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Binary Manipulators in Our Lab
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Workspace Densit

* |t describes the density of
the reachable frames in the
work space.

* |tis a probabilistic measure-
ment of accuracy over the
workspace.

Ebert-Uphoff, I., Chirikjian, G.S., “Inverse Kinematics of Discretely Actuated
Hyper-Redundant Manipulators Using Workspace Densities,” ICRA’96, pp. 139-145

Long, A.W., Wolfe, K.C., Mashner, M.J., Chirikjian, G.S., "The Banana Distribution
is Gaussian: A Localization Study with Exponential Coordinates,” RSS, Sydney,
NSW, Australia, July 09 - July 13, 2012.



SDE for the Kinematic Cart

(Zhou and Chirikjian, ICRA 2003)
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Examples of Lie Groups

GL(N,R) = {A e RV*N | detA # 0}.
GLT(N,R) = {A € GL(N,R)|detA > 0}
SL(N,F) = {A e FV*N |det(A) = +1} € GL(N.,TF)

{,-"[_.""n.-'] = {,_1 c ,ﬂz"v'xf'v' | AA* = ][} < GL(N, 'E]I.

SU(N) = U(N)N SL(N,C) < GL(N,C):

SO(N)={A € GL(N,R)|AAT =1T; detd = +1} = U(N)n SL(N,R)



PART 1: INTRODUCTORY MATHEMATICS
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PART 1(a): Probability and Statistics



Gaussian Distribution on the Real Line
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Convolution of Gaussians

The convolution of two pdfs on the real line 1s defined as
(he )@= [ Fi(©fla €

It can be shown that the convolution integral will always exist for“nice”
functions, and furthermore

fENR) = f,+f, € N(R).

The Ganussian distribution has the property that the convolution of two
Gaussians 1s a Gaussian:

. 2 . 2 . 2 2
p(; 11, 02) * pl; 12, 02) = p(x; 1y + iz, 0% + 02)
The Dirac d-function can be viewed as the limit

6(x) = lim p(z; 0,07,

aT—()

[t then follows from (3.8) that
p(x; m, 07) * 0(x) = pl(z; p, 7).



Classical Fourier Analysis
The Fourier transform of a “nice” function f € N (R) is defined as
Fw) = [ fae e

The shorthand f(w) = F(f){w) will be used frequently.
From the definition of the Fourier transform, 1t can be shown that

- ey

(f1* f2)(w) = fi(w) f2(w)



Gaussians Wrapped Around the Circle

ff’nt?,ur:r Zpﬂ hﬁ.,ucrj

k=—oc

This is exactly equivalent to

2
~%n’

pw (0; 1, 0) = 5 cos (n(0 — p))

"M%



Gassian as Solution to Heat Equation
(circle case)

aof 1. 0°f . y y
e Ek.ﬁﬂ? subject to f(#,0) = 0d(6)
f6,t)= " p(6 —2mk;0, (kt) )
k=—n

1 1 2
= — 4 — Z e ktn*/2 (o5 g
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Gassian as Solution to Heat Equation

(R*n case)
:j'j B | Z Of?
B / Or;0r;
-e“_j'—
f(x.,t) = +e113[—ixTD_lx)
(2mt)™/2| det D|z 2t




Multivariate Gaussian

| 1 1 |
(X, X)) = - — eX {——:n:— VYN x — }
p(x;p, X) 2 de ] Py —5x—H) )

f plx;p,X)dx=1
/ Xp(x;p, X)dx = p

] (x — ) (x — ) p(x: pt, T) dx = %
]En



Convolution on RAn

o)) = [ p©px— ) de

M2 =1+ o and Xyn =25 + 25



A Little Bit of Information Theory

Entropy

S(1) = — [ Fx)log F(x)dx

Kullback-Leibler Divergence

Drr(fillf2) = fﬂ} f1(x) log (2&3) dx




Entropy Power Inequality

N(p) = exp(25(p)/n)/2me

N(p+q) = N(p) + N(q)
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PART 1(b): Lie Groups and Lie Algebras



Rigid-Body Motion Group

* Special Euclidean motion group SE(N)

— An element of G=SE(N): q _L A aj

0" 1

— Group operation: matrix multiplication

* For example, an element of SE(2) in polar

coordinates:

g(¢,r,0) =

(cosg —sing rcosé)
sing cos¢g rsind

L0 0 1



* Lie algebra of SE(2)

* Lie algebra of SE(3)

* |Infinitesimal motions




A Little Bit of Lie Group Theory




exp and log for SO(3)
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Lie-group-theoretic Notation

* Coordinate free — no singularities
For A(t) e SO(3),

3
ATA=> oX,

i=1

0= (AT A)V
X, :basis elementof so(3)

For g(t) = (a(t), A(t)) € SE(3)

97g =i§i X =(ATA ATaj

i1 0' 0

s=loa) o (0

X, : basis elementof se(3)

Space-fixed frame
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Differential Operators Acting on Functions on

SE(N)
= . d d =
XFE(H@) = F(H o H @) o = - F(H o (14X )]
d d

XEfH@) = FH 00 H)lo = (1 +1X) o H)l



Differential operators defined for SE(2)




Differential operators defined for SE(3)
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Variational Calculus on Lie groups

e Given the functional and constraints

t,

jf(gg g:t)dt, Cy= jh(g)dt

one can get the Euler-Poincaré equat|on as:

jt(afj Y ChE =X (-2 AN,

agi I k= 1a‘§k

XP1(9) = f(g=exp(tx,)

t=0

where [Xi’xj]:iciﬁxk
k=L



Probability on Lie Groups
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* Integration of functions on SO(3)
1 _ )
Jsoe TAA= - f (A(@))] det I (A@))| do,dg, da,

e_g_ ~ 1 2n7w 2% -
— o [(A0A= = H!f(a,ﬁ,;/)smﬁdadﬂdy

* Integration of functions on SE(2) and SE(3)
o, TORDAH = [ £ (H(@)] detI(H(@) | gy -da,

e.g.
SE(2)
e.g. i

dH(a, B,7.4,,3,,3;) = dA(, B, 7)dd =
S (el &) SARa AT g

1
dH (¢, %,,x,) =~ dgdxd,

sin fdad Bdydgda, da,da,



The Adjoint Matrix:
Adg(XY) = (9Xg71)",
If g=(a, A) then
A 0
Ady = ( ax A A )

The Jacobian Matrix:
B 89 Vv B ag Vv
J B ( 1—> 7...’( 1—>

(x) lg s g

The ‘Vee’ operation:
x = (logg)”.

The volume element:

dg = [J(x)|dx1 - - dxs

Convolution:

fo2(g) = (for * fr2)(9) = [, for(R)fr2(h™" o g)dh



Computing Bounds on the Entropy of the Unfolded
Ensemble Using Gaussians on SFE(3)

We can define the Gaussian in the exponential parameters as

1 I
fle(x) = (27r)3|2|%eXp<__X 7x) (1)

2

Given two distributions that are shifted as f; ;11 (gz_zlle o g), each with
6 X 6 covariance X; ;+1, then it can be shown that the mean and covariance
of the convolution fo1(go, 1og)x* f1,2(91, 5 0 g) respectively will be of the
form go2 = go,1 © g12 and

2072 = Adg_ﬁzZo,lAdgf; + 21’2. (2)
n—1
191,92, s 90) = 11 fiiwa(gi" © gi1) (3)

where gy = e, the identity.
The full pose entropy of a phantom chain:

Sg=— .-+ | F(g1,92, -, gn) 108 f(91, 92, s Gn)dg1 - - - dgn.  (4)

Marginal and conditional entropies can also be computed.



Fourier Analysis of Motion

* Fourier transform of a function of motion, f(g)

F(f)="f(p)=] f(a)U(g™ p)dg

* |nverse Fourier transform of a function of motion

F(f)=f(g)=[trace(f (p)U(g, p)) p"*dp

where g €SE(N) , p is a frequency parameter,
U(g,p) is a matrix representation of SE(N), and
dg is a volume element at g.



Convolution and the SE(3) Fourier Transform

(f,*£,)(9)= |, f.(n) f,(h" > g)dh
F(fl* fz) = F(fz)F(fl)

G.S. Chirikjian, Stochastic Models, Information Theory,
and Lie Groups, Vol. 1, 2, Birkhauser, 2009, 2011.

G.S. Chirikjian, A.B. Kyatkin, Engineering Applications of
Noncommutative Harmonic Analysis, CRC Press, 2001.



PART 2: APPLICATIONS TO
CONFORMATIONAL ENSEMBLES
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Workspace Densit

* |t describes the density of
the reachable frames in the
work space.

* |tis a probabilistic measure-
ment of accuracy over the
workspace.

Ebert-Uphoff, I., Chirikjian, G.S., “Inverse Kinematics of Discretely Actuated
Hyper-Redundant Manipulators Using Workspace Densities,” ICRA’96, pp. 139-145

Long, A.W., Wolfe, K.C., Mashner, M.J., Chirikjian, G.S., "The Banana Distribution
is Gaussian: A Localization Study with Exponential Coordinates,” RSS, Sydney,
NSW, Australia, July 09 - July 13, 2012.



A General Semiflexible Polymer Model

A diffusion equation describing the PDF of relative
pose between the frame of reference at arc length s and
that at the proximal end of the chain

1
: LN

4
Distal End
Defining D=[D, ]=B™ d=[d,]=-B™'b

. et 5
Proximal End of (3, R,s) 3

~  ~ 3 ~ ~
D, X X+ d X[ =X ) f(@aR,s)
=1

Initial condition: f(a,R,0)=6(a) 6(R)



Operational Properties of SE(n) Fourier
Transform

F(X7 )= [ (@oexn( ) U (g P (9)
|Jh=9 oexp(iX;)

= | f(h)%U(exp(t)Zi)o h™, p)tzo d(h)

UU (91°92,P)=U (9;,p)U (92, P)

: ( % Uexp(tX,), p) s j[ cj; f(NU(h™, p)d (h))

= (X, p) f (p)

41



Explicit Expression of #(X.p) for SE(2)




Explicit Expression of #(X.p) for SE(3)

n(X;, p) = %u (exp(tX,), p)j\to

0 (g,p)= D0 m | p,s |1, mI@)UL, (A

k=—I

nl',m';l,m(ibp):%CI 0, .0 —lClé‘ 0

—M= 11 " m+1,m 2 M~ "m-1m

7 J J
nl',m';l,m(x2’ p) = §C1m5|,|'5m'+1,m +§CI 0,10y

M~11 "m-1m

nl',m';l,m (>Z3’ p) - _jm5l,l'5m',m



Explicit Expression of n(X;, p) for SE(3)




Solving for the evolving PDF Using the SE(3) FT

2
o
P
N
NI
O
>

3 ~ ~
EXE+DdXF -XHf@R,s)
=1

r

k,1=1 =
l +«—— Applying SE(3) Fourier transform

where B is a constant matrix.

«—— Solving ODE

«—— Applying inverse transform

f@aR.s)=> ZZZZZ Zj frm (DU (@ R: P)p2dp

r=—ool'=|r|I=|r| m'==I" m=—I
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End-to-End Distance POF for KP Model

Numerical Examples
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A General Algorithm for Bent or
Twisted Macromolecular Chains

The Structure of a Bent Macromolecular Chain
Ya1

Xd1,Xp2
_ Bb
Subchainl  yp Zp2 Subchain 2
T~ =
i
\/\ﬁz >

1) A bent macromolecular chain consists of two
Intrinsically straight segments.

2) A bend or twist Is a rotation at the separating point
between the two segments with no translation.




A General Algorithm for Bent or
Twisted Macromolecular Chains

The PDF of the End-to-End Pose for a Bent Chain
1) A convolution of 3 PDFs
f(a,R)=(f,*f,*f,)@R)
f,(a,R) and f,(a,R) are obtained by solving the
differential equation for nonbent polymer.

f,(a,R)= 6(a)d(R,*R), where R, is the rotation
made at the bend.

2) The convolution on SE(3)
(f*f)@)=[__ fi(f (h*-g)d(h)

SE(3)

48



Examples

1. Variation of f(a) with respect to Bending Angle
and Bending Location

Kratky-Porod model with 0(=0.5, L;=L,=0.5 Kratky-Porod model with 0y=0.5, By=m/2

f@) fa) °

05 0 01 02 03 04 05 06 07 08 09 1 050" 01 02 03 04 05 06 07 08 09 1
a a
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PART 4: STOCHASTIC KINEMATICS AND
INFORMATION-DRIVEN MOTION



LITERATURE REVIEW

The connection between information theory and sensor fusion in robotics
is well known:

Durrant-Whyte, H.F.. “Sensor Models and Multisensor Integration,” IJRR.
7(6):97-113, 1988.

In addition, over the past decade, problems in mobile robotics have re-
ceived considerable attention. Two classes of problems that both fall under
the category of estimation are

Simultancous Localization and Mapping (SLAM):
Thrun, S., Burgard, W., Fox, D., Probabilistic Robotics MI'T Press, 2005.

Mourikis, A. Roumeliotis, S., “On the treatment of relative-pose measure-
ments for mobile robot localization.” ICRA 06



And odor source detection:

Porat, B., Nehorai, A., “Localizing vapor-emitting sources by moving sen-
sors,” IEEFE Trans. Signal Processing, 44 (4):10181021, April 1996.

Russell, R. A.Odour Detection by Mobile Robots, World Scientific, Singa-
pore, 1999,

Cortez, R.A., Tanner, H.GG.. Lumia, R.. “Distributed Robotic Radiation
Mapping,” ISER08

Strategies for odor source localization include “infotaxis”

Vergassola, M., Villermaux, E., Shraiman, B.1., * Infotaxis as a strategy
for searching without gradients, 7 Nature, Vol 445, 25 January 2007



Stochastic Models of Mobile Robots

cos —sinf
g(x,y,0) = | sinf) cosl vy (0.1)
0 0 1

9(x1,91,61) 0 g(22, y2,02) =
g(;Lfl + @9 cosfy — yosinfy, y1 + rosin by + yg cos by, 61 + 92)

Furthermore, pure translational and rotational motions can be expressed
as e'*1 = ¢(¢,0,0), 2 = ¢(0,¢,0), and ¢ = ¢(0,0,¢) where e is the
matrix exponential and Xy, Xo, X3 are respectively the matrices

001 000 0—10
000 ;1001 )11 0O
000 000 00 0

Zhou, Y., Chirikjian, G.S., “Probabilistic Models of Dead-Reckoning
Error in Nonholonomic Mobile Robots.” ICRA 03



3(Q)

Fig. 0.1. A Kinematic Cart with an Uncertain Future Position and Orientation

dor = c,u(t)(lz‘. 6 \/Edurl
(1@2 = w(t)(h‘. -t \/5(11[?2



/ f‘ﬂ:rr\ / T'Ww COS 9\ / 5 cos ) 5 cos H\
dun

dy | = | rwsing | dt + VD zsinf 5 sind (0.4)

\at/ \ 0 ) \ + - )

Corresponding to an SDE 1s a Fokker-Planck equation

divsg

OFf 401 )0 f
= —rWcosty— — T1Tw 111 o
ot ¢ dx " ()u
D [r? P2f 2 D2 f -:-2 02 j 22 52 f
— [ = cos?# 20 — sin# .
) (2 cosOms Ty s s Oy T I r)E)Q)

There 1s a very clean coordinate-free way of writing these SDEs and

FPEs. Namely,

- 1
(y‘“” ) ‘é_ 0 0 |dw
2L —2/I




where V 1s the “vee operator” . The coordinate-free version of the Fokker-
Planck equation 1s given below.

Calculus on Euclidean Groups

Analogs of the usual partial derivatives in R" can be defined in the Lie-
group setting as

s d . | . _ |
Xif = |- (g 0 €%) i=1,2.3. (0.5)
(t 0
These are called Lie derivatives. The Fokker-Planck equation above can
be written compactly in terms of these Lie derivatives as
of D 2D

— —rwX X)2f +
F 1”4(1” 2

(X3)2f. (0.6)



flg)dg= [ flgoog)dg= [ flgog)dg= [ flg " )dg.
G G G G

If the robot continues to move for an additional amount of time, 75, then
the distribution will be updated as a convolution over G = SFE/(2) of the
form

ftl—l—tz(ﬂ) — (fh * f?g)(ff) — Lffl(}g)ffz(h_l © ff)dh’* (UT)

It 1s possible to either solve for this density, or to propagate 1its moments:

Wang, Y., Chirikjian, G.S., “Nonparametric Second-Order Theory of
Error Propagation on the Euclidean Group.” IJRR. 27(1112): 12581273,
2008.

Park, W., Liu, Y., Zhou, Y., Moses. M., Chirikjian, G.S., “Kinematic
State Estimation and Motion Planning for Stochastic Nonholonomic Sys-
tems Using the Exponential Map.,” Robotica, 26(4), 419-434. July-August
2008
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Flexible Needles with Bevel tip

— |,

http://research.vuse.vanderbilt.edu/MEDLab/research_files/needlesteer.ntm

-

Needle with a bevel tip




Needle Model

Deterministic nonholonomic model

o 1 Tav] \V :insertionspeed (@ :twistingangular velocity

o, KV

o, 0 z
e <! 4

v, 0 Y

v, 0 -

_VZ_ _V_

ection perpendicular to insertion (mm)

Experiments by Dr. Kyle Reed



Stochastic needle model

o(t) = 4w, (t) W, (t) : Unit Gaussian white noise
v(t) =1+ A,w, (1) ], Strength of noise

0 04 0O oﬂdwl}

Tg)7dt=[x 0 0 0 0 1]dt+
(97g) dt=l | Ld.z 0 0 00 4]|dw,
g : SE(3) frame for needle tip pose

W, (t) : Wiener process

Park, W., Kim, J.S., Zhou, Y., Cowan, N.J., Okamura, A.M., Chirikjian,
G.S., Diffusion-based motion planning for a nonholonomic
flexible needle model,” ICRA’05, Barcelona, Spain

Park, W., Reed, K. B., Okamura, A. M., Chirikjian, G. S., "Estimation of model
parameters for steerable needles," ICRA, Anchorage, Alaska, 2010.
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Entropy and Relative Entropy on Euclidean Groups

Equipped with a method to integrate, all of the classical definitions of
continuous nformation theory can be generalized to the group setting.
Namely, the Shannon entropy and Kullback-Leibler divergence become

S(f)=—[ f(g)log f(g)dg

G

and

Drs(Fll6) = [ Flg)log (""(”)) dg

e ¢(9)

where f(g) and ¢(g) are probability density functions (i.e., they are non-

negative functions that integrate to unity). Furthermore, many informa-
tion mequalities formulated m Euclidean space also hold in the context of
Lie groups, as exemplified by the following.



Theorem 1: The entropy of convolved pdfs increase, and the data pro-
cessing mequality holds:

S(f1* f2) 2 max{S(f1),S(f2)}

and

Dir(fill f2) 2 max{Dkr(fi*¢ | fa*x @), Dxr(o* f1||¢* f2)}.

Proof: Follows from the convexity of the functions —logr and xlog x,
and Jensen’s inequality, and the joint convexity of Dgp(-|-).



Gaussian Approximation of Non-linear Measurement
Models on Lie Groups

Greg Chirikjian and Marin Kobilarov
Johns Hopkins University

December 17, 2014
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Motivation

» Filtering on manifolds vs coordinates
» avoid singularities/chart switching
» employ natural distance metrics
» capture nonlinearities

» Rich literature for filtering on manifolds
» Euclidean group filtering: Lo, Tsiotras, Junkins, Markley, Hamel,
Mahony, Chirikjian, etc...
» General Lie group filtering: Absil, Mahony, Bonnabel et al, Manton,
Bourmaud et al, Leok et al, Chirikjian, etc..

» Qur focus
» show advantages of Lie group representation for range-bearing models
» second-order accurate measurement update using moment matching
» can be used for increasing filtering accuracy on any Lie group



SDE for the Kinematic Cart

(Zhou and Chirikjian, ICRA 2003)

Y Position

e 4 dx T (w1 +we)cosh

‘\ dy | = (wy + wo)sinf | dt
@ 1 dé‘ %(Wl — wg)
‘;\ / . 5 cosfl  Zcost duoy

(ST

0 0.5 1 1.5 »x r r

+vD % sin ¢ % sin @
. dwo
X Position £ ¢

(a) (b)



DT =1

Y Position

i Long et al, "The Banana Distribution is
Gaussian” RSS 2012

0 0.5 1 1.5 2
X Position
/ log” (p™ o g) flg)dg =0 Y= / log" (1=t o g)log” (1™t 0 9)]T f(g)dg
G G
flgip,X) = ! exp —lyTE y y = log(u~tog)¥
EN C(Z) - 2 =



Exponential Coordinates for SE(2)

g(vy, v, ) = exp(X)
cosa —sina 1
= sina cosa tg
0 0 1
t1 = [va(—1+cosa)+vysinal/a

ta = [v1(1 —cosa) + vesinal/a.



Introduction
Consider a simple example: robot localization

» one beacon: large uncertainty (not fully observable)
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Measurement Models

Consider an autonomous vehicle in workspace W C R? or W C R3
» pose g € G where G = SE(2) or G = SE(3)

| R x
g _ U 1 p
with rotation matrix R and position x € W
» random measurement z taking values in R™ defined by

z = h(g) + H(g)n

where n is a noise vector and H(g) is a coupling matrix
» pdf of nis g, : R™ — Ry,
» pdf for given g € G is then defined by

z = 1z — .
p(z]g) 6] qn ([H(g)]" [z — h(g)])



Measurement Models (cont)

» For simplicity assume H(g) = H and let n ~ N(0, N), N = HHT:

p(z|g)=

SEIN=

ex —lz— TN~z -
e (Gl he). @)

» Generate a pdf for g according to

(27)

_ olg) = PZ]8)
pn(g) = p(g|z) T o(zlg)de’

or if a nominal po(g) is known (i.e. a prior on G) then we have

p(z]g)po(g) (3)

Pel) = T e)role)ds



Example Models

» Typically the sensor measures fixed environmental features £ € W

h(g) =h(g™" - ¢)

where g71 - £ is a left action of G on W, ie. g71- ¢ =R (£ —x)
» Range-bearing in 2D (e.g. 2d LiDAR sensor)

A
hre(y) = ( arctan2(y2,y1) /)

for a given y € R?

» Monocular camera (MC):

huc(y) = =

Iy ll”

for a given y € B3, using a spherical projection model



Optimal estimation of Gaussians on Lie Groups

» A concentrated Gaussian on an d-dimensional Lie group can be
defined as

1
(2r)9/2|L |2

where log : G — g is the Lie group logarithm, and g denotes the Lie
algebra

flgip.X)=

exp(—% |||Gg{;f1g}“’]||25-1) . (4

» Goal: find parametric f(g; u, L) that is closest to p(g|z)
» In the Kullback-Liebler (KL) sense, this is the solution to the
optimization problem

min KL (p(glz) || f(g:p.2)). (5)
[T

where the KL distance between two given densities p(g) and g(g) is
defined by

3 p(g)
KL(p || q) = /G p(g)log a(g) dg.



Optimal estimation of Gaussians on Lie Groups (cont)

» [he optimization problem (5) is then equivalent to
min | —p(glz)log (&1, T)dg
wt /G

» solved using the parameterization of:
» the mean according to 1 = pigexp(e) for some € € g
» the covariance ¥ using its Cholesky factor A such that E-1 = AT A

» the pr:::nlz}lem is then:

min { Z log A + L (g12)[[log(exp(~ g )" [ ry de }-

» an can be solved using sampling:

mln{ ZIDgA;,+ 5 Z Ns z|.fr| Hl{:}g(exp(—f)ﬂg gi) ”ATA}?

where gi € G are Ns i.i.d. samples from po(g)




Distribution update using range-bearing measurements

Polg) plz|g) plal=)

a) B) <)
prior po(g) meas. model p(z|g) combined density p(g|z)
» Note: all densities above displayed in g = (x1,x0,8) for clarity

» density p(g|z) is the full (non-parametric) nonlinear (and non-Gaussian in pose
space) density that we aim to approximate.



Coordinate vs Lie-group Gaussian approximations

L]

coordinate Qaussian f-(q)

Lie-gmutﬂ Gaussian f(g)

Euclidean Gaussian |

KL(plglz) || felg)) = 1.42

lgo — gll = 025

Lie group Gaussian

KL{plglz) | flg)) = 0.67

lgo — gl = 013

1M



el = 1

Second-order expansion of nonlinear model

> A second-order Taylor series for h(g) can be written as

“l,g h(g) )+Zn,6h}u}—l—22m?};f}dh} )

ij=1
where here J; is shorthand defined as

d

(Oih) (1) = Eh(ﬂe )

o

» the exponent can be written as

——(a+ 2bTn+ ?}TK?}}

I\J|'—‘

c(n) =

where
a = [h(p) — z]" N"'[h(p) — 2]
by = [h(n) — z]" N=(8:h)(n)
Kii = [(0ih) ()] T N=2(85h) (1) + [h(re) — 2] T N~ (80; h) (1)

(6)

(7)



Measurement PDFs Described as G-Gaussians
» What G-Gaussian best approximates

n K2 _am
pn(ﬂGE)%WE 2

i.e. we seek
f(poe pun L) =Ff(emputounXy)

to match to pn(p o ") when =t o i, is close to the identity and
the eigenvalues of 2, are small.
» Approach: expand density using local parametrization
e“=ptou, and e"=plog.
and use BCH formula

log"(e0e")~ — ¥ + 1Y — ~ad(€)”
1 : (8)
+ = [ad()ad(e)n’ — ad(n)ad(n)e"].

to obtain first and second-order terms



Matching 2" Order Taylor Series and
2"d Order BCH Expansions

Both are of the form

1
c(n) = —ﬁ(a — ZbT’r} + -I}TK-I';)

We match a, b, K for each.



Moment-matching conditions

As a result we need to compute the uknown ¢ and X, to satisfy:

(eN)TE e =a (9)
()T [nd ~ Zad(9) + %ad(f)ad(e)] b7 (10
and
1 1 r
I4 — —ad(e) + —ad(e)ad(e)| X,
2 12 (11)
: []ld — 1.;..*-::i'[ﬁ) + ia-::i'[E):;.n:f(f_f}] + M=K
2 12
where )
My = ()T [ad,};adgzgl + E;ladgada} V. (12)



Solution using a perturbation approach

» simplest zeroth-order approximation from (10) and (11) results in
Yo~K1ltand € = —K1b

» Note that is the standard EKF on Lie groups (i.e. using first-order
linearization)

» Such approximation is valid under the assumption that both |2 ,]|
and ||¢|| are small relative to 1

» We next consider high-order versions:



Case 1: v = O(||Z,|]) = O(|l€]]).

Following a standard perturbation approach one can show the a
first-order approximation requires the solution of the equations

Yy l=—1-Al +BT)K(I—- A, +B). (13)
EV:—(H+H1+C)K_15 (14)
where
Al = %ad (ﬁ) Ay = éad (ﬁ) ad (Effb)
The matrix B is computed from the linear relationship
BTK + KB =[-A;, + A2]TK[-Ay + A%] — M. (15)
after which the matrix C is computed to satisfy the equation
BT —K(A2—B—-C)K1=[-A+ AT (16)

The procedure can be performed once or iterated multiple times until the
variables X ,, € converge. These terms are initialized using the zeroth
order solution.



Case 2: ||L,|| = O(v) and ||¢|| = O(v?).

We again start with (13) and (14) and the same lowest order
approximations ¥, ~ K~1 and b, =~ —K~1b. But in this scenario, we
take Az = O since ¢ is already O(v)-times smaller than ¥ ,. Therefore, in
the first order matching does not appear and we solve the following linear
equation (which is a modified version of (16) given the above constraints)

BT —KBK ' =—A!
for B, which is the only second-order correction, along with

Yo=K 1-BK1-KI1IB" ¢ =_K71b.



Case 3: ||Z,|| = O(v?) and |l¢|]| = O(v).

In this scenario B = © because corrections at this level are not required

for 25. We then have

Yo=K 1+ AK T+ KA, = —(1+A+COK b



Conclusions

» Gaussians on Lie groups better capture nonlinearities

» |mprove measurement update accuracy, can be significant for large
covariances

» Higher-order methods are applicable at extra computational cost
» Need to study the trade-off between accuracy and CPU time

» Future/ongoing work: vehicle localization/mapping/tracking



If you like this ...

Have a look at my book:

“'Stochastic Models, Information Theory, and Lie
Groups”
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e The AX=XB Problem

e Notation and Probability Theory Review

e Solution Constraints

e An information Theoretic Approach

e Results and Conclusions




AX = XB is one of the most common mathematical
formulations used in robot-sensor calibration problems.
It can be found in a variety of applications including:

Courtes

K/ j Ty
N NG i CAMP
7{"/ 7 , atTum

Camera calibration ['] Robot eye-to-hand
calibration 1
Courtes — kg
y:
Darius -
Burschk ':{-‘A‘ - ‘\:
‘ Yy Image guided therapy
Aerial vehicle sensor (IGT) sensor
[1] Tsai, R., c@kilRration [2] calth Bxtator, .M.

[2] Mair, E., Fleps, M., Suppa, M., Burschka, D. (2011) 2 06)




AX=XB

Ai= AA-
a0l \:> Al X = X Bi

A,B,X € SE(3) where
SE(3) = R3x SO(3) and
SO(3) := {R € R3*3|RRT =1, det(R) = +1}

SE(3) is the Lie Group describing rigid body motions in 3-dimensional space, i.e.:

H € SE(3), where "\ and
(3) H(R.t) — [ﬁ”f

R € SO(3) (a proper rotation matrix), t € IR3 (a translation vector)



AX=XB Solution Space

It is well known that it is not possible to solve for a
unique X from a single pair of exact (A, B),but if
there are two instances of independent exact
measurements, (A,,B,) and (A,, B,), then the
problem can be solved.

AX =XB
\ 4
RaRx = RxRp —> QOne Parameter solution set
+
.(RA —1I3 )'t)( — Rytp —ta
! > Rank 2

Two unspecified degrees of freedom



AX=XB Solution Space

A unique solution is possible given two pairs
with certain constraints!*~!

« SE(3) geometric invariants satisfied

* Angle of the rotation axes is “sufficiently
large”

The goal becomes one of finding an X with least-

squared error given corresponding pairs (A, B:) for
i=1,2,...,n.

[4] Chen (1991)
[5] Ackerman, M.K., Cheng, A., Shiffman, B., Boctor, E., Chirikjian, G. (2014)



AX=XB Correspondence

What we mean by correspondence:

xe

Al A2 An

I |

Bn

B’s

Data Stream




AX=XB Correspondence

While our method removes the need to know the correspondence of the data,

there have been other attempts in the literature to regenerate the
correspondence by

1. time stamping the datal®
2. dedicated software modules for syncing the datal®!

3. analyzing components of the sensor data stream to determine a
correlation!”-8l

[5] Mills, D. L.

[6] Kang, H. J., Cheng, A., Boctor, E. M.

[7] Mair, E., Fleps, M., Suppa, M., Burschka, D

[8] Ackerman, M,,K., Cheng, A., Shiffman, B., Boctor, E., Chirikjian, G.



Rigid Body Motion

The group of rigid body

motions, S&3 — 1
H € SEGS e - ([ﬁn E) whera® Fa@BB)Rs()

t = [ty ty,t.]7

is a Lie group and therefore the concept of integration exists:

/ H)dH = / / H(R.t))dRdt
B3 JSO(3

which is “natural”, because for any
H ESE&@MH / LdH =

/ fIHHgy)dH = / flHyH)dH
JSE(3)



Convolution on SE{(3)

Define the convolution of two functions as:
(f1 % fo)(H) = / 11 (H) fo (K~ H ) dH
JSE(3)
Define d deita TUNction as.
/ S(H)dH =1 and (f+8)(H) = f(H).
SE(3)

And a shifted delta function as:
oA(H) = 6(A~'H), where A € SE(3)

The “v” operator is defined as:
(ZI: X f—.‘,—)y = (X, Xy ooy X,)T

i=1



PDFs on SE(3)

The mean and covariance of a

probability density function, f(H), can be
defined as

/ log(M~'H)f(H)dH = Q
JSE(3)

Y = / log” (M ~*H)log" (M *H) f(H)dH
JSE(3)

Traditional Riemannian-aeometric approach:

M’ = argmin] [d(M.H))*>f(H)dH
M SE(3)

Wheld(M.H) IS usually sd(M,H) = |log(M~"'H)|lj,



Mean and Covariance

Traditional Riemannian-geometric approach:

M = a-1rgmin/ [d(M.H)]?f(H)dH
M JSE(3)

Whed(m.H) Is usually something

. dM.H) = |log(M~'H)|3
W Re: !

/ log(M~'H)f(H)dH =0 gnd
JSE(3)

Y = / log” (M~*H)log" (M~ H)|" f(H)dH
JSE(3)



The “Batch” Equations

Give{ﬂi} and {B;}

A;X = XDB; EE) 81,(H) = (8 +p,  Sx1)(H)

because real-valued functions can be added

and convolution is a linear operation on
functions, all n instances can be written into a

single €9 1, (1) = (6x + f+31)(H)  where
fa(H) = ! iﬁ(ﬂj_lh’) and fp(H) = {l—f iS(B;'H)

izl i=1

We can normalize the functions to be
probability dgnsity fundtions (pdfs):



The “Batch” Equations

Given thd(A;. A)).d(B;. B;) < e << 1 , We can
write the evolution of the mean and

covariance as:
Miwo ~ MiMs and Ei.p = Ad(My;HEAdT (M) + 25

where e
Ad(H) = (’{:‘;? R)

and the “hat” operator is defined such
that given acR’

ab=axbgnd (a)¥ = a



The “Batch” Equations

Since the mearix(H) ijsMx =X and its
covariance is the zero matrix we can write the

“Batch” formulation
8-4a'(H) — (Oy * Sgr. * ‘SX" J(H)

fa(H) = ! i S(Aflﬁnd fg(H) = ! ié(B"H)
T = S =R
\ 4
Mo = MMy and X1, = Ad(M;HEAdT (M) + X5
o
Batch Method “AX=XB" Equations:
(1 My=XMgX ! (2 Y4 =Ad(X)ZgAd" (X)

) )



Solution Space

Batch Method “AX=XB"” Equations:

(1 My=XMgX~! (2 Y4 =Ad(X)ZgAd" (X)

The gearch for an aoorog)riate X can begin with
re-writing (1 log¥ (My) = Ad(X) log” (Mp)

By defining
log" (My) = ( &;:1.4 )
The equation can be separated into

rotational and translational comnonents,
ng = Rxng and VA = Qg-txﬁxng + Rxvpg

From which it can be seen that the
possible solution space, for (1), is two



With the discrete nature of our application, we
can likewise define the mean and covariance in

- rar—1 e 1 1 nr—1 4 1T
Zln_rg(ﬂf‘_,llﬁli):u and 51—”21(“: (M7t A;)[log” (M3 A)]

An iterative procedure can be used for
computing M, whick\i = exp(5 3202, log(A:))

%stlmate of the form
hen a gradlent descent procedure IS used

to update so (M) =[S log(M 14| Sost
The covariance can then be computed:

] — -
Ta=— log"(My"Ay)llog” (Mg Ay

1=1



Solution Space

For the rotational part, we can write Ry as
Rx = R(na.ng)R(ng.0) wher¢ € 0.27) is the free

We then re-write the trgﬁé?arﬁg;(\e}raart as
R(ny.ng)R(Np. Q)Vp —Vy
Op
n, isrank 2 so there is a degree of freedom in ty
along n,. Therefore we write ty as
ty =t(s) =sny +~amy +-bmy X ny

= DAty

Wheres € R Is the free parameter and

_ _ (R(HA-HBJR(IW-@)VBVA)
—1> a=— -(my X ny)
I ( - ) Op ‘

] (R(HA- ng)R(ng. ¢ )vp —VA)
g R 0 -1y
B




Solution Space

A feasible solution to the batch equation

can be parameterized as
X(\({j..ﬁ') — H(R(HIJI.H;;)R(HH. @).t(.&'))

. .,

whergo.s) € [0.27) xR



|-]|% Minimization

Minimize the cost function
Ci(¢.5) = [|Ad([X(¢.5)] " )Za — ZpAd" (X (¢.5))||F
Cy1s quadratic in s and can be written
| 1 .
A5 C1(9.5) = Cio(9) +Cr1(9)s + 5 Cia ()57

The minimization of s is solved for in
closed-form, _¢€u(?)

Ci2(0)
and then is substituted into the
original expression, leavin € [0.27)

AirmaAancinanAal canarchh AvVviAr



KL Divergence

A Gaussian on SE(3) can be defined when the

norm ||Z“:r~ ~maall A~

| 1 (A —
pHME)=—"" o~ 21 (MH)
(27)°|Z|2

where |2| denotes the determinant of £ and
F(H) = [log" (H)]"= ™" [log" (H)]

We write the Kullback-Leibler divergence

of the two distributions as
DkiL(F || B) =

1
2

| - )
tr(Z5'Z) + (my—my ) 25 (my —my ) —n—1In (‘ ")]

22|



Minimal KL Divergence

Minimize the cost function

C2(X) = Dgr(fa || Ox * fB* Oy-1)

where
Ja(H)=p(H:Ms,Z4) AN
(Sx * fp* Oy 1)(H)=p(H: XMX ™" . Ad(X)ZpAd" (X))

L A

If we take into account that our
search is limited to the cylinder as
defined in (1 3@13},?)5—7 —ii,omatically



Minimal KL Divergence

. — ]
We can now write a new K=M, H

, and minimize the cost function
Co(X(0.5)) = Drr(f3 || f)

where¢i(K) =p(K:1:.Z4) an

FLK) =p(K:Ly. Ad(X(0,5))ZAdT (X(0.5)))

Since SE(3) is unimodular, and additive
and positive multiplicative constants can
be ignored we can simply consider the

flr.-.-l- bnvvian tm blaa Il A tAavciAavman A~~~ A~ Al I,-)/ a

f4Cr(X(0,5)) = r(Zy 'Ad(X(0,5))ZpAd" (X(.5)))



Minimal KL Divergence

Since SE(3) is unimodular, and
additive and positive multiplicative
constants can be ignored, we can
simply consider the first term in the

K Cy(X(9,s)) = (T, 'Ad(X(9,5))ZpAd" (X (¢.5)))If

F EA

WO imized (0.5) € [0.27) x R

Minimization over s can be done In
closed form as in the previous

approach, since C,is also quadratic
in s. After substiti¢ € [0.27his again



To experimentally test our methods for AX=XB
calibration we use an Ultrasound (US) sensor
calibration process. It should be noted that
these methods can be extended to other
application a ore




Through calibration we recover parameters that are required to perform
more advanced forms of image based guidance using Ultrasound (US)

3D image volumes Augmented reality
environments

;..




Probe Fiducial Frame

Al = A.A.'1 4
=) AIX=XBI\, ~

Bii = B"B —
,;"!“,

; Image B
Frame
Electromagnetic ™ e
Tracker Frame : E
Model _»
Frame A,




Simulation Results

(".cnl'l‘espm‘ndenf:e is Known |

Rotation Translation

Error(rad) Error(mm)
KL | 1.4-10~% 1.4-107°
|-l | 7.3-107* 7.4-107°

Correspondence is Unknown

KL

38-107°

3.8.107°

- I

73.107

7.4.107°

The two algorithms were unaffected by knowledge
of correspondence and, in each case performed
with a high level of accuracy. The results are the

average of ten trials.



US Experimental Results

Mean (mm) | Variance (mm)
KL 1.18 1.06
| - ||+ Method 1.22 1.10

For each reconstruction point, we found its closest
point match on the model and computed the sum
squared difference between them. Our results
show the mean and the standard deviation of this
sum of squared differences and indicates that the
error Is reasonable.



US Experimental Results

Phantom Model Reconstruction

20

10
£ 0 *.. RRT
E 10 o,

=20 KR - %‘oﬁ“?‘%" -

70
5&&
30

(mm) "210 220 -230 -240 -250

(mm)

To examine the accuracy of the computed X, we
performed a reconstruction of the phantom model.



Conclusions

 We established that the AX = XB sensor calibration
problem can be formulated with a “Batch”,
probabilistic formulation that does not require a priori
knowledge of the A and B correspondence.

* We presented an information-theoretic algorithm (KL
Batch) that solves for X by minimizing the Kullback-
Leibler divergence of the A and B sensor stream
distributions with respect to the unknown X.

* |n both simulation and experimentation, we
demonstrated that this method reliably recovers an
unknown X without the need for correspondence.




* We will further examine the proposed
methods experimentally, for ultrasound
calibration, as well as other contexts.

* We will work to improve our probability
theoretic formulation by specifically
accounting for sensor measurement noise,
representing X by a mean and covariance,
and not just a Dirac delta distribution.
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* Review of basic concepts in group theory and the Lie groups
SE(2) and SO(3).

e Generating almost-uniform sample points in SE(2)and SO(3)
based on coset decomposition.

* More efficient computations of convolutions on groups
developed by coset decomposition.
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A group (G,0) is a set, G, together with a binary operation,o,
that satisfies (1) closure; (2) associativity; (3) existence of identity

element; (4) existence of inverse element.

In this paper, we mainly focus on the group of rotations in space, SO(3),
and the group of rigid-body motions of the plane, SE(2).

A subgroup is a subset of a group (H € G)which is itself a group that is

closed under the group operation of G.
SO(3) and SE(2) contain discrete subgroups.

V¢ 00

Groups of rotational symmetry operations of the Platonic solids
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Five chiral wallpaper groups
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Let I, " < G denote discrete subgroups, then left- and right-
coset-spaces are defined as

G/T' ={gl'' |ge G} and T\G = {Tg|g € G}.
A double coset space is define as F\G/l“’ - {Fgl“’ ge Gl
Associated with any (double-) coset, it is possible to define a

fundamental domain in G, which is a set of distinguished (double-)

coset representatives, exactly one per (double-) coset. It has the
same dimension as G, but lesser volume.

It can be constructed as Voronoi cells in G.
Frng=1{g€G|d(e,g) <d(e,yog) ,VyeT}
For ={g€Gld(eg) <d(e,y og),Vy €I' }

and whenT NI = {e}, Frg/r ={geG|d(eg) <d(e,yogoy ) V(1,7 ) el“xl“l}.
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2 2

SO(3) represented in Voronoi cells The center Voronoi cell
exponential coordinates [': the Icosahedral group < the fundamental domain

Fundamental domain for other discrete subgroups in SO(3):

Smallest volume!

(Yan and Chirikjian, ICRA'12)
The Tetrahedral group The Octahedral group The Icosahedral group
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Fundamental domains for S@ T
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For the first time, we establish the fundamental domains for SE(2) when I is
one of the five chiral wallpaper groups, p1, p2, p3, p4 and p5.

Distance function: dSE(Z) (g1,22) = | 108(81_1 o2)|lw

y

SE(2) represented in R3

A

Voronoi cells with I' = p1

The center Voronoi cell <> the fundamental domain
For p1: it looks like a hexagonal box with the height
from =1 to .

We note that if the lattice is square instead of
parallelogrammatic, the center Voronoi cells
becomes a square box.
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Fundamental domains of SE(2) based on the five chiral wallpaper groups:

pl e p2 p4

L4 N R = I S B 4%
' ' '

[ N B = T O O T %
L4 N R = I S B 4%




Why do we study this?



Application 1:
generating almost-uniform samples
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Computational

: O
Importance of uniform samp%smg e

THE JOHNS HOPKINS UNIVERSITY

* The discretization of the groups of rotations or rigid-body
motions, arises in many applications such as

» robot motion planning;
» computational structural biology;

» Computer graphics

* Uniform sampling will prevent search algorithms from
oversampling or undersampling large portions of the C-space.

» This affects both the performance and reliability of planning
algorithms.



Sampling based on single coset decompogi%r

Sensing + Robotics
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C%g Computational

SO(3) Example:

R =-exp(nB), exp X ~[+X when||x|| is small

d(R,Ro) = O(RRy) = |llog(®R{R)I | | @

(Yan and Chirikjian, ICRA'12)
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Sampling based on single coset decomposition %? Sensing + Robotics
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Distortion measure: | c(q) = —|6(q)-1|| where G(q) =7 (q)J(q)

V3

a) o. ! e (b) 09 ; ; ; ; _
(a) 014 Tetrahedral (b) 08 '

0121 O aroun | | § | §
Imﬂ_

0.1 R
g ‘\ Octahedral 0.6
0.08! | \group s ] o | ; | ; ; ;

I
I
I
I
0.06 Icosahet;lral | | 0.3
| 0.2
|
I
| I
4

R
i

Distorsion(%)
Distorsion(%)

0 05 073 1108 147 %0 05 1 15 2 25 3
[IX] &

our sampling method ZXZ Euler angles

The grids generated on SO(3) are almost uniform!



Can we do better than this?
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Given two finite subgroups, H, K < G, where G = SO(3), |H N K| = 1,
the resulting non-overlapping tiles satisfy

G=|J UhFngirk "
heH keK

Some examples of double-coset spaces:

(a) H=tetrahedral group (conjugat_ed), K= icosahedral group (b) H=octahedral group (conjugated), K= icosahedral group (c) H=icosahedral group (conjugated), K= icosahedral group

0af’ oad

0277 A 024"

0247 A 0247

04470 0447

MR B et e Ao s

0 05 04

05 -05

0

0.5

: single coset-space Fsq(3)/x With K= the icosahedral group
Red-shaded region: double coset-space Fi\so(3)/x With K= the icosahedral group,

H=the conjugated (a) tetrahedral , (b) octahedral, and (c) icosahedral groups.
The conjugated group H: H = gHy,g ! for g € G.
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As |H| - |K| increases, the size of the center Voronoi cells shrinks, which leads to smaller distortion.

0.14

0.12

e
—

Distortion
= o
o o
(@) [0.0]




Advantages of this sampling approach?

»has low metric distortion

»is deterministic

»has grid structure with respect to the metric on SO(3)
»can easily achieve any level of resolution




Application 2:
Efficient computation of convolution on
rotation and motion groups
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Convolution on groups:  (f1 * f>)(g /fl ) f2(h Lo g)dh

Here, dh is the natural integration measure for G.

Efficient algorithms for computing convolutions on roation and motion groups
have been developed previously using “group FFTs” --- Chirikjian and Kyatkin,
01; Kostelec and Rockmore, 08; Maslen and Rockmore, 97.

Usually Euler angle decompositions are used for SO(3).

We introduce two potential alternatives to this approach based on double
coset decompositions described earlier.

Computed by direct evaluation:
An integration over G : /f(g)dg: Y ] flhog ok)dg'
G (hJ)eHx K Fmax
where dg' is the same volume element as for G, but restricted to Fy\g/x < G.
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Instead of using Euler angles to parameterize SO(3), we can develop different FFT
algorithms based on different parameterizations and coset decompositions.

Specific property of IURs (irreducible unitary representations)

UlexpX,l) = exp(W(X,1)) * The fact that on the fundamental domain
where W (X,1) = ¥, x;W(l) with centered on the identity U(expX, 1) can be
I expressed as a truncated Taylor series in X is
1 hen very useful because W (X, [) will have
Wi(1))m = —=c' 6 chd t Y '
) gt 2 CnOm= polynomial entries, each of which can be
1y computed by evaluation on their boundary.
(W2(1))mn = +§C*”’ Onr+11 = 20”’5’” * Therefore, the computation of the integral
(W5(1) )y = — NS over Fiso(3)/k is efficient.
. . / . .
We use this property together with the double coset decomposition:
f)= / f(PRO)U((PRO)T.1)dR, <& Y U l f f(PROU(RT ,1)dR| U(PT 1)
(PQ ePxQ Y fP\s0(3)/Q (PO)EPxQ Fp\so(3)/Q

where P,Q < SO(3) are finite.
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 We make a connection between Voronoi cells in the groups SO(3) and
SE(2) centered on elements of discrete subgroups, and coset- and
double-coset-spaces.

* We show that sampling within these Voronoi cells can be made almost
uniform by exponentiating a Cartesian grid in a region of the
corresponding Lie algebra, which is the pre-image of these cells under
the exponential map.

 We show how the resulting cells, and the samples therein, can be used
for searches, optimization, and Fourier analysis on certain Lie groups of
interest in robotics and control.
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First Some Pretty Pictures from Old Work: Elastic Network
Interpolation for the GroEL-GroES complex
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What is the Structure of the Space of Motions of
Bodies that Move Collectively with Symmetry ?

ot al E t
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(a) (b) (c)
Fig. 1. Three configurations of solid bodies with p2 symmetry

Figure generated using "“Escher Mobile iphone App”
developed in the group of G. Chapuis at EPFL



How to Characterize the Free Space of
Motions of Bodies that Move
Collectively with Symmetry ?
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(a)
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Fig. 2. Two configurations of solid bodies with p3 symmetry



Protein X-Ray Crystallography

Film

Direct X-ray beam Diffracted X-rays—

Reflectian

Electron density of a single—protein: f(x) = 2 pi(x —x;)
i=1

X; = (x;,)i,2i) : the Cartesian coordinates of the i-th atoms;

pi(x):the electron density map of i-th atom in a reference frame centered on it.
Diffraction pattern from X-ray crystallography experiment:

P(g:k) = Igz (if((}'jog)l -f))
=

f (x ) :electron density of a single protein; T ( - )_'ier transform;
{ Y } :crystal symmetry operation (known); g d-body motion (unknown).




X

Shorthand for B (parameterized in Cartesian coordinates

{.rr-} I,

S5E(n)  The special Euclidean group of n-dimensional space.
(r Shorthand for SE{3), a six-dimensional Lie group.

I

L
T

F

"I[".l':'

A chiral crystallographic space group.
A lattice in Euclidean space.
The discrete group of translational symmetries of a lattice.
The factor group I'/T =TI
The n-dimensional torus,

Frvg The fundamental domain in & corresponding to I'G.

Z

The integers



Symmetries in the Density Function
of a Protein Crystal

prx(x) =} ply™'x)

Prx (- X) =prx(x)



Rigid-Body Motions in Euclidean Space

SE(n)=(R",+) 1 50(n)

g oga = (Hy,t1) 0 (Ha, ta) = (HiHa, Hita + 1)

g~ = (RT,—R"t) and e=(L0)

T={(Lt)|te X} and R={(R.0)| R e S0(n)}



Decomposing Continuous Motions

aN
screw(n. 8, hn) = ( t;,T h]" )

T={({Lt)|teX} and R={(R.0)|R e 50(n)}

(R0 oscrew(n,8,0) o [RT,'[I | = screw( Kn, 8, h)



Discrete (Crystallographic) Motion Groups

Though continuous screw motions (both infinitesimal and fi-
nite ) are known to kinematicians, discrete screw motions are 1m-
portant in crystallography. In the case when 8 =2x/n and h =
p/n. where p and n are positive integers and p € {1,2,...,n }.
screw(n, 2w /1, p/n ) becomes a screw axis of type 1,. where

[screw (n, 2z /n.p/n)]" = (L, pn).

If we conjugate by translations before raising to the power, the
result 15 the same because

[(L.t)oscrew(n,2x /. p/n)e (L, -] =

(Ltio (L pn)o (I, —t) = (L, pn).



Examples of Crystallographic Space Groups

(case 1) Poo,2, ¢ (XyZ) (x40 2-vz41/2) (- y+1/2,-241/2)
(X412 -v+1/2.-2):

(case 2) Py, @ (xyz) (xy+1/2-z),

(case 3) Ch @ (X VN (X V20 (X+120v+ 1220 (x+ 1725 +1/2.-
Z).

(case 4) oz 0 (XyZ) (X-yz) (x+ 12 y+ 1 2-z)0 (x+1/2.-
v+ 1/2.-2);

(case 53) Crz ¢ (XYZN (XY Z+U2) (X y-2+ 1200 (X-y-2h
(X+1/2yv+1/2.2);

(-X+1/2-v+ 1/ 22+ 1720 (-x+1/ 25+ 1/ 22+ 1720 (x+1/2.-v+1/2.-
Z).

(case 6) Fiz,2 ¢ (LYZ) (-x-v2+ 120 (-v+ 12 x4 1/2, 24374 ).
(V+1/2.-x+1/2z2+40/4); (-x+ 123+ 1/2-z43/4), (x+1/2,-v+1/2.-
2414y, (vax-z), (-y.-x.-z+ 1/2): The value of |F, |\ |S| in these six
cases are respectively 3, 1.1, 1, 3. and 3.



Cosets, Quotients, and Fundamental Domains

Frg = [Fl_".ll':l # S0 3.

Frog = (Fry ) % (Fpaso3)



Concrete Planar Examples

cosd —sing x
Higlx,v.8))= | sin® cos8 vy

() 0 1

pl={e(z1,2,0)[z1,22 € Z]

Fopysefz) = {{x,v,8) € [0, 1) = [0,1) = [0,27)}

oa=12(21.20,km/2) |21, ;2 € £k € {0,1,2,3}}

Fopsen = {(x,v,8) € [0,1/2] % [0,1/2] x [0,2x]}



Embeddings and Immersions of Motion Spaces
in RAn

¥ = ¥iglx,v,8) Yivogr v 8 =yigxv.8))

V| = COs| 2oy )

V2 — sini 2Ty}

Wa, = COS| 20V
p1\SE(2) =TA3 M= =niam)

Vg = COSH

Ve — sing.



Immersions of p4\SE(2) in R"6

cos{ 2ax) cos(2may)

COS| 2TX ) -Cos( 2TV)
[cos(2ax) 4 cos(2av)i)sinds
fcos(2ax)4cos(2aviicos48
cos48

sin48

(x,
(x,
(x,
V8

(x

Vv, 8]
Vv, 8]
Vv, 8]

— x4z V422, 8).

— [ =V4+zp. X + 22,84 1,/2),
— | =X 4zi. V4,84 1),
— (¥4 2y, =% + 22,84 31/ 2).

= COS{2M(x 4 vi|fCcos(2mix —v))
= COS{2m(x 4 vi)-cos(2m(x —¥))

sini 2ax)-sinf2av) -sini 28 )
sini 2Ty sinf2ay) - cos(28)
sin”(2qx cos" @ sjnz[lm'] 5in” @
sin®{ 2y ysin” @ + sin®{2av) cos" 8

cos(4xy) 4 cosidav)

cos( 4wy ) - cos{4mTv)

sin®(2ax) + sin®(23v)
sin®(2mx) - sin{ 2 v)

sinf4xxy jcosd 4sin(4xv) sind
sin(4xvicosd —sin(4xx)=sind



Conclusions

* |n protein crystals bodies are arranged with
symmetry, but there is a hidden rigid-body
motion that is important to find.

* This motion lives in a coset space (quotient of
SE(3) by a discrete subgroup of crystallo-
graphic symmetry operations).

* This paper characterizes this space (which is a
manifold) and corresponding fundamental
domains
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