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Introduction



2.1 What is Stochastic Kinematics ?

Problem 1: A random walker on a sphere starts at the north pole. What

will the probability density function describing his position be based on
the properties of his walk ?

Problem 2: The cart-like robot shown in Figure 2.1 moves around in
the plane by turning each of its two wheels. This reference frame can be

thought of as the time-dependent rigid-body motion

g =





cos θ − sin θ x
sin θ cos θ y

0 0 1



 (2.1)

Let the two wheels each have radii r, and let the distance between the
wheels (called the wheelbase) be denoted as L. Imagine that the angles

through which the wheels turn around their axes are governed by “stochas-
tic differential equations” of the form



Fig. 2.1. A Kinematic Cart with an Uncertain Future Position and Orientation

dφ1 = ω(t)dt +
√

Ddw1 (2.2)

dφ2 = ω(t)dt +
√

Ddw2 (2.3)



where dwi each represent “uncorrelated unit white noise,” D scales the

strength of the noise, and rω(t) is what the forward speed of the robot
would be if D were zero. Then a “stochastic trajectory” for g(t) in (2.1)

is defined by stochastic differential equations of the form




dx
dy
dθ



 =





rω cos θ
rω sin θ

0



 dt +
√

D





r
2 cos θ r

2 cos θ
r
2 sin θ r

2 sin θ
r
L

− r
L





(

dw1

dw2

)

(2.4)

The probability density f(x, y, θ; t) corresponding to this equation is of
the form:

∂f

∂t
= − rω cos θ

∂f

∂x
− rω sin θ

∂f

∂y
(2.5)

+
D

2

(

r2

2
cos2 θ

∂2f

∂x2
+

r2

2
sin 2θ

∂2f

∂x∂y
+

r2

2
sin2 θ

∂2f

∂y2
+

2r2

L2

∂2f

∂θ2

)

.

Problem 3: A long and slender semi-flexible biological macromolecule,

such as double-helical DNA composed of 300 stacked base pairs, is sub-
jected to random Brownian motion bombardment by the surrounding sol-



vent molecules. If reference frames are attached to both ends of the DNA,

what will the distributions of rigid-body motions between these refer-
ence frames look like as a function of temperature and the stiffness of

the molecule?

Problem 4: One rigid body is set at a fixed pose (or position and orien-
tation) in a box, and a second rigid body is allowed to move uniformly at

random in the box under the constraint that it cannot intersect the first
body. How much free space is there for the second body to move?

Problem 5: A robot arm has errors in its joints. What is the correspond-
ing error distribution at the end effector ?

Problem 6: A steerable needle is inserted into firm tissue many times,
and the trajectories are not exactly repeatable. How can we describe the

ensemble of trajectories ?
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Gaussian Distributions and the Heat Equation



The main things to take away from this section are:

• To become familiar with the Gaussian distribution and its proper-
ties, and to be comfortable in performing integrals involving multi-
dimensional Gaussians;

• To become acquainted with the concepts of mean, covariance, and
information-theoretic entropy;

• To understand how to marginalize and convolve probability densities,
to compute conditional densities, and to fold Gaussians;

• To observe that there is a relationship between Gaussian distributions
and the heat equation;

3.1 The Gaussian Distribution on the Real Line

The Gaussian distribution with mean at µ and standard deviation σ is
denoted

ρ(x; µ, σ2) = ρ(µ,σ2)(x) =
1√
2πσ

e−(x−µ)2/2σ2

. (3.1)



Another common name for the Gaussian distribution is the normal distri-

bution. Figure 3.1 shows a plot of the Gaussian distribution with µ = 0
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Fig. 3.1. The Gaussian Distribution ρ(x; 0, 1) Plotted over [−3, 3]



and σ = 1 plotted over the range [−3, 3].
The cumulative distribution function is

F (x; µ, σ2) =

∫ x

−∞
ρ(ξ; µ, σ2)dξ.

As σ → 0 this is idealized with the Heaviside step function

H(x)
.
=

{

1 for x > 0
0 for x ≤ 0.

(3.2)

3.2 The Maximum Entropy Property

The entropy of a pdf f(x) is defined by the integral:

S(f) = −
∫ ∞

−∞
f(x) log f(x)dx (3.3)

where here log = loge = ln.

S is computed in closed-form for the Gaussian distribution as



S(ρ(µ,σ2)) = log(
√

2πe σ). (3.4)

For any given value of variance, the Gaussian distribution is the pdf

with maximal entropy:

max
f

S(f) subject to f(x) ≥ 0

and
∫ ∞

−∞
f(x)dx = 1 ,

∫ ∞

−∞
xf(x)dx = µ ,

∫ ∞

−∞
(x − µ)2f(x)dx = σ2. (3.5)

Using Lagrange multipliers:

∂C

∂f
= 0 where C = −f log f + λ1f + λ2xf + λ3(x − µ)2f.

Solving gives f(x) = ρ(µ,σ2)(x). To show that it actually maximizes the

entropy (at least in a local sense), it is possible to define a perturbed
version of this pdf as

f(x) = ρ(µ,σ2)(x) · [1 + ǫ(x)] (3.6)



where ǫ(x) is arbitrary except for the fact that1 |ǫ(x)| << 1 and it is

defined such that f(x) satisfies (3.5). In other words,
∫ ∞

−∞
ρ(µ,σ2)(x)ǫ(x)dx =

∫ ∞

−∞
xρ(µ,σ2)(x)ǫ(x)dx

=

∫ ∞

−∞
(x − µ)2ρ(µ,σ2)(x)ǫ(x)dx = 0.

Substituting (3.6) into (3.3) and using the Taylor series approximation
log(1 + ǫ) ≈ ǫ − ǫ2/2,

S(f) = −
∫ ∞

−∞
ρ(µ,σ2)(x) · [1 + ǫ(x)] log(ρ(µ,σ2)(x) · [1 + ǫ(x)])dx

= −
∫ ∞

−∞
ρ(µ,σ2)(x) · [1 + ǫ(x)] · [log(ρ(µ,σ2)(x)) + log(1 + ǫ(x))]dx

= S(ρ(µ,σ2)) − F (ǫ2) + O(ǫ3)

where the functional F is always positive.
1To be concrete, ǫ = 0.01 << 1. Then ǫ3 = 10−6 is certainly negligible in comparison to quantities that are

on the order of 1.



3.3 The Convolution of Gaussians

The convolution of two pdfs on the real line is defined as

(f1 ∗ f2)(x)
.
=

∫ ∞

−∞
f1(ξ)f2(x − ξ)dξ. (3.7)

It can be shown that the convolution integral will always exist for“nice”

functions, and furthermore

fi ∈ N (R) =⇒ f1 ∗ f2 ∈ N (R).

The Gaussian distribution has the property that the convolution of two
Gaussians is a Gaussian:

ρ(x; µ1, σ
2
1) ∗ ρ(x; µ2, σ

2
2) = ρ(x; µ1 + µ2, σ

2
1 + σ2

2) (3.8)

The Dirac δ-function can be viewed as the limit

δ(x) = lim
σ→0

ρ(x; 0, σ2). (3.9)

It then follows from (3.8) that

ρ(x; µ1, σ
2
1) ∗ δ(x) = ρ(x; µ1, σ

2
1).



3.4 The Fourier Transform of the Gaussian Distribution

The Fourier transform of a “nice” function f ∈ N (R) is defined as

[F(f)](ω)
.
=

∫ ∞

−∞
f(x)e−iωxdx. (3.10)

The shorthand f̂(ω)
.
= [F(f)](ω) will be used frequently.

From the definition of the Fourier transform, it can be shown that

̂(f1 ∗ f2)(ω) = f̂1(ω)f̂2(ω) (3.11)

(i.e., the Fourier transform of the convolution is the product of Fourier

transforms) and

f(x) = [F−1(f̂)](x)
.
=

1

2π

∫ ∞

−∞
f̂(ω)eiωxdω. (3.12)

This is called the inverse Fourier transform or Fourier reconstruction for-
mula



3.5 Diffusion Equations

A one-dimensional linear diffusion equation with constant coefficients has

the form
∂u

∂t
= a

∂u

∂x
+ b

∂2u

∂x2
(3.13)

where a ∈ R is called the drift coefficient and b ∈ R>0 is called the diffusion
coefficient.

Taking the Fourier transform of u(x, t) for each value of t gives

dû

dt
= (iaω − bω2)û with û(ω, 0) = f̂(ω).

The solution to this initial value problem is of the form

û(ω, t) = f̂(ω)e(iaω−bω2)t.

Application of the inverse Fourier transform yields a solution. The above

expression for û(ω, t) is a Gaussian with phase factor, and on inversion
this becomes a shifted Gaussian:



[F−1(eiatωe−bω2t)](x) =
1√
4πbt

exp

(

−(x + at)2

4bt

)

.

Using the convolution theorem in reverse then gives

u(x, t) =
1√
4πbt

∫ ∞

−∞
f(ξ) exp

(

−(x + at − ξ)2

4bt

)

dξ. (3.14)

3.6 The Multivariate Gaussian Distribution

The multivariate Gaussian distribution on Rn is defined as

ρ(x; µ, Σ)
.
=

1

(2π)n/2| det Σ|1

2

exp

{

−1

2
(x− µ)TΣ−1(x− µ)

}

. (3.15)

This is the maximum entropy distribution subject to the constraints
∫

Rn

ρ(x; µ, Σ) dx = 1;



∫

Rn

x ρ(x; µ, Σ) dx = µ;

∫

Rn

(x− µ)(x− µ)Tρ(x; µ, Σ) dx = Σ.

3.6.1 Conditional and Marginal Densities

A vector x ∈ Rn can be partitioned as

x =

(

x1

x2

)

= [xT
1 ,xT

2 ]T ∈ R
n1+n2

where x1 ∈ Rn1 and x2 ∈ Rn2.
If f(x) = f([xT

1 ,xT
2 ]T ) is any pdf on Rn1+n2, then

f1(x1) =

∫

Rn2

f(x1,x2) dx2.

f2(x2) is obtained from f(x1,x2) in a similar way by integrating over all

values of x1.



The mean and variance of f1(x1) are obtained from the mean and vari-
ance of f(x) by observing that

µ1 =

∫

Rn1

x1f1(x1) dx1

=

∫

Rn1

x1

(
∫

Rn2

f(x1,x2) dx2

)

dx1

=

∫

Rn1

∫

Rn2

x1f(x1,x2) dx2 dx1

and

Σ11 =

∫

Rn1

(x1 − µ1)(x1 − µ1)
Tf1(x1) dx1

=

∫

Rn1

(x1 − µ1)(x1 − µ1)
T

(
∫

Rn2

f(x1,x2) dx2

)

dx1

=

∫

Rn1

∫

Rn2

(x1 − µ1)(x1 − µ1)
Tf(x1,x2) dx2 dx1



In other words, the mean vector and covariance matrix for the marginal

density are obtained directly from those of the full density. For example,
µ = [µT

1 , µT
2 ]T .

Given a (multivariate) Gaussian distribution ρ(x; µ, Σ), the associated
covariance matrix can be written in terms of blocks as

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

where Σ11 = ΣT
11, Σ22 = ΣT

22, and Σ21 = ΣT
12.

The marginal density that results from integrating the Gaussian distri-
bution ρ(x, µ, Σ) over all values of x2 is:

∫

Rn2

ρ([xT
1 ,xT

2 ]T ; µ, Σ)dx2 = ρ(x1; µ1, Σ11). (3.16)

Given f(x1,x2), the conditional density of x1 given x2 is

f(x1|x2)
.
= f(x1,x2)/f2(x2). (3.17)

Evaluating this expression using a Gaussian gives



ρ([xT
1 ,xT

2 ]T ; µ, Σ)/ρ(x2; µ2, Σ2) =

ρ(x1; µ1 + Σ12Σ
−1
22 (x2 − µ2), Σ11 − Σ12Σ

−1
22 Σ21). (3.18)

3.6.2 Multidimensional Integrals Involving Gaussians

First, it is well known that
∫ ∞

−∞
e−

1

2
x2

dx =
√

2π =⇒
∫

Rn

exp

(

−1

2
xTx

)

dx = (2π)
n

2 . (3.19)

Here x ∈ Rn and dx = dx1dx2 · · · dxn. Note also that
∫ ∞

−∞
x2e−

1

2
x2

dx =
√

2π. (3.20)

These identities are used below to prove:
∫

Rn

exp(−1

2
xTMx −mTx)dx = (2π)n/2|detM |− 1

2 exp

(

1

2
mTM−1m

)

(3.21)



and
∫

Rn

xTGx exp

(

−1

2
xTAx

)

dx = (2π)n/2 tr(GA−1)

| detA|1

2

. (3.22)

3.7 Folded, or Wrapped, Gaussians

In some applications, data on the circle is given, and a corresponding

concept of Gaussian distribution is needed. The tails of a Gaussian can be
“wrapped around” the circle as

ρW (θ; µ, σ)
.
=

∞
∑

k=−∞
ρ(θ − 2πk; µ, σ),. (3.23)

Recall that any 2π-periodic function, i.e., a “function on the unit circle”
can be expanded in a Fourier series:

f(θ) =
1

2π

∞
∑

n=−∞
f̂(n)einθ where f̂(n) =

∫ 2π

0

f(θ)e−inθdθ. (3.24)



where einθ = cosnθ+i sinnθ and i =
√
−1. This leads to the Fourier series

representation of the folded Gaussian distribution:

ρW (θ; µ, σ) =
1

2π
+

1

π

∞
∑

n=1

e−
σ
2

2
n2

cos (n(θ − µ)) . (3.25)

As σ becomes large, very close approximations can be achieved with the
first couple of terms in the summation in (3.25). In contrast, as σ becomes

very small, using very few of the terms in the series (3.23) will produce a
very good approximation when µ = 0.

3.8 The Heat Equation

3.8.1 The One-Dimensional Case

Consider the diffusion equation

∂f

∂t
=

1

2
k(t)

∂2f

∂x2
− a(t)

∂f

∂x
. (3.26)



The initial condition is f(x, 0) = δ(x). The solution f(x, t) can be obtained
in closed form, following essentially the same procedure as in Section 3.5,

and then the mean and variance can be computed from this solution as

µ(t) =

∫ ∞

−∞
xf(x, t)dx and σ2(t) =

∫ ∞

−∞
[x − µ(t)]2f(x, t)dx. (3.27)

Alternatively, the mean and variance of f(x, t) can be computed directly

from (3.26) without actually knowing the solution f(x, t).
∫ ∞

−∞

∂f

∂x
dx = f(x, t)|∞x=−∞ and

∫ ∞

−∞

∂2f

∂x2
dx =

∂f

∂x

∣

∣

∣

∣

∞

x=−∞
and under the boundary conditions that f(x, t) and ∂f/∂x decay rapidly

to zero as x → ±∞, these terms become zero. Since the initial conditions
are a delta function in x, it follows that

∫ ∞

−∞
f(x, t)dx = 1.

In other words, (3.26) preserves the initial mass of the distribution over
all values of time after t = 0.



To compute µ(t), multiply both sides of (3.26) by x and integrate. On
the one hand,

∫ ∞

−∞
x
∂f

∂t
dx =

d

dt

∫ ∞

−∞
xf(x, t)dx =

dµ

dt
.

On the other hand,
∫ ∞

−∞
x
∂f

∂t
dx =

1

2
k(t)

∫ ∞

−∞
x
∂2f

∂x2
dx − a(t)

∫ ∞

−∞
x
∂f

∂x
dx.

Evaluating both integrals on the right side by integrating by parts and

using the conditions that both f(x, t) and ∂f/∂x decay rapidly to zero as
x → ±∞, it becomes clear that

dµ

dt
= a(t) or µ(t) =

∫ t

0

a(s)ds. (3.28)

A similar argument shows that

d

dt
(σ2) = k(t) or σ2(t) =

∫ t

0

k(s)ds. (3.29)



3.8.2 The Multi-Dimensional Case

Consider the following time-varying diffusion equation without drift:

∂f

∂t
=

1

2

n
∑

i,j=1

Dij(t)
∂2f

∂xi∂xj
, (3.30)

Multiplying both sides by xkxl and integrating over x ∈ Rn gives

d

dt
(σkl) =

1

2

n
∑

i,j=1

Dij(t)

∫

Rn

xkxl
∂2f

∂xi∂xj
dx. (3.31)

From integration by parts
∫

Rn

xkxl
∂2f

∂xi∂xj
dx =

∫

x−xi

[

xkxl
∂f

∂xj

∣

∣

∣

∣

∞

xi=−∞
−
∫ ∞

−∞

∂

∂xi
(xkxl)

∂f

∂xj
dxi

]

dx/dxi

The assumption that f(x, t) decays rapidly as ‖x‖ → ∞ for all values
of t makes the first term in the brackets disappear. Using the fact that

∂xi/∂xj = δij, and integrating by parts again (over xj) reduces the above
integral to



∫

Rn

xkxl
∂2f

∂xi∂xj
dx = δkjδil + δikδlj.

Substituting this into (3.31) results in

d

dt
(σkl) = Dkl(t) or σkl(t) =

∫ t

0

Dkl(s)ds. (3.32)

3.8.3 The Heat Equation on the Unit Circle

Given
∂f

∂t
=

1

2
k
∂2f

∂θ2
subject to f(θ, 0) = δ(θ),

the Fourier solution is

f(θ, t) =

∞
∑

k=−∞
ρ(θ − 2πk; 0, (kt)

1

2 ) =
1

2π
+

1

π

∞
∑

n=1

e−ktn2/2 cosnθ (3.33)

This is the folded Gaussian in (3.25) with σ2 = kt and µ = 0.



3.9 Gaussians and Multidimensional Diffusions

3.9.1 The Constant Diffusion Case

Consider the diffusion equation

∂f

∂t
=

1

2

n
∑

i,j=1

Dij
∂f 2

∂xi∂xj
(3.34)

subject to the initial conditions f(x, t) = δ(x), where D = [Dij] = DT is

a constant matrix of diffusion constants.
Since diffusion equations preserve mass (see Section 3.8.2), it follows

that
∫

Rn

f(x, t)dx = 1 (3.35)

for all values of time, t ∈ R>0.
Try a solution of the form

f(x, t) = c(t) exp(−1

2
xTA(t)x) (3.36)



where A(t) = φ(t)A0 and A0 = [αij] = AT
0 . Then, from (3.35) it follows

that

c(t) =

(

φ(t)

2π

)n/2

| det A0|
1

2 .

With this constraint in mind, substituting f(x, t) into (3.34) produces the
following conditions on φ(t) and A0:

nφ′ = −φ2
n
∑

i,j=1

Dijαij

φ′xTA0x = −φ2
n
∑

i,j=1

Dij

(

n
∑

k=1

αikxk

)(

n
∑

l=1

αjlxl

)

where φ′ = dφ/dt.

Both of the conditions (3.37) are satisfied if A0 = α0D
−1 and φ(t) =

(α0t)
−1 for some arbitrary constant α0 ∈ R>0. But since A(t) = φ(t)A0 =

t−1D−1, this constant does not matter.
Putting all of this together,



f(x, t) =
1

(2πt)n/2| det D|1

2

exp(− 1

2t
xTD−1x). (3.37)

Stated in another way, the solution to (3.34) is a time-varying Gaussian
distribution with Σ(t) = tD when D is symmetric.





4

Probability and Information Theory



For those not familiar with probability and information theory the main

things to take away from this section are:

• To know that the definitions of convolution, mean, covariance, and

marginal and conditional densities, are fully general, and apply to a
wide variety of probability density functions (not only Gaussians);

• To understand the definitions and properties of (continuous/differential)
information-theoretic entropy, including how it scales and how it be-

haves under convolution;
• To understand the fundamental inequalities of information theory such

as the entropy power inequality;

4.1 Marginalization, Conditioning and Convolution

Marginalization:

ρ(x1, x2, ..., xm) =

∫ ∞

xm+1=−∞
· · ·
∫ ∞

xn=−∞
ρ(x1, x2, ..., xn)dxm+1 · · · dxn.



Conditioning:

ρ(x1, x2, ..., xm|xm+1, xm+2, ..., xn) = ρ(x1, x2, ..., xn)/ρ(xm+1, xm+2, ..., xn)

Convolution:

ρX+Y (x) = (ρX ∗ ρY )(x) =

∫

Rn

ρX(ξ)ρY (x− ξ)dξ .

4.1.1 Mean and Covariance

µ = 〈x〉 =

∫

Rn

xρ(x)dx, or 〈x − µ〉 =

∫

Rn

(x− µ)ρ(x)dx = 0.

(4.1)

Note that µ minimizes the cost function

c(x) =

∫

Rn

‖x − y‖2 f(y) dy (4.2)

where ‖v‖ =
√

v · v is the 2-norm in Rn.
The covariance about the mean is the n × n matrix defined as



Σ = 〈(x− µ)(x− µ)T 〉 =

∫

Rn

(x − µ)(x− µ)Tρ(x)dx. (4.3)

It follows from this definition that
∫

Rn

xxTρ(x) dx = Σ + µ µT . (4.4)

If z = Ax + a,

µZ = 〈z〉 =

∫

Rn

(Ax + a)ρ(x)dx

= A

(
∫

Rn

xρ(x)dx

)

+ a

(
∫

Rn

ρ(x)dx

)

= AµX + a

and



ΣZ = 〈(z − µZ)(z− µZ)T 〉

=

∫

Rn

(Ax + a − µZ)(Ax + a − µZ)Tρ(x)dx

=

∫

Rn

(A[x− µX ])(A[x− µX ])Tρ(x)dx

=

∫

Rn

A[x− µX ][x− µX ]TATρ(x)dx

= A

(∫

Rn

[x− µX ][x− µX ]Tρ(x)dx

)

AT

= AΣXAT .

Pdfs are often used to describe distributions of errors. If these errors are

concatenated, they ‘add’ by convolution:



(ρ1 ∗ ρ2)(x) =

∫

Rn

ρ1(ξ)ρ2(x− ξ) dξ . (4.5)

The mean and covariance of convolved distributions are found as

µ1∗2 = µ1 + µ2 and Σ1∗2 = Σ1 + Σ2 (4.6)

If the scalar random variables X1, X2, ..., Xn are all independent of each

other, then the corresponding probability density function is separable:

ρ(x1, x2, ..., xn) = ρ1(x1)ρ2(x2) · · · ρn(xn). (4.7)

When this happens, the covariance matrix will be diagonal.

4.1.2 Jensen’s Inequality

If Φ(x) is a convex function on R, i.e.,

Φ(tx + (1 − t)y) ≤ tΦ(x) + (1 − t)Φ(y) ∀ t ∈ [0, 1] (4.8)

then Jensen’s inequality [8] states



Φ

(
∫ ∞

−∞
φ(x)f(x)dx

)

≤
∫ ∞

−∞
Φ(φ(x))f(x)dx

If φ(x) = f2(x)/f1(x), f(x) = f1(x), and Φ(y) = − log y, the following
property of the Kullback-Leibler divergence is observed:

DKL(f1‖f2)
.
=

∫ ∞

−∞
f1(x) log

f1(x)

f2(x)
dx

= −
∫ ∞

−∞
f1(x) log

f2(x)

f1(x)
dx

≥− log

∫ ∞

−∞
f1(x)

f2(x)

f1(x)
dx

= − log 1 = 0,

and likewise for domains other than the real line.



4.2 Some Information Theory

Given a probability density function (pdf) f(x) describing the distribution
of states of a random vector X ∈ Rn, the information-theoretic entropy is

defined as1

S(f)
.
= −

∫

x

f(x) log f(x)dx. (4.9)

This is a measure of dispersion of a pdf.
Note that the standard in the literature is to denote the entropy of the

random variable X as H(X). However, the notation S(f) (which stands

for the entropy of the pdf that fully describes the random variable X)
generalizes more easily to the Lie group setting addressed in Volume 2.

4.2.1 Entropy and Gaussian Distributions

The information-theoretic entropy of a one-dimensional and n-dimensional
Gaussian distributions

1In information theory, this would be called differential entropy. It is referred to here as continuous entropy
to denote the difference between this and the discrete case.



ρ(0,σ2)(x) =
1√
2πσ

e−x2/2σ2

and ρ(0,Σ)(x) =
1

(2π)n/2|Σ|1

2

exp(−1

2
xTΣ−1x)

are respectively [11]:

S(ρ(0,σ2)) = log(
√

2πeσ)

and
S(ρ(0,Σ)) = log{(2πe)n/2|Σ|1

2} (4.10)

where log = loge.

4.2.2 Information-Theoretic Measures of Divergence

Given two probability density functions f1 and f2 on Rn, the Kullback-
Leibler divergence between them is defined as

DKL(f1‖f2)
.
=

∫

Rn

f1(x) log

(

f1(x)

f2(x)

)

dx. (4.11)

Note that [10]:



1

4

(
∫

Rn

|f1(x) − f2(x)|dx
)2

≤ DKL(f1‖f2).

The Fisher information divergence between two pdfs is defined as

DFI(f1‖f2)
.
=

∫

Rn

∥

∥

∥

∥

1

f1
∇f1 −

1

f2
∇f2

∥

∥

∥

∥

2

f1dx. (4.12)

This is also not a “distance” function in the sense that it is not symmetric

in the arguments and does not satisfy the triangle inequality. In the one-
dimensional case, this can be written as

DFI(f1‖f2) =

∫ ∞

−∞

(

1

f1

df1

dx
− 1

f2

df2

dx

)2

f1dx = 4

∫ ∞

−∞

(

d

dx

√

f1

f2

)2

f2dx.

The Multi-Dimensional Case

The multidimensional case proceeds in a similar way as in the one-

dimensional case. Given a pdf f(x), a shifted version is fa(x) = f(x− a).
And



S(fa) = −
∫

Rn

f(x− a) log f(x− a)dx = −
∫

Rn

f(x) log f(x)dx = S(f).

Now consider the scaled version of the pdf f(x) defined as

fA(x) =
1

detA
f(A−1x) where det A > 0.

If detA > 1 this is a more “spread out” version of f , and if detA < 1,
then this is a more “concentrated” version of f . It can be verified easily
that fA(x) is indeed a pdf by making the change of coordinates y = A−1x

and replacing the integral over x with that over y.
The entropy of fA(x) is calculated as

S(fA) = −
∫

Rn

1

detA
f(A−1x) log

[

1

det A
f(A−1x)

]

dx

= −
∫

Rn

f(y) log

[

1

det A
f(y)

]

dy

= S(f) + log detA.



4.2.3 The Entropy Power Inequality

The statement of the entropy power inequality dates back to Shannon’s
original paper, though complete and rigorous proofs came later [12, 2].

Shannon defined the entropy power of a pdf p(x) on Rn as

N(p) = exp(2S(p)/n)/2πe

where S(p) is the entropy of p. The entropy power inequality then states

N(p ∗ q) ≥ N(p) + N(q) (4.13)

with equality if and only if p and q are both Gaussian distributions with

covariance matrices that are a scalar multiple of each other.
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5

Stochastic Differential Equations



The main points to take away from this section are:

• Whereas a deterministic system of ordinary differential equations that
satisfies certain conditions (i.e., the Lipschitz conditions) are guaranteed
to have a unique solution for any given initial conditions, when random

noise is introduced the resulting “stochastic differential equation” will
not produce repeatable solutions;

• It is the ensemble behavior of the sample paths obtained from numer-
ically solving a stochastic differential equation many times that is im-

portant;
• This ensemble behavior can be described either as a stochastic integral

(of which there are two main types, called Itô and Stratonovich), or by

using a partial differential equation called the Fokker-Planck (or forward
Kolmogorov) equation.

• Two different forms of the Fokker-Planck equation exist, corresponding
to the interpretation of the solution of a given SDE as being either

an Itô or Stratonovich integral, and an analytical apparatus exists for
converting between these forms.



• Multi-dimensional SDEs in Rn can be written in Cartesian or curvi-

linear coordinates, but care must be taken when converting between
coordinate systems because the usual rules of multi-variable Calculus

do not apply in some situations.

5.1 Continuous-Time Brownian Motion in Continuous Space

A one-dimensional SDE will more generally be thought of as the limiting
case of an equation of the form

x(t + ∆t) − x(t) = a(x, t)∆t + b(x, t)n(t)∆t where x(0) = x0 (5.1)

as ∆t → 0. How do we define noise, n(t) ? Basically sample from a Gaus-

sian distribution.

5.1.1 Formal Properties of Weiner Processes

The vector w(t) = [w1, ..., wm]T denotes an m-dimensional Wiener process
(also called a Brownian motion process) with the following properties:



〈wj(t)〉= 0 ∀ t ≥ 0;

wj(0) = 0;

〈[wj(t1 + t) − wj(t2 + t)]2〉= 〈[wj(t1) − wj(t2)]
2〉

∀ t1, t2, t1 + t, t2 + t ≥ 0;

〈[w(ti) − w(tj)][w(tk) − w(tl)]〉= 0 ∀ ti > tj ≥ tk > tl ≥ 0.

From these defining properties, it is clear that for the Wiener process,
wj(t),

〈[wj(t1 + t2)]
2〉 = 〈[wj(t1 + t2) − wj(t1) + wj(t1) − wj(0)]2〉

= 〈[wj(t1 + t2) − wj(t1)]
2 + [wj(t1) − wj(0)]2〉 = 〈[wj(t1)]

2〉 + 〈[wj(t2)]
2〉.

For the equality

〈[wj(t1 + t2)]
2〉 = 〈[wj(t1)]

2〉 + 〈[wj(t2)]
2〉 (5.2)

to hold for all values of time t1, t2, it must be the case that [9]

〈[wj(t − s)]2〉 = σ2
j |t − s|. (5.3)



for some positive real number σ2
j . The notation dwj is defined by

dwj(t)
.
= wj(t + dt) − wj(t). (5.4)

From the definitions and discussion above,

〈dwj(t)〉 = 〈wj(t + dt)〉 − 〈wj(t)〉 = 0

and
〈[dwj(t)]

2〉 = 〈(wj(t + dt) − wj(t))(wj(t + dt) − wj(t))〉
= 〈[wj(t + dt)]2〉 − 2〈wj(t)wj(t + dt)〉 + 〈[wj(t)]

2〉
= σ2

j (t + dt − 2t + t) = σ2
jdt.

And

〈wi(s)wj(t)〉 = σ2
jδijmin(s, t) and 〈dwi(ti)dwj(tj)〉 = σ2

j δijdtj. (5.5)

The unit strength Wiener process has σ2
j = 1.



5.2 The Itô Stochastic Calculus

In the usual Calculus, the Riemann integral of a continuous function f :

[a, b] → R is obtained as a limit of the form
∫ b

a

f(x)dx
.
= lim

n→∞

n
∑

i=1

f(yi(xi, xi−1))(xi − xi−1) (5.6)

where

a = x0 < x1 < x2 < · · · < xn = b.

Similarly, given two continuous functions, f and g, with g being monoton-

ically increasing, the Riemann-Stieltjes integral can be defined as
∫ b

a

f(x)dg(x)
.
= lim

n→∞

n
∑

i=1

f(yi(xi, xi−1))(g(xi) − g(xi−1)) (5.7)

If g(x) is continuously differentiable, this can be evaluated as
∫ b

a

f(x)dg(x) =

∫ b

a

f(x)g′(x)dx.



The Itô integral is defined analogously as [4]:
∫ t

t0

f(τ)dw(τ)
.
= lim

n→∞

n
∑

i=1

f(ti−1)[w(ti) − w(ti−1)] . (5.8)

It has some counter-intuitive features. For example, in usual Calculus
∫ b

a

xdx =
1

2
(b2 − a2) and

∫ b

a

f(x)df(x) =
1

2
(f(b)2 − f(a)2),

and more generally
∫ b

a

[f(x)]ndf(x) =
1

n + 1
([f(b)]n+1 − [f(a)]n+1). (5.9)

But
∫ t

t0

w(τ)dw(τ) =
1

2
[w(t)2 − w(t0)

2 − (t − t0)].

And more generally [4]:
∫ t

t0

[w(τ)]ndw(τ) =
1

n + 1
([w(t)]n+1−[w(t0)]

n+1)−n

2

∫ t

t0

[w(t)]n−1dt. (5.10)



5.2.1 Itô Stochastic Differential Equations in Rd

Consider the system of d stochastic differential equations (SDEs):

dxi(t) = hi(x1(t), ..., xd(t), t)dt +
m
∑

j=1

Hij(x1(t), ..., xd(t), t)dwj(t). (5.11)

The “solution” is

xi(t) − xi(0) =

∫ t

0

hi(x1(τ), ..., xd(τ), τ)dτ (5.12)

(5.13)

+

m
∑

j=1

∫ t

0

Hij(x1(τ), ..., xd(τ), τ)dwj(τ), (5.14)

is interpreted as in (5.8).



5.2.2 Numerical Approximations

Sample paths are generated from t = 0 to a particular end time t = T , and
the values tk are taken to be tk = Tk/n:

x̂i(T ) − xi(0) =
1

n

n
∑

k=1

hi(x̂1(tk−1), ..., x̂d(tk−1), tk−1) (5.15)

+
m
∑

j=1

n
∑

k=1

Hij(x̂1(tk−1), ..., x̂d(tk−1), tk−1)[wj(tk) − wj(tk−1)].

In practice, not only the end value x̂i(T ) is of interest, but rather all
values x̂i(tk), and so (5.15) is calculated along a whole sample path using

the Euler-Maruyama approach by observing that the increments follow
the rule

x̂i(tk) − x̂i(tk−1) =
1

n
hi(x̂1(tk−1), ..., x̂d(tk−1), tk−1) (5.16)

+
m
∑

j=1

Hij(x̂1(tk−1), ..., x̂d(tk−1), tk−1)[wj(tk) − wj(tk−1)],



which is basically a localized version of Itô ’s rule, and provides a numerical

way to evaluate (5.11) at discrete values of time.
Figure 5.1 shows six sample paths of a Wiener process over the period

of time 0 ≤ t ≤ 1 generated using the MatlabTM code provided in [5].

5.2.3 Mathematical Properties of the Itô Integral

Returning now to the “exact” mathematical treatment of SDEs interpreted
by Itô ’s rule, recall that all equalities are interpreted as being true in the

mean-squared sense. In other words, the statement
∫ t

0

F (τ)dwj(τ) = lim
n→∞

n
∑

k=1

F (tk−1)[wj(tk) − wj(tk−1)] (5.17)

is not strictly true. But if we understand this to be shorthand for

lim
n→∞

〈[

∫ t

0

F (τ)dwj(τ) −
n
∑

k=1

F (tk−1)[wj(tk) − wj(tk−1)]

]2〉

= 0, (5.18)
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Fig. 5.1. Sample Paths of a Wiener Process



then a number of “equalities” will follow (in the same sense that (5.17)
itself is an “equality”).

5.2.4 Itô’s Rule

Given the sample paths, x(t) and a smooth function f(x), then dy =

f(x + dx) − f(x) can be calculated by expanding f(x + dx) in a Taylor
series around x:

dyi =
∑

j

∂fi

∂xj
dxj +

1

2

∑

k,l

∂f 2
i

∂xk∂xl
dxkdxl + h.o.t’s. (5.19)

The higher order terms (h.o.t.’s) are third order and higher in the incre-
ments dxi. Substituting an SDE of the form (5.11) into (5.19) gives Itô ’s

rule:



dyi =





∑

j

∂fi

∂xj
hj(x, t) +

1

2

∑

k,l

∂f 2
i

∂xk∂xl
[H(x, t)HT (x, t)]kl



 dt

+
∑

k,l

∂fi

∂xk
Hkl(x, t)dwl (5.20)

The reason why the higher order terms disappear is that the sense of
equality used here is that of equality under expectation. In other words,
a = b is shorthand for 〈ac〉 = 〈bc〉 for any deterministic c. And taking

expectations using the results of the previous subsection means that all
terms that involve third-order and higher powers of dwi as well as products

such as dtdwi will vanish.

5.2.5 The Fokker-Planck Equation (Itô Version)

The goal of this section is to review the Fokker-Planck equation, which
governs the evolution of the pdf f(x, t) for a given stationary Markov



process, e.g., for a system of the form in (5.11) which is forced by a Wiener
process.

∂f(x, t)

∂t
+

d
∑

i=1

∂

∂xi
(hi(x, t)f(x, t)) (5.21)

− 1

2

m
∑

k=1

d
∑

i,j=1

∂2

∂xi∂xj

(

Hik(x, t)HT
kj(x, t)f(x, t)

)

= 0

This can also be written as

∂f

∂t
= −∇x · (hf) +

1

2
tr
[

(∇x∇T
x)(HHTf)

]

(5.22)

where (∇x∇T
x)ij = ∂2/∂xi∂xj.



5.3 The Stratonovich Stochastic Calculus

The Stratonovich stochastic integral is defined as [19, 4]

∫ t

t0

f(τ) s dw(τ)
.
= lim

n→∞

n
∑

i=1

f((ti−1 + ti)/2)[w(ti) − w(ti−1)] (5.23)

here the function f(t) can be of the form f(t) = F (x(t), t) where x(t) is
governed by a stochastic differential equation which itself is defined by an
integral like the one in (5.23).

The inclusion of the symbol s inside the integral is to distinguish it
from the Itô integral, because in general

∫ t

t0

f(τ) s dw(τ) 6=
∫ t

t0

f(τ) dw(τ).

Though these two integrals are generally not equal, it is always possible

to convert one into the other.
Consider the system of d stochastic differential equations (SDEs):



dxi(t) = hs
i (x1(t), ..., xd(t), t)dt +

m
∑

j=1

Hs
ij(x1(t), ..., xd(t), t) s dwj(t).

This is called a Stratonovich SDE if its solution is interpreted as the inte-

gral

xi(t) − xi(0) =

∫ t

0

hs
i (x1(τ), ..., xd(τ), τ)dτ (5.24)

+
m
∑

j=1

∫ t

0

Hs
ij(x1(τ), ..., xd(τ), τ) s dwj(τ)

In vector form this is written as

x(t) − x(0) =

∫ t

0

hs(x(τ), τ)dτ +

∫ t

0

Hs(x(τ), τ) s dw(τ).

Expanding everything out in a multi-dimensional Taylor series and us-
ing Itô ’s rule then establishes the following equivalence between Itô and

Stratonovich integrals:



∫ t

0

Hs(x(τ), τ) s dw(τ) =

∫ t

0

Hs(x(τ), τ) dw(τ) (5.25)

+
1

2

d
∑

i=1

ei

m
∑

j=1

d
∑

k=1

∫ t

0

∂Hs
ij

∂xk
Hkjdτ.

If we choose to set Hkj = Hs
ij, then x(t) as defined in the Itô and

Stratonovich forms will be equal if the drift terms are chosen appropri-

ately.
In general if {x1, ..., xd} is a set of Cartesian coordinates, given the

Stratonovich equation (5.24), the corresponding Itô equation will be (5.11)

where

hi(x, t) = hs
i (x, t) +

1

2

m
∑

j=1

d
∑

k=1

∂Hs
ij

∂xk
Hs

kj and Hij = Hs
ij. (5.26)

This important relationship allows for the conversion between Itô and

Stratonovich forms of an SDE. Using it in the reverse direction is trivial
once (5.26) is known:



hs
i (x, t) = hi(x, t) − 1

2

m
∑

j=1

d
∑

k=1

∂Hij

∂xk
Hkj and Hs

ij = Hij. (5.27)

Starting with the Stratonovich SDE (5.24), and using (5.26) to obtain

the equivalent Itô SDE, the the Fokker-Planck equation resulting from the
derivation of the Itô version can be used as an indirect way of obtaining

the Stratonovich version of the Fokker-Planck equation:

∂f

∂t
= −

d
∑

i=1

∂

∂xi
(hs

if) +
1

2

d
∑

i,j=1

∂

∂xi

[

m
∑

k=1

Hs
ik

∂

∂xj
(Hs

jkf)

]

(5.28)

In the next section, a special kind of SDE is reviewed, which happens
to be the same in both the Itô and Stratonovich forms.



5.3.1 Brownian Motion in the Plane

From the presentation earlier in this section, it should be clear that the
following two-dimensional SDE and Fokker-Planck equation describe the

same process:

dx = dw ⇐⇒ ∂f

∂t
=

1

2

(

∂2f

∂x2
1

+
∂2f

∂x2
2

)

.

Coordinate Changes and the Fokker-Planck Equation

Let f̃(r, φ; t) = f(r cos φ, r sinφ; t). Then it is clear from the classical chain

rule that
∂f̃

∂r
=

∂f

∂x1

∂x1

∂r
+

∂f

∂x2

∂x2

∂r

and
∂f̃

∂φ
=

∂f

∂x1

∂x1

∂φ
+

∂f

∂x2

∂x2

∂φ
.

If the Jacobian of the coordinate change is defined as



J(r, φ) =







∂x1

∂r
∂x1

∂φ

∂x2

∂r
∂x2

∂φ






=

(

cosφ −r sinφ

sinφ r cosφ

)

,

then the Jacobian determinant is |J | = r.
It is clear from the above equations that






∂f̃
∂r

∂f̃
∂φ






= JT (r, φ)







∂f
∂x1

∂f
∂x2






or







∂f
∂x1

∂f
∂x2






= J−T (r, φ)







∂f̃
∂r

∂f̃
∂φ






.

In component form this means that

∂f

∂x1
= cosφ

∂f̃

∂r
− sinφ

r

∂f̃

∂φ

and
∂f

∂x2
= sinφ

∂f̃

∂r
+

cos φ

r

∂f̃

∂φ
.

Applying this rule twice,



∂2f

∂x2
1

= cosφ
∂

∂r

(

cosφ
∂f̃

∂r
− sin φ

r

∂f̃

∂φ

)

− sinφ

r

∂

∂φ

(

cosφ
∂f̃

∂r
− sin φ

r

∂f̃

∂φ

)

= cos2 φ
∂2f̃

∂r2
− sin φ cosφ

∂

∂r

(

1

r

∂f̃

∂φ

)

+
sin2 φ

r

∂f̃

∂r
−

sinφ cos φ

r

∂2f̃

∂φ∂r
+

sin φ cos φ

r2

∂f̃

∂φ
+

sin2 φ

r2

∂2f̃

∂φ2

and

∂2f

∂x2
2

= sinφ
∂

∂r

(

sin φ
∂f̃

∂r
+

cos φ

r

∂f̃

∂φ

)

+
cosφ

r

∂

∂φ

(

sinφ
∂f̃

∂r
+

cos φ

r

∂f̃

∂φ

)

= sin2 φ
∂2f̃

∂r2
+ sin φ cosφ

∂

∂r

(

1

r

∂f̃

∂φ

)

+
cos2 φ

r

∂f̃

∂r
+

sinφ cos φ

r

∂2f̃

∂φ∂r
− sin φ cos φ

r2

∂f̃

∂φ
+

cos2 φ

r2

∂2f̃

∂φ2
.



Therefore,
∂2f

∂x2
1

+
∂2f

∂x2
2

=
∂2f̃

∂r2
+

1

r

∂f̃

∂r
+

1

r2

∂2f̃

∂φ2
,

and so

∂f

∂t
=

1

2

(

∂2f

∂x2
1

+
∂2f

∂x2
2

)

⇐⇒ ∂f̃

∂t
=

1

2

(

∂2f̃

∂r2
+

1

r

∂f̃

∂r
+

1

r2

∂2f̃

∂φ2

)

.

(5.29)

The next question is, if dx = dw is interpreted as a Stratonovich or Itô
SDE, what will the corresponding SDEs in polar coordinates look like?

Coordinate Conversion and the Stratonovich SDE

The Stratonovich case is straightforward, since it obeys the usual Newton-
Leibnitz Calculus, and so dx = J(r, φ)[dr, dφ]T . This then means that

[dr, dφ]T = J−1(r, φ)dw, which is written in component form as



dr = cos φs dw1 + sin φs dw2

(5.30)

dφ = −sin φ

r
s dw1 +

1

r
cosφs dw2

Coordinate Conversion and the Itô SDE

This same problem can be approached in a different way. Inverting the

transformation of coordinates so that polar coordinates are written in
terms of Cartesian coordinates,

r = [x2
1 + x2

2]
1

2 and φ = tan−1

(

x2

x1

)

.

It follows that

dr = [(x1 + dx1)
2 + (x2 + dx2)

2]
1

2 − [x2
1 + x2

2]
1

2

and

dφ = tan−1

(

x2 + dx2

x1 + dx1

)

− tan−1

(

x2

x1

)

.



Expanding the above in a Taylor series to second order in dxi (knowing
that higher order terms will vanish) gives

dr =
1

2

[2x1dx1 + (dx1)
2 + 2x2dx2 + (dx2)

2]

[x2
1 + x2

2]
1

2

− 1

8

[4x2
1(dx1)

2 + 4x2
2(dx2)

2]

[x2
1 + x2

2]
3

2

and

dφ =
x1dx2 − x2dx1 + x2

x1
(dx1)

2

x2
1 + x2

2

− x2x
3
1(x

−1
1 (dx2)

2 + x2
2x

−4
1 (dx1)

2

(x2
1 + x2

2)
2

.

Now making the substitutions x1 = r cosφ, x2 = r sinφ, dx1 = dw1,
dx2 = dw2, and using the usual properties of the Wiener process, this

reduces (after some trigonometric simplifications) to

dr =
1

2
r−1dt + cosφdw1 + sin φdw2

(5.31)

dφ = −r−1 sin φdw1 + r−1 cos φdw2



5.3.2 General Conversion Rules

Formulas were given in Section 5.3 for converting between Itô and Stratonovich

versions of the same underlying process described in Cartesian coordinates.
The same rules hold for this conversion in curvilinear coordinates.

In general if {q1, ..., qd} is a set of generalized coordinates, given the
Stratonovich equation

dqi = hs
i (q, t)dt +

m
∑

j=1

Hs
ij(q, t) s dwj

for i = 1, ..., d the corresponding Itô equation will be

dqi = hi(q, t)dt +

m
∑

j=1

Hij(q, t)dwj

where

hi(q, t) = hs
i (q, t) +

1

2

m
∑

j=1

d
∑

k=1

∂Hs
ij

∂qk
Hs

kj. (5.32)



In the above example of Brownian motion in the plane, the Stratonovich

equation (5.30) has no drift, and the corresponding Itô equation (5.31) does
have a drift, which is consistent with hi(q, t) 6= hs

i (q, t).

Now consider the Stratonovich equivalent of the Itô equation (5.31).
Using (5.32), it becomes clear that

(

dr

dφ

)

=
1

2

(

1/r

0

)

dt +

(

1 0

0 1/r

)

s

(

dw1

dw2

)

(5.33)



Strat. FP
Eq., Cart.

Strat. SDE
Cart.

Itô FP
Eq., Cart.

Itô SDE
Cart.

Strat. FP
Eq., Polar

Strat. SDE
Polar

Itô FP
Eq., Polar

Itô SDE
Polar

(5.34)



5.3.3 Coordinate Changes and Fokker-Planck Equations

Itô Version

The Itô version of the Fokker-Planck equation in generalized coordinates

is

∂f

∂t
= −|G|− 1

2

∑

i

∂

∂qi

(

ai|G|1

2f
)

+
1

2
|G|− 1

2

∑

i,j

∂2

∂qi∂qj

[

(BBT )ij|G|1

2f
]

.

(5.35)
Given f(q, 0) this generates f(q, t) for the Itô SDE

dq = a(q, t) + B(q, t)dw.

When B(q, t) = [J(q)]−1, (5.35) will be the heat equation under special
conditions on a(q, t).



Stratonovich Version

∂f

∂t
= −|G|− 1

2

∑

i

∂

∂qi

(

as
i |G|1

2f
)

+
1

2
|G|− 1

2

∑

i,j,k

∂

∂qi

[

Bs
ik

∂

∂qj
(Bs

jk|G|1

2f)

]

(5.36)

Given f(q, 0) this generates f(q, t) for the Stratonovich SDE

dq = as(q, t) + Bs(q, t) s dw.
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6

Geometry of Curves and Surfaces



The main points to take away from this section are:

• Curves and surfaces in two- and three-dimensional space can be de-
scribed parametrically or implicitly, and the local geometry is described
by intrinsic quantities that are independent of the particular descrip-

tion.
• The global topological features of these geometric objects can be related

to integrals of curvature; In particular the Euler characteristic describes
how many “holes” there are in an object, and the integrals of certain

kinds of curvature over a tubular surface can help to determine whether
it is knotted or not.

6.1 Differential Geometry of Curves

Differential geometry is concerned with characterizing the local shape of
curves and surfaces using the tools of differential Calculus, and relating

these local shape properties at each point on the object of interest to its
global characteristics.



6.1.1 Local Theory of Curves

The arc length of a differentiable space curve, x(t) is

s(t2) − s(t1) =

∫ t2

t1

(x′(t),x′(t))
1

2dt (6.1)

where x′ = dx/dt.

A unit tangent is

u(t)
.
=

1
∥

∥

dx
dt

∥

∥

dx

dt
.

When t = s, this reduces to

u(s) =
dx

ds
.

Since u(s) is a unit vector u(s) · u(s) = 1, and so

d

ds
(u · u) = 0 =⇒ u · du

ds
= 0. (6.2)

The (unsigned) curvature of an arc-length-parameterized curve (planar
or spatial) is defined as



κ(s)
.
=

(

du

ds
· du

ds

)
1

2

=

(

d2x

ds2
· d2x

ds2

)
1

2

, (6.3)

which is a measure of the amount of change in tangent direction at each
value of arc length.

The signed curvature of a planar curve is denoted as k(s).
By defining the (principal) normal vector as

n1(s)
.
=

1

κ(s)

du

ds
(6.4)

when κ(s) = ‖du/ds‖ 6= 0, it follows from (6.2) that

u(s) · n1(s) = 0.

A second normal vector (called the binormal) is defined as:

n2(s)
.
= u(s) × n1(s). (6.5)

The torsion of the curve is defined as



τ(s)
.
= −dn2(s)

ds
· n1(s)

and is a measure of how much the curve bends out of the (u,n1)- plane
at each s.

The Frenet-Serret apparatus published independently by Frenet (1852)
and Serret (1851) states:

d

ds





u(s)

n1(s)
n2(s)



 =





0 κ(s) 0

−κ(s) 0 τ(s)
0 −τ(s) 0









u(s)

n1(s)
n2(s)



 . (6.6)

Given a space curve x(t) ∈ R3 where t is not necessarily arc length, the

(unsigned) curvature is computed as

κ(t) =
‖x′(t) × x

′′

(t)‖
‖x′(t)‖3

(6.7)

and the torsion is



τ(t) =
det[x′(t),x

′′

(t),x
′′′

(t)]

‖x′(t) × x′′(t)‖2
(6.8)

6.1.2 Global Theory of Curves

Theorem 6.1. (Fenchel [9]): For smooth closed curves,
∮

κ(s)ds ≥ 2π (6.9)

with equality holding only for some kinds of planar (τ(s) = 0) curves.

Theorem 6.2. (Fary-Milnor [8, 20]): For closed space curves forming a
knot

∮

κ(s)ds ≥ 4π. (6.10)



6.1.3 Signed Curvature and the Topology of Planar Regions
∮

k(s)ds = 2π , (6.11)

where k(s) is the signed curvature of the curve. The sign is given such that
|k(s)| = κ(s) with k(s) > 0 for counterclockwise bending and k(s) < 0 for

clockwise bending.
The Euler characteristic of B, denoted as χ(B), is obtained by subdi-

viding, or tessellating, the body into disjoint polygonal regions, the union

of which is the body, counting the number of polygonal faces, f , edges, e,
and vertices, v, and using the formula

χ(B) = v(B) − e(B) + f(B). (6.12)

Interestingly, for a planar body

χ(B) = 1 − γ(B). (6.13)

Whereas γ(B) is the number of holes in the body.
It can be shown that



∫

∂B

k(s)ds = 2πχ(B) (6.14)

where ∂B denotes the union of all boundary curves of B. This is shown in

Figure 6.1.
For a planar object, it is also possible to define the Euler characteristic

of the boundary as
χ(∂B) = v(∂B) − e(∂B). (6.15)

6.2 Differential Geometry of Surfaces in R3

For a spatial body B (i.e., a region in R3 with finite nonzero volume), the
surface area over the boundary of B is

F =

∫

∂B

dS,

and volume is

V =

∫

B

dV.



Fig. 6.1. Global Topological Features of a Planar Body are Dictated By Signed Curvature

6.2.1 The First and Second Fundamental Forms

Consider a two-dimensional surface parameterized as x(q) where x ∈ R3

and q ∈ R2. Define



Fig. 6.2. Topological Operations on Body Divided into Squares: (a) An Initial Rectangular Grid; (b) Removal
of One Square from the Perimeter; (c) Creation of an L-Shaped Void; (d) Cutting the Body into Two Disjoint
Pieces.



gij =
∂x

∂qi
· ∂x

∂qj
(6.16)

for i, j ∈ {1, 2}.
The first fundamental form of the surface is defined as

F (1)(dq, dq)
.
= dqTG(q) dq. (6.17)

For two-dimensional surfaces in three-dimensional space,

|G(q1, q2)| =

∥

∥

∥

∥

∂x

∂q1
× ∂x

∂q2

∥

∥

∥

∥

2

(6.18)

where × denotes the vector cross product.
The second fundamental form of a surface is defined as

F (2)(dq, dq) = −dx · dn,

where the vectors x and n are the position and normal at any point on

the surface.
Let the matrix L be defined by its entries:



Lij =
∂2x

∂qi∂qj
· n. (6.19)

The matrix L = [Lij] contains information about how curved the surface

is. For example, for a plane Lij = 0.
It can be shown that

F (2)(dq, dq) = dqTL(q) dq. (6.20)

6.2.2 Curvature

Christoffel symbols:

Γ k
ij =

1

2

∑

l

[

∂gil

∂qj
− ∂gij

∂ql
+

∂glj

∂qi

]

glk. (6.21)

The Riemannian curvature is the four-index tensor given in component
form as [19]



Rl
ijk

.
=

∂Γ l
ik

∂qj
−

∂Γ l
ij

∂qk
+
∑

m

(Γm
ik Γ l

mj − Γm
ij Γ l

mk). (6.22)

This can be expressed in terms of the coefficients of the second fundamental
form and inverse of the metric tensor as [19]:

Rl
ijk = Lik

∑

m

glmLmj − Lij

∑

m

glmLmk. (6.23)

From this, the Gaussian curvature, k(q1, q2), is computed as

k = det(G−1L) = |G|− 1

2R1212. (6.24)

The mean sectional curvature (or simply mean curvature) is defined as

m
.
=

1

2
trace(G−1L). (6.25)

The integrals of the Gaussian and mean curvature over the entirety of

a a closed surface figure are



K
.
=

∫

S

k dS (6.26)

M
.
=

∫

S

mdS (6.27)

These are respectively called the total Gaussian curvature and total mean
curvature

6.2.3 Example 1: The Sphere

A sphere of radius R can be parameterized as

x(φ, θ) =





R cos φ sin θ

R sin φ sin θ
R cos θ



 (6.28)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.
The corresponding metric tensor is

G(φ, θ) =

(

gφ,φ gφ,θ

gθ,φ gθ,θ

)

=

(

R2 sin2 θ 0

0 R2

)

.



Clearly,
√

detG(φ, θ) = R2 sin θ (there is no need for absolute value signs
since sin θ ≥ 0 for θ ∈ [0, π]). The element of surface area is therefore

dS = R2 sin θ dφ dθ.

Surface area of the sphere is computed as

F =

∫ π

0

∫ 2π

0

sin θ dφ dθ = 4πR2.

The volume of the ball of radius R can be computed in spherical coordi-

nates in R3 (i.e., treating R3 as the surface of interest) and restricting the
range of parameters defined by the interior of the ball. The volume of the

ball enclosed by the sphere of radius R, and surface area of the sphere are
summarized, respectively, as

V =
4

3
πR3; F = 4πR2. (6.29)

The inward-pointing normal for the sphere is simply n = −x/R, and

L(φ, θ) =

(

R sin2 θ 0

0 R

)

.



Therefore,

G−1L =

(

1/R 0

0 1/R

)

.

It follows that

m =
1

2
tr(G−1L) = 1/R

and

k = det(G−1L) = 1/R2.

Since these are both constant, it follows that integrating each of them
over the sphere of radius R is the same as their product with the surface

area:
M = 4πR; K = 4π.

6.2.4 Example 2: The Ellipsoid of Revolution

Consider an ellipsoid of revolution parameterized as



x(φ, θ) =





a cos φ sin θ
a sin φ sin θ

b cos θ



 (6.30)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, and a, b are positive constants.
The corresponding metric tensor is

G(φ, θ) =

(

a2 sin2 θ 0
0 a2 cos2 θ + b2 sin2 θ

)

.

L(φ, θ) = |G(φ, θ)|− 1

2

(

a2b sin2 θ 0
0 a2b sin θ

)

.

Therefore,

K = 4π and V =
4

3
πa2b.

The values of F and M for prolate and oblate ellipsoids have been
reported in [15], along with a variety of other solids of revolution. In par-

ticular, if a = R and b = λR with 0 < λ < 1, then



F = 2πR2

[

1 +
λ2

√
1 − λ2

log

(

1 +
√

1 − λ2

λ

)]

; M = 2πR

[

λ +
arccosλ√

1 − λ2

]

.

In contrast, when λ > 1,

F = 2πR2

[

1 +
λ2arccos(1/λ)√

λ2 − 1

]

; M = 2πR

[

λ +
log(λ +

√
λ2 − 1)√

λ2 − 1

]

.

6.2.5 Example 3: The Torus

The 2-torus can be parameterized as

x(θ, φ) =





(R + r cos θ) cosφ

(R + r cos θ) sinφ
r sin θ



 (6.31)

where R > 2r and 0 ≤ θ, φ ≤ 2π.

The metric tensor for the torus is written in this parametrization as

G(φ, θ) =

(

(R + r cos θ)2 0

0 r2

)

.



The surface area is computed directly as

F =

∫ 2π

0

∫ 2π

0

r(R + r cos θ)dφdθ = 2π

∫ 2π

0

r(R + r cos θ)dθ = 4π2rR.

The matrix L is:

L(φ, θ) =

(

(R + r cos θ) cos θ 0
0 r

)

,

and

G−1L =

(

(R + r cos θ)−1 cos θ 0
0 1/r

)

.

The total Gaussian curvature is then computed as

K =

∫ 2π

0

∫ 2π

0

[(R + r cos θ)−1 cos θ/r][r(R + r cos θ)]dφdθ = 0.

The mean curvature is m = (R + r cos θ)−1 cos θ + 1/r. The total mean
curvature is

M =
F

2r
= 2π2R.



6.2.6 The Gauss-Bonnet Theorem and Related Inequalities

It is no coincidence that the total Gaussian curvature, K, is equal to 4π

for the sphere and ellipsoid, and equal to zero for a torus.

Theorem 6.3. (Gauss-Bonnet) Let k be the Gaussian curvature of a
closed surface S. Then

∫

S

k dS = 2πχ(S), (6.32)

where χ(S) is the Euler characteristic of the closed surface S.

The Euler characteristic of a two-dimensional surface is equal to

χ(S) = 2(1 − γ(S)) (6.33)

where γ(S) is the genus (or “number of donut holes”) of the surface and

χ(S) = v − e + f

where v is the number of vertices, e is the number of edges, and f is the
number of faces of the polygons.



Other global theorems (Voss): [25]:
∫

S

max(k, 0)dS ≥ 4π. (6.34)

∫

S

|k|dS ≥
∫

S

max(k, 0)dS ≥ 4π. (6.35)

Moreover, B.-Y. Chen [2] states the Chern-Lashof inequality
∫

S

|k|dS ≥ 4π(4 − χ(S)) = 8π(1 + γ(S)). (6.36)

Integrals of the square of mean curvature have resulted in several in-

equalities. For example, Wilmore (see e.g., [27, 28] and references therein)
proved that

∫

S

m2dS ≥ 4π (6.37)

with equality holding only for the usual sphere in R3. Shiohama and Takagi
proved that for smoothly distorted 2-tori



∫

T 2

m2dS ≥ 2π2, (6.38)

Ros’s Theorem: Let D be a bounded domain in R3 with finite volume
and compact boundary ∂D. If m > 0 everywhere on this boundary then

∫

∂D

1

m
dS ≥ 3 · V ol(D). (6.39)

6.2.7 Tubes/Offsets of Surfaces in R3

Given a smooth parameterized surface, x(t1, t2), a unit normal can be

defined to the surface at each point as

u(t1, t2) =
∂x

∂t1
× ∂x

∂t2
/

∥

∥

∥

∥

∂x

∂t1
× ∂x

∂t2

∥

∥

∥

∥

.

Define

o(t1, t2; r) = x(t1, t2) + ru(t1, t2). (6.40)

The element of surface area for this offset surface can be shown to be of
the form



dS =

∥

∥

∥

∥

∂o

∂t1
× ∂o

∂t2

∥

∥

∥

∥

dt1dt2

where [13]
∥

∥

∥

∥

∂o

∂t1
× ∂o

∂t2

∥

∥

∥

∥

= [1 − 2rm(t1, t2) + r2k(t1, t2)]

∥

∥

∥

∥

∂x

∂t1
× ∂x

∂t2

∥

∥

∥

∥

. (6.41)

the area of the offset surface will be:

A = F − 2rM + r2K. (6.42)

Steiner’s formula for the volume enclosed by the surface offset is

V (Br) = V (B) + rF (∂B) +
r2

2
M(∂B) +

r3

3
K(∂B). (6.43)

The volume contained within the two offset surfaces defined by r ∈
[−r0, r0] is (“Weyl’s tube theorem”):

Vo =

∫ r0

−r0

∫

S

[

∂o

∂r
,
∂o

∂t1
,
∂o

∂t2

]

dt1dt2dr = 2rF+
2r3

3

∫

S

kdS = 2rF+
4

3
πr3χ(S).

(6.44)
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25. Voss, K., “Eine Bemerkung über die Totalkrümmung geschlossener Raumkurven,” Arch. Math., 6, pp. 259-

263, 1955.
26. Weyl, H., “On the volume of tubes,” Amer. J. Math. 61, 461-472, 1939.



27. Willmore, T.J., “Mean Curvature of Riemannian Immersions,” J. London Math. Soc., 3, pp. 307-310, 1971.
28. Willmore, T.J., “Tight Immersions and Total Absolute Curvature,” Bull. London Math. Soc., 3, pp. 129-151,

1971.





7

Manifolds



The main points to take away from this section are:

• The concepts of simple planar or spatial curves and simply connected
surfaces in R3 extend to higher dimensions and are examples of more
general mathematical structures called manifolds;

• Sometimes it is natural to treat these geometric objects as “living in” a
higher dimensional Euclidean space, and sometimes it is more natural

to use purely intrinsic approaches;

7.1 Examples of Manifolds

Example 1: The Sphere S3 Embedded in R4

A simple example of a manifold resulting from a constraint equation is
the unit sphere in R4, which is denoted as S3, and is described in terms

of Cartesian coordinates as

x2
1 + x2

2 + x2
3 + x2

4 = 1.



Since R4 is a four-dimensional space, and this is a single constraint equa-

tion, we conclude that S3 is a 4− 1 = 3-dimensional manifold. Parametric
equations that satisfy this constraint and “reach” every point on S3 (as
well as Sn) were given in Section 2.3.

Example 2: The Group of Motions of the Euclidean Plane

The group of planar rigid-body motions has been encountered several

times earlier in this volume. Elements of this group are described using
matrices of the form

g =





cos θ − sin θ x
sin θ cos θ y

0 0 1



 with x, y ∈ R and θ ∈ [0, 2π). (7.1)

The set of all such matrices is called the special Euclidean group of the

plane, and is denoted as SE(2), where the “2” corresponds to the dimen-
sion of the plane. The group operation is matrix multiplication. In fact,

any Lie group with elements that are matrices and which has a group
operation of matrix multiplication is called a matrix Lie group. Therefore,



when referring to a matrix Lie group, there is no need to mention the group

operation, since it is understood in advance to be matrix multiplication.

Example 3: The Group of Rotations of Three-Dimensional Eu-

clidean Space

Each element of this group is written in terms of columns as

R = [a,b, c]

with
a · a = b · b = c · c = 1

and
a · b = b · c = a · c = 0.

Furthermore,

c = a × b ⇐⇒ detR = +1

This means that
R = [a,b, a× b] ∈ SO(3).



3× 3 rotation matrix can be parameterized using the Euler parameters

as:

R(u1, u2, u3, u4) =





u2
1 − u2

2 − u2
3 + u2

4 2(u1u2 − u3u4) 2(u3u1 + u2u4)
2(u1u2 + u3u4) u2

2 − u2
3 − u2

1 + u2
4 2(u2u3 − u1u4)

2(u3u1 − u2u4) 2(u2u3 + u1u4) u2
3 − u2

1 − u2
2 + u2

4





(7.2)

where
u2

1 + u2
2 + u2

3 + u2
4 = 1.

Example 4: Polytopes with a Twist and Crystallography

The Klein Bottle and Real Projective Plane depicted as gluings in Fig-
ures 7.2, 7.2 and 7.4 are both nonorientable two-dimensional surfaces that

cannot be embedded in R3. They can be displayed as planar gluings, but
this should not be confused with planar embeddings.



Fig. 7.1. A Pattern on the Torus Transferred to the Euclidean Plane

7.2 What We Care About

If the manifold is defined by an embedding so that x = x(q), then we can
compute

G(q) = [gij(q)] where gij(q) =
∂x

∂qi
· ∂x

∂qj
.



Fig. 7.2. A Pattern on the Klein Bottle Transferred to the Euclidean Plane



Fig. 7.3. A Pattern on the Real Projective Plane Transferred to the Euclidean Plane



Fig. 7.4. Various Squares with Glued Edges: (upper left) The Torus; (upper right) The Sphere; (lower left) The
Klein Bottle; (lower right) The Real Projective Plane



Fig. 7.5. Two-Dimensional Manifolds Represented as Polygons with Glued Edges: (left) The Torus as a Glued
Hexagon; (right) The Two-Holed Torus as a Glued Octagon.
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Stochastic Processes on Manifolds



The main points to take away from this section are:

• SDEs and Fokker-Planck equations can be formulated for stochastic

processes in any coordinate patch of a manifold in a way that is very
similar to the case of Rn;

• Stochastic processes on embedded manifolds can also be formulated ex-

trinsically, i.e., using an implicit description of the manifold as a system
of constraint equations;

• In some cases Fokker-Planck equations can be solved using separation
of variables;

• Practical examples of this theory include Brownian motion on the sphere
and the kinematic cart with noise.

8.1 The Fokker-Planck Equation for an Itô SDE on a Manifold

Consider the Itô SDE

dq = h(q, t) + H(q, t)dw (8.1)



where h,q ∈ Rd and w ∈ Rm.

The following Fokker-Planck equation results:

∂f

∂t
+ |G|− 1

2

d
∑

i=1

∂

∂qi

(

|G|1

2hif
)

=
1

2
|G|− 1

2

d
∑

i,j=1

∂2

∂qi∂qj

(

|G|1

2

m
∑

k=1

HikH
T
kjf

)

(8.2)

In many cases, of interest, the matrices Hik(q, t) will be the inverse of
the Jacobian matrix, and hence in these cases

∑

k Hik(q, t)HT
kj(q, t) =

∑

k((Jik)
−1((Jkj)

−1)T ) = (gij(q))−1 = (gij(q)). Therefore, the Fokker-

Planck equation on M becomes

∂f(q, t)

∂t
+ |G(q)|− 1

2

d
∑

i=1

∂

∂qi

(

|G(q)|1

2hi(q, t)f(q, t)
)

= (8.3)

1

2
|G(q)|− 1

2

d
∑

i,j=1

∂2

∂qi∂qj

(

|G(q)|1

2 (gij(q))f(q, t)
)

.



8.2 Stratonovich SDEs and Fokker-Planck Equations on

Manifolds

The Stratonovich SDE corresponding to (8.1) is:

dq = hs(q, t) + Hs(q, t) s dw (8.4)

where s is used to denote the Stratonovich interpretation of an SDE, and

hs
i = hi −

1

2

m
∑

j=1

d
∑

k=1

Hkj
∂Hij

∂qk
and Hs

ij = Hij. (8.5)

If instead the SDE (8.4) is given and the corresponding Itô equation (8.1)

is sought, then (8.5) is used in reverse to yield:

hi = hs
i +

1

2

m
∑

j=1

d
∑

k=1

Hs
kj

∂Hs
ij

∂qk
and Hij = Hs

ij. (8.6)

Therefore, it follows from substitution of (8.6) into (8.2) that the

Stratonovich version of a Fokker-Planck equation describing a process on
a manifold is



∂f

∂t
+ |G|− 1

2

d
∑

i=1

∂

∂qi

[(

hs
i +

1

2

m
∑

j=1

d
∑

k=1

Hs
kj

∂Hs
ij

∂qk

)

f |G|1

2

]

=

1

2
|G|− 1

2

d
∑

i,j=1

∂2

∂qi∂qj

(

m
∑

k=1

Hs
ikH

s
jkf |G|1

2

)

(8.7)

This is important because in many physical modeling problems, the
following sort of Stratonovich SDE is presented:

J(q)dq = b(t) + B0 s dw (8.8)

where B0 is a constant coupling matrix. For example, if g(t) represents

a rotational or full rigid-body motion, then infinitesimal motions are de-
scribed in terms of a Jacobian matrix as

(g−1ġ)∨dt = J(q)dq, (8.9)

where ∨ is an operation that extracts the nonredundant information in

g−1ġ and collects it in the form of a column vector. The Jacobian matrix
is related to the metric tensor as G = JTJ .



And (8.8) is written as

dq = [J(q)]−1b(t) + [J(q)]−1B0 s dw. (8.10)

The interpretation of (8.8) is what allows for the simple expression in
(8.9), rather than the extra terms that would be required when using Itô

’s rule. Clearly the final result in (8.10) now has a coupling matrix that
is not constant, and so even if (8.8) could be interpreted as either Itô or

Stratonovich, the result after the Stratonovich interpretation in (8.9) must
thereafter be interpreted as a Stratonovich equation.

8.3 Entropy and Fokker-Planck Equations on Manifolds

The entropy of a probability density function on a manifold can be defined
as

S(f)
.
= −

∫

M

f(x) log f(x)dV = −
∫

q∈D

f(q) log f(q)|G(q)|1

2d(q). (8.11)



where in the second equality f(q) is shorthand for f(x(q)) and D ⊂ Rn

is the coordinate domain (assuming that the whole manifold minus a set

of measure zero can be parameterized by one such domain).
A natural issue to address is how the entropy S(f) behaves as a function

of time when f(x; t) satisfies a Fokker-Planck equation. Differentiating
(8.11) with respect to time gives:

dS

dt
= −

∫

M

{

∂f

∂t
log f +

∂f

∂t

}

dV.

It is easy to show that
∫

M

∂f

∂t
dV =

d

dt

∫

M

f dV = 0

because probability density is preserved by the Fokker-Planck equation.

Taking a coordinate-dependent view, the remaining term is written as

dS

dt
= −

∫

q∈D

∂f

∂t
log f |G|1

2d(q)



=

∫

q∈D

{

d
∑

i=1

∂

∂qi

(

|G|1

2hif
)

− 1

2

d
∑

i,j=1

∂2

∂qi∂qj

(

|G|1

2

m
∑

k=1

HikH
T
kjf

)}

log f d(q).

Integrating by parts, and ignoring the boundary terms, gives dS/dt equal
to

−
∫

q∈D

{

d
∑

i=1

∂f

∂qi

hi +
1

2

d
∑

i,j=1

[

−1

f

m
∑

k=1

HikH
T
kj

∂f

∂qi

∂f

∂qj

+
∂2f

∂qi∂qj

m
∑

k=1

HikH
T
kj

]}

|G| 12 d(q).

(8.12)

If some constraints on the coefficient functions {hi(q, t)} and {Hij(q, t)}
are preserved, then entropy can be shown to be non-decreasing. In par-
ticular, in cases when the first and third term vanish, the entropy will be

non-decreasing because

1

f

∑

i,j,k

∂f

∂qi
HikH

T
kj

∂f

∂qj
≥ 0.



8.4 Examples

8.4.1 Stochastic Motion on the Unit Circle

Consider the SDE

dx1 = −1

2
x1dt − x2dw

(8.13)

dx2 = −1

2
x2dt + x1dw.

Let

x1 = x1(r, θ) = r cos θ and x2 = x2(r, θ) = r sin θ.

In this problem the parametric coordinates q = [q1, q2]
T are q1 = r and

q2 = θ. And so,






∂x1

∂q1

∂x1

∂q2






=

(

cos θ
−r sin θ

)

and







∂x2

∂q1

∂x2

∂q2






=

(

sin θ
r cos θ

)

.



Likewise,






∂2x1

∂q1∂q1

∂2x1

∂q1∂q2

∂2x1

∂q2∂q1

∂2x1

∂q2∂q2






=

(

0 − sin θ
− sin θ −r cos θ

)

and






∂2x2

∂q1∂q1

∂2x2

∂q1∂q2

∂2x2

∂q2∂q1

∂2x2

∂q2∂q2






=

(

0 cos θ
cos θ −r sin θ

)

.

Substitution into Itô ’s rule, which holds regardless of the SDE in (8.13),

gives

dx1 = cos θdr − r sin θdθ − sin θdrdθ − 1

2
r cos θ(dθ)2

dx2 = sin θdr + r cos θdθ + cos θdrdθ − 1

2
r sin θ(dθ)2.

Now, assume that an SDE in these new variables exists and can be
written as



dr = a1dt + b1dw

dθ = a2dt + b2dw

where ai = ai(r, θ) and bi = bi(r, θ).

Substitution of the above expressions, and using the stochastic calculus
rules dw2 = dt and dt2 = dtdw = 0 gives

dx1 =

[

a1 cos θ − a2r sin θ − b1b2 sin θ − 1

2
b2
2r cos θ

]

dt+(b1 cos θ−b2r sin θ)dw

and

dx2 =

[

a1 sin θ + a2r cos θ + b1b2 cos θ − 1

2
b2
2r sin θ

]

dt+(b1 sin θ+b2r cos θ)dw

Then substituting these into (8.13), forces a1 = a2 = b1 = 0 and b2 = 1,

resulting in the SDE
dθ = dw



This shows that (8.13) are stochastic differential equations for a process
that evolves only in θ, with r remaining constant. In other words, this is

a kind of stochastic motion on the circle.

8.4.2 The Unit Sphere in R3

Let the position of any point on the unit sphere, S2, be parameterized as

u(φ, θ)
.
=





cosφ sin θ

sin φ sin θ
cos θ



 (8.14)

It follows from the fact that u · u = 1 that taking the derivative of both
sides yields u · du = 0 where

du =
∂u

∂θ
dθ +

∂u

∂φ
dφ. (8.15)

And since dθ and dφ are independent,

u · ∂u

∂θ
= u · ∂u

∂φ
= 0. (8.16)



Of course, this can be verified by direct calculation. Furthermore, since

∂u

∂θ
· ∂u

∂θ
= 1 and

∂u

∂φ
· ∂u

∂φ
= sin2 θ,

the vectors

v1
.
=

∂u

∂θ
and v2

.
=

1

sin θ

∂u

∂φ

form an orthonormal basis for the tangent plane to the sphere at the point

u(φ, θ), with v1 × v2 = u.
Indeed, any version of this coordinate system rotated around the vector

u of the form

v′
1 = v1 cosα − v2 sin α

v′
2 = v1 sinα + v2 cos α

(8.17)

will also form an orthonormal basis for this tangent plane, where α =

α(φ, θ) is an arbitrary smooth function. This will be relevant later, but for
now the focus will be the basis {v1,v2}.



Consider the Stratonovich equation

du = v1 s dw1 + v2 s dw2,

which would seem like a reasonable definition of Brownian motion on the

sphere. Taking the dot product of both sides with respect to v1 and v2,
and observing (8.15), the resulting two scalar equations can be written as

(

dθ
dφ

)

=

(

1 0
0 1/ sin θ

)

s

(

dw1

dw2

)

(8.18)

The corresponding Fokker-Planck equation is

∂f

∂t
=

1

2

[

∂2f

∂θ2
+ 2 cot θ

∂f

∂θ
− f +

1

sin2 θ

∂2f

∂φ2

]

,

which is clearly not the heat equation.
A Stratonovich SDE that does correspond to the heat equation,

∂f

∂t
=

1

2

[

∂2f

∂θ2
+

1

sin2 θ

∂2f

∂φ2

]

,



is
(

dθ

dφ

)

=
1

2
cot θ ei +

(

1 0

0 1/ sin θ

)

s

(

dw1

dw2

)

(8.19)

The Itô SDE corresponding to (8.19) is of exactly the same form.

8.4.3 The SDE and Fokker-Planck Equation for the Kinematic
Cart

Each matrix g(x, y, θ) of the form in (2.1) for θ ∈ [0, 2π) and x, y ∈ R can
be identified with a point on the manifold M = R2 × S1. In addition, the

product of such matrices produces a matrix of the same kind. Explicitly,
if

gi =





cos θi − sin θi xi

sin θi cos θi yi

0 0 1





for i = 1, 2, then



g1g2 =





cos(θ1 + θ2)− sin(θ1 + θ2) x1 + x2 cos θ1 − y2 sin θ1

sin(θ1 + θ2) cos(θ1 + θ2) y1 + x2 sin θ2 + y2 cos θ2

0 0 1



 .

This product is an analytic function from M × M → M , which makes M

(together with the operation of matrix multiplication) a Lie group (called
the Special Euclidean group, or motion group, of the plane, and denoted

as SE(2)). Lie groups are not addressed formally in this volume, and M is
treated simply as a manifold. The added structure provided by Lie groups

makes the formulation of problems easier rather than harder. Lie groups
are addressed in detail in Volume 2. For now, the manifold structure of M
is sufficient to formulate the problem of the stochastic cart.

Consider the following variant on the SDE stated in (2.4) that describes
the scenario in Figure 2.1:





dx
dy

dθ



 =





rω cos θ
rω sin θ

0



 dt +
√

D





r
2 cos θ r

2 cos θ
r
2
sin θ r

2
sin θ

r
L − r

L





(

dw1

dw2

)

(8.20)



Using the general formulation in (8.2), the Fokker-Planck equation be-
comes:

∂f

∂t
= − rω cos θ

∂f

∂x
− rω sin θ

∂f

∂y

+
D

2

(

r2

2
cos2 θ

∂2f

∂x2
+

r2

2
sin 2θ

∂2f

∂x∂y
+

r2

2
sin2 θ

∂2f

∂y2
+

2r2

L2

∂2f

∂θ2

)

.
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17. Perrin, P.F., ” Étude Mathématique du Mouvement Brownien de Rotation,” Annales Scientifiques de L’
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9

Rigid-Body Motions: A Lie-Theoretic View

Homogenous transformation matrices are closed under multiplication and

inversion, and have an identity element. This makes them a group. They
also form a manifold. They are an example of a Lie group, which means

that they are “easier” to handle than other manifolds. We can integrate,
differentiate, and convolve functions in a natural way.

9.1 Integration over Rigid-Body Motions in the plane



g(a1, a2, θ) =





cos θ − sin θ a1

sin θ cos θ a2

0 0 1



 .

Such matrices form a group under the operation of matrix multiplication,
and the bi-invariant integration measure on this group is defined using

the following procedure. First, observe that the basis elements of the Lie
algebra G = se(2) are:

X1 =





0 0 1
0 0 0
0 0 0



 =⇒ exp tX1 =





1 0 t
0 1 0
0 0 1





X2 =





0 0 0

0 0 1
0 0 0



 =⇒ exp tX2 =





1 0 0

0 1 t
0 0 1





X3 =





0 −1 0
1 0 0

0 0 0



 =⇒ exp tX3 =





cos t− sin t 0
sin t cos t 0

0 0 1



 .



It is easy to see that

g(a1, a2, θ) = exp(a1X1) exp(a2X2) exp(θX3)

where exp(·) is the matrix exponential. Furthermore, it can be shown by

direct calculation that

g−1∂g = vr
1X1 + vr

2X2 + ωX3

and

(∂g)g−1 = vl
1X1 + vl

2X2 + ωX3

where ∂g denotes any of the partials ∂g/∂ai or ∂g/∂θ. This means that

we can extract the relevant information from the above expressions into a
vector as:

(g−1∂g)∨ =





vr
1

vr
2

ω



 or ((∂g)g−1)∨ =





vl
1

vl
2

ω



 .

The bi-invariant volume element is then obtained as

dg = |detJr|da1da2dθ = |detJl|da1da2dθ



where

Jr(g) =

[(

g−1 ∂g

∂a1

)∨
,

(

g−1 ∂g

∂a2

)∨
,

(

g−1∂g

∂θ

)∨]

and

Jl(g) =

[(

∂g

∂a1
g−1

)∨
,

(

∂g

∂a2
g−1

)∨
,

(

∂g

∂θ
g−1

)∨]

.

The fact that Jr(g0g) = Jr(g) and Jl(gg0) = Jl(g) is obvious from their
definition. The bi-invariance therefore follows follows from the fact that

|detJr| = |detJl|, which in this particular case is equal to the number 1.

9.2 Integration over Rigid-Body Motions in Space

For the spatial case, we see the invariance of the volume element as follows.
Right invariance follows from the fact that for any constant homogeneous
transform

h0 =

(

R0 b0

0T 1

)

,



Jl(gh0) =

[

(
∂g

∂q1
h0(gh0)

−1)∨ · · · ( ∂g

∂q6
h0(gh0)

−1)∨
]

.

Since (gh0)
−1 = h−1

0 g−1, and h0h
−1
0 = 1, we have that Jl(gh0) = Jl(g).

The left invariance follows from the fact that

Jl(h0g) =

[

(h0
∂g

∂q1
g−1h−1

0 )∨ · · · (h0
∂g

∂q6
g−1h−1

0 )∨
]

,

where

(h0
∂g

∂qi
g−1h−1

0 )∨ = [Ad(h0)](
∂g

∂qi
g−1)∨.

Therefore,
Jl(h0g) = [Ad(h0)]Jl(g).

But since det(Ad(h0)) = 1,

det(Jl(h0g)) = det(Jl(g)).

Explicitly, the volume element in the case of SE(3) is found when the

rotation matrix is parametrized using ZXZ or ZY Z Euler-Angles (α, β, γ)
as



d(g(x1, x2, x3, α, β, γ) =
1

8π2
sin βdαdβdγdx1dx2dx3,

which is the product of the volume elements for R3 (dx = dx1dx2dx3), and

for SO(3) (dR = sinβdαdβdγ). Since β ∈ [0, π], this is positive, except at
the two points β = 0 and β = π, which constitute a set of zero measure and

therefore does not contribute to the integral of singularity free functions.

∫

G

f(g−1)dg =

∫

G

f(h ◦ g)dg =

∫

G

f(g ◦ h)dg =

∫

G

f(g)dg.
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Parts Entropy and The Principal Kinematic Formula

Sanderson quantified this with the concept of “parts entropy,” which is a

statistical measure of the ensemble of all possible positions and orienta-
tions of a single part confined to move in a finite domain. Here it is shown

that the rapid computation of excluded-volume effects using the “Princi-
pal Kinematic Formula” from the field of Integral Geometry is illustrated

as a way to potentially avoid the massive computations associated with



brute-force calculation of parts entropy when many interacting parts are

present.

10.1 Problem Formulation

10.1.1 A Continuous Version of Sanderson’s Parts Entropy

Information-theoretic entropy has been used by Sanderson to characterize

parts for use in assembly operations [10]

Sf(t) = −
∫

G

f(g; t) log f(g; t)dg (10.1)

10.2 Multiple Parts And The Principal Kinematic Formula

Suppose that we have two convex bodies, H and K, viewed as subsets of
Rn.

The indicator function on any measurable body, B, (not necessarily
convex and perhaps not even connected) is defined by:



i(B) =

{

1 if B 6= ∅
0 for B = ∅

Note that i(g · B) = i(B).

Let H be stationary, and let K be mobile. Let us denote g ∈ G (where
G = SE(n) is the group of rigid-body motions for bodies contained in

Rn). Then, by definition,

gK = {g · x|x ∈ K},
where if g = (A, a) is the rigid-body motion with rotational part A ∈
SO(n) and translational part a ∈ Rn, then the action of G = SE(n) on

Rn is g · x = Ax + a.
The intersection of two convex bodies is a convex body [7]. H ∩ gK

will be a convex body, and fH,K(g) = i(H ∩ gK) will be a compactly

supported function on G that takes the value of 1 when H and the moved
version of K (denoted as gK) intersect, and it will be zero otherwise. The

function fH,K(g) has some interesting properties. Namely, if we shift the
whole picture by an amount g0, then this does not change the value of



fH,K(g). In other words,

i(g0(H ∩ gK)) = i((g0H) ∩ (g0gK)).

This means that if we choose g0 = g−1, then

fH,K(g) = i((g−1H) ∩ K) = i(K ∩ g−1H) = fK,H(g−1).

In the special case when H = K (i.e., they are two copies of the same
body) then fH,H(g) = fH,H(g−1), which is called a symmetric function.

More generally, “counting up” all values of g for which an intersection
occurs is then equivalent to computing the integral

J =

∫

G

i(H ∩ gK)dg. (10.2)

10.2.1 The Planar Case

A closed arc-length-parameterized curve of length L in the plane can be

described (up to rigid-body motion) using the equation:



x(s) =





∫ s

0 cos θ(σ)dσ

∫ s

0 sin θ(σ)dσ





where

θ(s) =

∫ s

0

κ(σ)dσ

is the counterclockwise-measured angle that the tangent to the curve
makes with respect to the x-axis and s ∈ [0, L].

For a simple, convex, closed curve,

χ = θ(L)/2π,

is equal to one.
In the planar case, we can write (10.2) explicitly as

J =

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
i(H ∩ g(a1, a2, θ)K)da1da2dθ (10.3)



Theorem 1 (Blaschke, [2]): Given planar convex bodies H and K, then
(10.3) evaluates as:

∫

SE(2)

i(H ∩ gK)dg = 2π[A(H) + A(K)] + L(H)L(K). (10.4)

where A(·) is the area and L(·) is the perimeter of the body. Proof: See
[2, 12].

In the nonconvex case, we can bound the integral of interest from

below and above by inscribing and circumscribing convex bodies inside
and outside of H and K. Then computing (10.4) with the convex in-

scribed/circumscribed bodies will give lower and upper bounds on (10.4)
for nonconvex H and K.

10.2.2 The Spatial Case

It follows that if B has a continuous piecewise differentiable surface, ∂B,
that we can compute

∫

∂B

dS = F (B)



(the total surface area). Furthermore, if κ denotes the Gaussian curva-
ture at each point on the surface, we can compute (via the Gauss-Bonnet

Theorem):
∫

∂B

κdS = 2πχ(B)

where χ(B) is the Euler characteristic. In the case of a convex spatial body,
which necessarily is bounded by a surface of genus zero, χ(H) = 2 · i(B).

In differential geometry a second kind of curvature is defined at every

point on a surface. This is the mean curvature, m. The total mean sectional
curvature is defined as

M(B) =

∫

∂B

mdS.

In contrast to the indicator function, if we define

vB(x) =

{

1 for x ∈ B
0 for x /∈ B

then,



∫

Rn

vB(x)dx =

∫

B

dx = V (B)

(the volume of B).

Theorem 2 (Blaschke, [2]): Given convex bodies H and K in R3, then
∫

SE(3)

i(H ∩ gK)dg = 8π2[V (H) + V (K)] (10.5)

+ 2π[A(H)M(K) + A(K)M(K)]

where A(·) and M(·) are respectively the area and integral of mean curva-
ture of the surface enclosing the body, and V (·) is the volume of the body.

Proof: See [2, 12].

10.3 Examples

If part 1 is fixed in space, the second has a volume of possible motions in

SE(n) given by
V = V ol(Bn(R)) · V ol(SO(n))



where V ol(Bn(R)) is the volume of the ball defined by the interior of
a sphere of radius R in n-dimensional space (which is πR2 in R2 and

4πR3/3 in R3) and V ol(SO(n)) is the volume of the rotation group in
n-dimensional space (which is 2π for SO(2) and 8π2 for SO(3)) [5].

Therefore the the positional and orientational distribution of part # 2
computed in the absence of part # 1 would be

f(g) =
1

V

for g = (A, a) ∈ SE(n) with ‖a‖ < R, and f(g) = 0 otherwise.
The entropy of a single isolated part under these conditions is then

Sf = log V.

In contrast, the total volume in SE(n) that is available for part #2 to
move if part # 1 is fixed in the environment, thereby limiting the range
of possible motions of part #2, will be

V ′ = V −
∫

SE(n)

i(H ∩ gK)dg



as long as R is larger than half of the sum of the maximal dimensions of

the two parts. Otherwise, the effects of part #1 on limiting the motion
may be even greater. With that caveat,

Sf ′ = log V ′. (10.6)

10.3.1 Example 1: The Planar Case: Circular Disks in Planar
Motion

Let part # 1 be a circular disk of radius r1 fixed at the origin, and let

part # 2 be a circular disk of radius r2. If part # 2 were completely free
to rotate, and free to translate such that its center stays anywhere in the

large circle defined by radius R, then the part entropy would be

S = log(2π2R2).

In contrast, if all conditions are the same except that the constraint of no

interpenetration is imposed, then

S ′ = log(2π2[R2 − (r1 + r2)
2]),



which just removes the disallowed translations defined by the distance

of the center of part # 2 from the origin in the range [0, r1 + r2]. This
is a simple example that does not require any numerical computation

of integrals of motion, or even the evaluation of the principal kinematic
formula. But it serves to verify the methodology, since in this case

2π[A(H) + A(K)] + L(H)L(K) =

2π[πr2
1 + πr2

2] + (2πr1)(2πr2) =

2π2(r1 + r2)
2,

which means that the adjustment to the computation of parts entropy

from the principal kinematic formula (10.4) will be exactly the same as
expected.

10.3.2 Example 2: Ellipsoids of Revolution in Spatial Motion

Consider an ellipsoid of revolution with dimensions of length a, a and b.

The volume can be computed as:



V =
4

3
πa2b.

The values of surface area, F , and mean sectional curvature, M , for
prolate and oblate ellipsoids have been reported in [8], along with a variety
of other solids of revolution. In particular, if a = R and b = λr with

0 < λ < 1, then

F = 2πr2

[

1 +
λ2

√
1 − λ2

log

(

1 +
√

1 − λ2

λ

)]

and

M = 2πr

[

λ +
arccosλ√

1 − λ2

]

.

In contrast, when λ > 1,

F = 2πr2

[

1 +
λ2arccos(1/λ)√

λ2 − 1

]

and



M = 2πr

[

λ +
log(λ +

√
λ2 − 1)√

λ2 − 1

]

.

In the case of a sphere (λ = 1),

V =
4

3
πr3; F = 4πr2; M = 4πr.

As a specific example to demonstrate this, consider the case of two

spherical parts: part # 1 has radius r1 and part # 2 has radius r2. If part
# 1 is fixed at the origin, and part #2 is free to move as long as its center

does not go further than a distance R from the origin, then the volume of
allowable motion of part #2 in SE(3) will be

(8π2)(4π/3)[R3 − (r1 + r2)
3].

But (10.6) gives the amount of excluded volume in SE(3) to be

8π2[V (H) + V (K)] + 2π[A(H)M(K) + A(K)M(K)] =

8π2[4πr3
1/3 + 4πr3

2/3] + 2π[(4πr2
1)(4πr2) + (4πr2

2)(4πr1)] =



(32π3/3)(r3
1 + r3

2 + 3r2
1r2 + 3r1r

2
2) =

(32π3/3)(r1 + r2)
3.

And this too matches the direct analytical calculation for this simple ex-

ample.

10.4 Extensions And Limitations

The principal kinematic formula has been used to compute integrals of the

form

J =

∫

G

i(H ∩ gK)dg.

that arise when calculating the entropy of convex parts that can be placed
uniformly at random. In integral geometry, generalized integrals of the

form

J1 =

∫

G

µ(H ∩ gK)dg

can be computed in closed form for bodies that are not convex, where µ
can be the volume, Euler characteristic, surface area, mean curvature, or



Gaussian curvature. This is not directly applicable to the current discus-

sion, though it does open up intriguing possibilities.
A quantity that is not directly addressed in integral geometry is

J2 =

∫

G

i(H ∩ gK)ρ(g)dg

where ρ(g) is a probability density function on G. This would be some-
thing that is useful for parts entropy calculations. The author is currently
investigating this.
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