Notation

• Coordinate free  no singularities
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For more details see



Differential Operators Acting on Functions on 
SE(N)
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Differential operators defined for SE(2)
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Differential operators defined for SE(3)
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Variational Calculus on Lie groups
• Given the functional and constraints

one can get the Euler-Poincaré equation as:

where 
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Probability on Lie Groups 



• Integration of functions on SO(3)

• Integration of functions on SE(2) and SE(3)
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Fourier Analysis of Motion

• Fourier transform of a function of motion, f(g)

• Inverse Fourier transform of a function of motion
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where g SE(N) , p is a frequency parameter, 

U(g,p) is a matrix representation of SE(N), and

dg is a volume element at g.



Convolution and the SE(3) Fourier Transform 
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G.S. Chirikjian, Stochastic Models, Information Theory,
and Lie Groups, Vol. 1, 2, Birkhauser, 2009, 2011.

G.S. Chirikjian, A.B. Kyatkin, Engineering Applications of
Noncommutative Harmonic Analysis, CRC Press, 2001.



PART 2: APPLICATIONS TO

CONFORMATIONAL ENSEMBLES

38



Workspace Density

• It describes the density of 
the reachable frames in the 
work space. 

• It is a probabilistic measure-
ment of accuracy over the     
workspace.

Ebert-Uphoff, I., Chirikjian, G.S., ``Inverse Kinematics of Discretely Actuated 

Hyper-Redundant Manipulators Using Workspace Densities,'' ICRA’96, pp. 139-145

Long, A.W., Wolfe, K.C., Mashner, M.J., Chirikjian, G.S., ``The Banana Distribution 

is Gaussian: A Localization Study with Exponential Coordinates,'‘ RSS, Sydney, 

NSW, Australia, July 09 - July 13, 2012.



A diffusion equation describing the PDF of relative

pose between the frame of reference at arc length s and

that at the proximal end of the chain
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A General Semiflexible Polymer Model
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Operational Properties of  SE(n) Fourier 
Transform
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Explicit Expression of       for SE(2) 
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Explicit Expression of for SE(3)
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Explicit Expression of (Xi , p) for SE(3)
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Solving for the evolving PDF Using the SE(3) FT
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Numerical Examples

2

1

0.50.1
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The Structure of a Bent Macromolecular Chain
 

xd1,xp2 

b 

zd2 

yd2 

xd2 

zp1 
yp1 

xp1 

zp2 
yp2 

yd1 

zd1 

Subchain 1 Subchain 2 

1) A bent macromolecular chain consists of two

intrinsically straight segments.

2) A bend or twist is a rotation at the separating point

between the two segments with no translation.

A General Algorithm for Bent or 

Twisted Macromolecular Chains



48

The PDF of the End-to-End Pose for a Bent Chain

),)(**(),( 321 RaRa ffff 

•f1(a,R) and f3(a,R) are obtained by solving the

differential equation for nonbent polymer.

•f2(a,R)= (a)(Rb
-1R), where Rb is the rotation

made at the bend.

2)  The convolution on SE(3)
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A General Algorithm for Bent or 

Twisted Macromolecular Chains

1) A convolution of 3 PDFs
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1. Variation of f(a) with respect to Bending Angle 

and Bending Location
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PART 4: STOCHASTIC KINEMATICS AND 
INFORMATION-DRIVEN MOTION



















Flexible Needles with Bevel tip

http://research.vuse.vanderbilt.edu/MEDLab/research_files/needlesteer.htm

Needle with a bevel tip



Needle Model

























































v

v

v

v

v

z

y

x

z

y

x

0

0

0













 Deterministic nonholonomic model

: insertion speed           : twisting angular velocityv

Experiments by Dr. Kyle Reed



Stochastic needle model
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Park, W., Kim, J.S., Zhou, Y., Cowan, N.J., Okamura, A.M., Chirikjian,
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SDE for the Kinematic Cart

(Zhou and Chirikjian, ICRA 2003)



Long et al, ``The Banana Distribution is 
Gaussian’’ RSS 2012



Exponential Coordinates for SE(2)























Matching 2nd Order Taylor Series and 
2nd Order BCH Expansions

Both are of the form

We match a, b, K for each.















If you like this …

Have a look at my book:

``Stochastic Models, Information Theory, and Lie 
Groups’’
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Outline

• The AX=XB Problem

• Notation and Probability Theory Review

• Solution Constraints

• An information Theoretic Approach

• Results and Conclusions



AX = XB is one of the most common mathematical 
formulations used in robot-sensor calibration problems. 

It can be found in a variety of applications including:

Camera calibration [1] Robot eye-to-hand 

calibration [1]

Aerial vehicle sensor 

calibration [2]

Image guided therapy 

(IGT) sensor 

calibration [3][1] Tsai, R., Lenz, R. (1989)
[2] Mair, E., Fleps, M., Suppa, M., Burschka, D. (2011)

[3] Boctor, E.M. 
(2006)
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𝐴, 𝐵, 𝑋 ϵ 𝑆𝐸 3 where
SE 3 = ℝ3⋉ 𝑆𝑂 3 and

SO 3 ≔ {𝑅 𝜖 ℝ3x3|𝑅𝑅𝑇 = 𝕀, det 𝑅 = +1}
SE(3) is the Lie Group describing rigid body motions in 3-dimensional space, i.e.:

𝐻 ϵ 𝑆𝐸(3), where and

𝑅 ϵ 𝑆𝑂(3) (a proper rotation matrix), 𝐭 ϵ ℝ3 (a translation vector)

AX=XB



AX=XB Solution Space

It is well known that it is not possible to solve for a 
unique X from a single pair of exact (A, B),but if 
there are two instances of independent exact 
measurements, (A1,B1) and (A2, B2), then the 

problem can be solved. 

One Parameter solution set

Rank 2

+

Two unspecified degrees of freedom



The goal becomes one of finding an X with least-
squared error given corresponding pairs (Ai, Bi) for 
i=1,2,...,n.

A unique solution is possible given two pairs 

with certain constraints[4,5]

• SE(3) geometric invariants satisfied

• Angle of the rotation axes is “sufficiently 

large”

• (Ai, Bi) pairs have Correspondence

AX=XB Solution Space

[4] Chen (1991)

[5] Ackerman, M.K., Cheng, A., Shiffman, B., Boctor, E., Chirikjian, G. (2014)



In experimental applications, it is often the case that the data streams 
containing the A’s and B’s: 

• will present at different sample rates,
• will be asynchronous, 
• and each stream may contain gaps in information.

AX=XB Correspondence

Data Stream

Data Stream A’s

B’s

A1

B1

A2

B2

An

Bn

…

What we mean by correspondence:



While our method removes the need to know the correspondence of the data, 
there have been other attempts in the literature to regenerate the 
correspondence by

1. time stamping the data[5]

2. dedicated software modules for syncing the data[6]

3. analyzing components of the sensor data stream to determine a 
correlation[7,8]

We present a method for calculating the calibration 
transformation, X, that works for data without any a priori 
knowledge of the correspondence between the A’s and B’s.

AX=XB Correspondence

[5] Mills, D. L.
[6] Kang, H. J., Cheng, A., Boctor, E. M.
[7] Mair, E., Fleps, M., Suppa, M., Burschka, D 
[8] Ackerman, M.,K., Cheng, A., Shiffman, B., Boctor, E., Chirikjian, G.



Rigid Body Motion

is a Lie group and therefore the concept of integration exists:

, where: 

The group of rigid body 

motions, SE(3),

which is “natural”, because for any 

𝐻0 ϵ 𝑆𝐸 3 ,  

, 



Convolution on SE(3)

Define a delta function as:

Define the convolution of two functions as:

And a shifted delta function as:
, where A 𝜖 𝑆𝐸 3

The “v” operator is defined as:

(x1, x2, … , xn)
T



PDFs on SE(3)

The mean and covariance of a 
probability density function, f(H), can be 
defined as 

Where is usually something akin to

Traditional Riemannian-geometric approach:

Avoid the arbitrary bias of a weighting matrix and avoid 
the need for a bi-invariant distance metric, which does not 

exist for SE(3)



Mean and Covariance

and

We use:

Where is usually something 

akin to

Traditional Riemannian-geometric approach:

Avoid the arbitrary bias of a weighting matrix and avoid 
the need for a bi-invariant distance metric, which does not 

exist for SE(3)



The “Batch” Equations

because real-valued functions can be added 
and convolution is a linear operation on 
functions, all n instances can be written into a 
single equation of the form

Given

We can normalize the functions to be 

probability density functions (pdfs):

where



The “Batch” Equations

Given that , we can 
write the evolution of the mean and 
covariance as:

where 

and the “hat” operator is defined such 

that given 

and 

≈



The “Batch” Equations

Since the mean of is and its 
covariance is the zero matrix we can write the 
“Batch” formulation

Batch Method “AX=XB” Equations:

(1

)

(2

)



Solution Space

The search for an appropriate X can begin with 
re-writing (1) as
By defining

The equation can be separated into 

rotational and translational components, 

From which it can be seen that the 

possible solution space, for (1), is two 

dimensional.

Batch Method “AX=XB” Equations:

(1

)

(2

)

and



Discretization

With the discrete nature of our application, we 
can likewise define the mean and covariance in 
a discrete sense

An iterative procedure can be used for 

computing MA which uses an initial 

estimate of the form
Then a gradient descent procedure is used 

to update so as to minimize the cost

The covariance can then be computed:



Where is the free parameter and

where is the free 

parameter

Solution Space

For the rotational part, we can write 𝑅𝑋 as

We then re-write the translation part as

 𝒏𝑨 is rank 2 so there is a degree of freedom in 𝒕𝑿
along 𝒏𝑨. Therefore we write 𝒕𝑿 as 



Solution Space

A feasible solution to the batch equation 
can be parameterized as

where

Given that (1) constrains the possible 

solutions to a two-dimensional “cylinder”, 

the problem of solving for X reduces to 

that of solving (2) on this cylinder by 

determining the values (𝝓, 𝒔). There is 

therefore no need to search elsewhere in 

the 6D group SE(3).



∙ 𝑭
𝟐 Minimization

Minimize the cost function

𝐶1is quadratic in 𝑠 and can be written 

as

The minimization of 𝑠 is solved for in 

closed-form,

and then is substituted into the 

original expression, leaving a one 

dimensional search over



KL Divergence

A Gaussian on SE(3) can be defined when the 
norm Σ is small as

where Σ denotes the determinant of Σ and

We write the Kullback-Leibler divergence 

of the two distributions as



Minimal KL Divergence

Minimize the cost function

where

If we take into account that our 

search is limited to the cylinder as 

defined in (1), then automatically

an

d



Minimal KL Divergence

We can now write a new variable,
, and minimize the cost function

where

Since SE(3) is unimodular, and additive 

and positive multiplicative constants can 

be ignored, we can simply consider the 

first term in the KL-divergence, scaled by a 

factor of two:

an

d



Minimal KL Divergence

Since SE(3) is unimodular, and 

additive and positive multiplicative 

constants can be ignored, we can 

simply consider the first term in the 

KL-divergence, scaled by a factor of 

two
minimized over

Minimization over s can be done in 

closed form as in the previous 

approach, since 𝐶2is also quadratic 

in s. After substitution, this again 

results in a one dimensional search 



To experimentally test our methods for AX=XB 
calibration we use an Ultrasound (US) sensor 
calibration process. It should be noted that 
these methods can be extended to other 
application areas, both in US and more 

generally.

Calibration of Sensor Data 

on the Euclidean Group

Ultrasound 
Calibration

The AX=XB 
Problem



3D image volumes Augmented reality 
environments 

US Elastography

Through calibration we recover parameters that are required to perform 
more advanced forms of image based guidance using Ultrasound (US)





Simulation Results

The two algorithms were unaffected by knowledge 

of correspondence and, in each case performed 

with a high level of accuracy. The results are the 

average of ten trials.



US Experimental Results

For each reconstruction point, we found its closest 

point match on the model and computed the sum 

squared difference between them. Our results 

show the mean and the standard deviation of this 

sum of squared differences and indicates that the 

error is reasonable.



US Experimental Results

To examine the accuracy of the computed X, we 

performed a reconstruction of the phantom model.



• We established that the AX = XB sensor calibration 
problem can be formulated with a “Batch”, 
probabilistic formulation that does not require a priori 
knowledge of the A and B correspondence.

• We presented an information-theoretic algorithm (KL 
Batch) that solves for X by minimizing the Kullback-
Leibler divergence of the A and B sensor stream 
distributions with respect to the unknown X. 

• In both simulation and experimentation, we 
demonstrated that this method reliably recovers an 
unknown X without the need for correspondence.

Conclusions



• We will further examine the proposed 
methods experimentally, for ultrasound 
calibration, as well as other contexts. 

• We will work to improve our probability 
theoretic formulation by specifically 
accounting for sensor measurement noise, 
representing X by a mean and covariance, 
and not just a Dirac delta distribution.

Future Work
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Voronoi Cells in Lie Groups and Coset 
Decompositions: Implications for 

Optimization, Integration, and Fourier Analysis

Yan Yan and Gregory S. Chirikjian

Department of Mechanical Engineering
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• Review of basic concepts in group theory and the Lie groups 
SE(2) and SO(3).

• Generating almost-uniform sample points in SE(2)and SO(3) 
based on coset decomposition.

• More efficient computations of convolutions on groups 
developed by coset decomposition.

Outlines



• A group 𝐺,∘ is a set, 𝐺, together with a binary operation,∘,

that satisfies (1) closure; (2) associativity; (3) existence of identity 
element; (4) existence of inverse element.

In this paper, we mainly focus on the group of rotations in space, SO(3), 
and the group of rigid-body motions of the plane, SE(2). 

• A subgroup is a subset of a group 𝐻 ⊆ 𝐺 which is itself a group that is 
closed under  the group operation of 𝐺.

• SO(3) and SE(2) contain discrete subgroups. 

Basic concepts in group theory

Groups of rotational symmetry operations of the Platonic solids Five chiral wallpaper groups

p1 p2 p4

p3 p6



 Let Γ, Γ′ < G denote discrete subgroups, then left- and right-
coset-spaces are defined as 

A double coset space is define as

Basic concepts in group theory

and .

 Associated with any (double-) coset, it is possible to define a 
fundamental domain in G, which is a set of distinguished (double-) 
coset representatives, exactly one per (double-) coset. It has the 
same dimension as G, but lesser volume.

 It can be constructed as Voronoi cells in G.

and when 



SO(3) represented in 

exponential coordinates

Voronoi cells

Γ: the Icosahedral group

The center Voronoi cell

 the fundamental domain

Fundamental domains for SO(3)

 Constructed as Voronoi cells with 0

 Fundamental domain for other discrete subgroups in SO(3): 

The Tetrahedral group The Icosahedral groupThe Octahedral group

Smallest volume!

(Yan and Chirikjian, ICRA’12)



Fundamental domains for SE(2)

 For the first time, we establish the fundamental domains for SE(2) when Γ is 
one of the five chiral wallpaper groups, p1, p2, p3, p4 and p5.

 Distance function:  
0

SE(2) represented in ℝ3 Voronoi cells with 𝜞 = p1

The center Voronoi cell  the fundamental domain

For p1: it looks like a hexagonal box with the height 

from –π to π. 

We note that if the lattice is square instead of 

parallelogrammatic, the center Voronoi cells 

becomes a square box. 



Fundamental domains for SE(2)

 Fundamental domains of SE(2) based on the five chiral wallpaper groups: 

p1 p2 p4

p3 p6



Why do we study this?



Application 1: 
generating almost-uniform samples 



• The discretization of the groups of rotations or rigid-body 
motions, arises in many applications such as
 robot motion planning;

 computational structural biology;

 Computer graphics

• Uniform sampling will prevent search algorithms from 
oversampling or undersampling large portions of the C-space. 

• This affects both the performance and reliability of planning 
algorithms.

Importance of uniform sampling



SO(3) Example:

…

Sampling based on single coset decomposition

(Yan and Chirikjian, ICRA’12)

when is small,



Distortion measure:                                 ,

our sampling method ZXZ Euler angles

The grids generated on SO(3) are almost uniform!



Can we do better than this? 



Sampling based on double coset decomposition

 Given two finite subgroups, 𝐻,𝐾 < 𝐺, where 𝐺 = 𝑆𝑂 3 , 𝐻 ∩ 𝐾 = 1,
the resulting non-overlapping tiles satisfy

 Some examples of double-coset spaces:

Yellow-shaded region: single coset-space  𝐹𝑆𝑂(3)/𝐾 with 𝐾= the icosahedral group

Red-shaded region: double coset-space 𝐹𝐻\𝑆𝑂(3)/𝐾 with 𝐾= the icosahedral group, 

𝐻= the conjugated (a) tetrahedral , (b) octahedral, and (c) icosahedral groups.
The conjugated group 𝐻: 𝐻 = 𝑔𝐻0𝑔

−1 for 𝑔 ∈ 𝐺.



Sampling based on double coset decomposition

As 𝑯| ∙ |𝑲 increases, the size of the center Voronoi cells shrinks, which leads to smaller distortion.



Advantages of this sampling approach?

has low metric distortion
is deterministic
has grid structure with respect to the metric on SO(3)
can easily achieve any level of resolution



Application 2: 
Efficient computation of convolution on 
rotation and motion groups 



Fast Convolutions by Direct Evaluation

 Convolution on groups:

Here, 𝑑ℎ is the natural integration measure for 𝐺.

An integration over 𝐺 :

where 𝑑𝑔′ is the same volume element as for 𝐺, but restricted to 𝐹𝐻\G/𝐾 < 𝐺.

 Efficient algorithms for computing convolutions on roation and motion groups 
have been developed previously using “group FFTs” --- Chirikjian and Kyatkin, 
01; Kostelec and Rockmore, 08; Maslen and Rockmore, 97.

 Usually Euler angle decompositions are used for SO(3). 
 We introduce two potential alternatives to this approach based on double 

coset decompositions described earlier.

 Computed by direct evaluation:



Fast Approximate FFTs on SO(3) and SE(2)

 Instead of using Euler angles to parameterize SO(3), we can develop different FFT 
algorithms based on different parameterizations and coset decompositions.

 Specific property of IURs (irreducible unitary representations)

 We use this property together with the double coset decomposition:



• The fact that on the fundamental domain 
centered on the identity 𝑈(𝑒𝑥𝑝𝑋, 𝑙) can be 
expressed as a truncated Taylor series in 𝑋 is 
then very useful because 𝑊 𝑋, 𝑙 will have 
polynomial entries, each of which can be 
computed by evaluation on their boundary. 

• Therefore, the computation of the integral 
over 𝐹𝐻\𝑆𝑂(3)/𝐾 is efficient.



• We make a connection between Voronoi cells in the groups SO(3) and 
SE(2) centered on elements of discrete subgroups, and coset- and 
double-coset-spaces.

• We show that sampling within these Voronoi cells can be made almost 
uniform by exponentiating a Cartesian grid in a region of the 
corresponding Lie algebra, which is the pre-image of these cells under 
the exponential map.

• We show how the resulting cells, and the samples therein, can be used 
for searches, optimization, and Fourier analysis on certain Lie groups of 
interest in robotics and control.

Conclusions (for this part)                    





First Some Pretty Pictures from Old Work: Elastic Network 
Interpolation for the GroEL-GroES complex

lacto.gif
lacto.gif


What is the Structure of the Space of Motions of 

Bodies that Move Collectively with Symmetry ?

Figure generated using ``Escher Mobile iphoneApp’’

developed in the group of G. Chapuis at EPFL



How to Characterize the Free Space of 
Motions of Bodies that Move 
Collectively with Symmetry ?



:electron density of a single protein;         :  Fourier transform; 

:crystal symmetry operation (known);       :rigid-body motion (unknown).

Protein X-Ray Crystallography 

Film
Diffracted X-rays

Direct X-ray beam

Reflection

Diffraction pattern from X-ray crystallography experiment:

Electron density of a single-protein:

: the Cartesian coordinates of the i-th atoms; 
:the electron density map of i-th atom in a reference frame centered on it.





Symmetries in the Density Function
of a Protein Crystal



Rigid-Body Motions in Euclidean Space



Decomposing  Continuous  Motions



Discrete (Crystallographic) Motion Groups



Examples of Crystallographic Space Groups



Cosets, Quotients, and Fundamental Domains



Concrete Planar Examples

p4 =



Embeddings and Immersions of Motion Spaces 
in R^n

p1\SE(2) = T^3



Immersions of p4\SE(2) in R^6



Conclusions

• In protein crystals bodies are arranged with 
symmetry, but there is a hidden rigid-body 
motion that is important to find.

• This motion lives in a coset space (quotient of 
SE(3) by a discrete subgroup of crystallo-
graphic symmetry operations).

• This paper characterizes this space (which is a 
manifold) and corresponding fundamental 
domains
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