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Abstract— The AX = XB sensor calibration problem
must often be solved in image guided therapy systems,
such as those used in robotic surgical procedures. In this
problem, A, X , and B are homogeneous transformations
with A and B acquired from sensor measurements and
X being the unknown. It has been known for decades
that this problem is solvable for X when a set of exactly
measured A’s and B’s, in a priori correspondence, is given.
However, in practical problems, the data streams containing
the A’ and B’s will be asynchronous and may contain gaps
(i.e., the correspondence is unknown, or does not exist,
for the sensor measurements) and temporal registration is
required. For the AX = XB problem, an exact solution can
be found when four independent invariant quantities exist
between two pairs of A’s and B’s. We formally define these
invariants, reviewing and elaborating results from classical
screw theory. We then illustrate how they can be used, with
sensor data from multiple sources that contain unknown or
missing correspondences, to provide a solution for X .

I. INTRODUCTION

The “AX=XB” sensor calibration problem is fre-
quently encountered in the fields of robotics and com-
puter vision. In this problem A, X , and B are each
homogeneous transformations with A and B given
from sensor measurements, and X unknown.

It is well known that it is not possible to solve
for a unique X from a single exact pair (A,B), but
if there are two compatible instances of independent
exact measurements, (A1, B1) and (A2, B2), then the
problem can be solved. Here we address the issue of
sensor data that may be unsynchronized, in the sense
that, even though a correspondence exists between A’s
and B’s, it is unknown due to asynchronous timing
of the measurement transmissions. Additionally, the
data may contain gaps due to differing sampling rates,
environmental conditions or dropped sensor readings.

In this paper we present two simple algorithms
for selecting corresponding (A,B) pairs from data,
with unknown or missing correspondences, that use
properties of four screw-theory-based invariants. The
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proposed methods are valuable to any incarnation of
the AX = XB problem, but we motivate our study by
problems in ultrasound sensor calibration, and illus-
trate the efficacy of our approach on simulated data.

The remainder of this section is devoted to present-
ing the motivating application, reviewing the literature,
and establishing notation. Section II-A presents an algo-
rithm using two of the well known screw theory invari-
ants that corrects for simple uniform shifts. Section II-B
presents an algorithm using all four of the invariants
that corrects for nonuniform shifts and gaps.

A. Ultrasound: A Motivating Problem

AX = XB is one of the most common mathematical
formulations used in robot-sensor calibration problems.
It can be found in a variety of applications including
camera calibration, Cartesian robot hand calibration,
robot eye-to-hand calibration [1], aerial vehicle sensor
calibration [2] and image guided therapy (IGT) sensor
calibration [3]. While the methods presented in this pa-
per can be applicable to all of these fields, we choose to
use the growing field of ultrasound (US) calibration, an
essential component of IGT, to motivate our discussion.

Image Guided Therapy systems are commonly used
in modern surgical procedures including minimally
invasive surgery and robotic surgery. An IGT system
could have several integrated components such as an
imaging modality system, a pose tracker, and a sur-
gical robot. The imaging modality component may be
responsible for generating diagnostic images for image
guidance and the pose tracker (which can be Electro-
magnetic (EM), optical or robotic) may be responsible
for generating the position and orientation information
of surgical tools or devices. A surgical robot could act
as a data source if it reports position and orientation
information of its surgical arms or attached devices. It
could also act as a data sink if a control signal generated
by the rest of the system were used to actuate the
surgical robot itself.

Out of the most popular imaging modalities, such as
X-ray, Computed Tomography (CT), or Magnetic Res-
onance Imaging (MRI), Ultrasound has several notable
advantages: mobility, non-ionizing radiation, ease of
use, low cost, real-time data acquisition. Due to these
qualities, US is frequently integrated with tracking
systems and robotic systems for Image Guided Therapy
[4]-[7]. To compensate for the lower image quality and



Fig. 1. Defining Reference Frames for the AX = XB Problem in
Ultrasound. Adapted, with permission, from Fig. 7.1 in [3].

resolution, pre-operative models in the other imaging
modalities are often also integrated [7].

In the scenario where an US transducer has an
attached optical marker or EM tracker, a common
problem that needs to be solved is US calibration. This
process refers to the recovery of the transformation be-
tween the optical marker or EM tracker to the US image
space. Many researchers have presented techniques in
computing this transformation [8]-[10]. As seen in Fig.
1, this calibration problem can be generalized as the
AX = XB formulation. Most conventional methods
[11]-[13] can only solve this problem when the data
streams of A and B contain known correspondences,
meaning that a particular pair, (Ai, Bj), must corre-
spond to a single motion. In the paper, we make the
differentiation that Ai denotes the absolute pose of the
image and Ai denotes the motion between image poses
Ai and Ai+1, i.e. Ai = AiA

−1
i+1. Similarly Bi is the

absolute probe pose, in reference to the EM tracker, and
Bi represents the motion between poses Bi and Bi+1,
i.e. Bi = B−1i Bi+1.

In practice, ultrasound and tracking data are gen-
erated with different internal delays corresponding to
US image formation delay and pose calculation delay
respectively. The delays can cause these data streams to
arrive at a module in an asynchronous fashion causing
a shift between the two streams of data. Additionally,
the tracking data and ultrasound data may have dif-
ferent frame rates that result in gaps or the need for
interpolation. Here, we define gaps to be instances in
a data stream where Ai does not have a corresponding
Bj or vice versa. Gaps can be small and dispersed or
large and connected.

B. Why Temporal Registration?

Since there are many data sources in an IGT system,
their respective data streams will likely be unsynchro-
nized. While these data streams can be used individ-
ually, they can provide much more information when
combined. For example, an IGT system may have an
US transducer with attached optical marker or elec-
tromagnetic tracker. These individual data streams can

Fig. 2. Flow of Data Streams between Multiple Modules

provide the user with a stream of medical images and
also a stream of US transducer poses and orientations.
However, if the data streams were temporally regis-
tered, we could know the pose and orientation of each
individual US image. This may allow for registration
of the US images together to create a 3D volume from
a 2D transducer. Another application enabled by this
synchronization is tracked US elastography [14]. The
pose data from each US image allows the algorithm
to select pairs of US images that generate the best
elastography image.

C. Past Temporal Registration Methods

Fig. 2 is an example of what the data streams
may look like either between processes on the same
workstation or between workstations over a distributed
network. The data streams labeled Ai and Bi represent
the US and the tracker data streams respectively. It is
shown here that there are gaps in the data and that
the two data streams have different frame rates. Both
of these data streams are sent into a motion generation
module where consecutive poses are processed to form
a relative motion. If timestamps are present, they can be
used such that relative motions are only generated from
consecutive poses and not from the poses surrounding
a gap. The result of the motion generation is therefore
a stream {Ai} and {Bi} with gaps. If timestamps
are absent, then gaps are unknown at this stage and
relative motions are generated for all consecutive poses.
Both of the data streams in these two cases are being
sent to an US calibration module which has a sampling
window as shown in Fig. 2. The data colored in a
lighter shade represents data that directly corresponds.
It is often the case where one piece of corresponding
data is not entirely sampled.

A common method for IGT systems to temporally
register multiple data streams is the use of timestamps.
[15]. In Fig. 2 if all of the modules were on a single
workstation, this workstation would be responsible for
collecting all of the data streams and can apply a



synchronized timestamp to each data packet as it is
collected. With this method, even if the data streams are
arriving in a staggered fashion at a certain module due
to different processing times, the module will know the
time of collection and will be able to temporally register
the data streams together.

IGT systems are also commonly deployed as a net-
work distributed system. This would be the case where
the modules shown in Fig. 2 are executed on separate
workstations. In this setup, the timestamp method
becomes more complicated to implement as each of
the workstations have asynchronous clocks. There are
several methods to ensure that the workstations are
synchronized. First, external hardware could be used as
a master controller and generate a synchronous clock
for each of the workstations in the network distributed
system. There are also protocols such as the Network
Time Protocol (NTP) [16] which can be used to syn-
chronize multiple workstations on a network. Another
possibility is to use a workstation as a master that
sends out a series of short messages to each of the
other workstations. Each individual workstation then
uses these messages to compute a network delay that
is used for the remainder of a particular execution.

D. Euclidean-Group Invariants: Necessary and Sufficient
Conditions for Unique Solution to the AX = XB Problem

The problem of solving

AiX = XBi (1)

for X when multiple corresponding pairs of A’s and
B’s are presented has been examined in the context
of many diverse applications over the past quarter
century [11]-[13], [17]-[24].

From screw theory it is known that any homoge-
neous transformation can be written as [25]

H =

 eθN (I3 − eθN )p + dn

0T 1


where eθN denotes the matrix exponential, In is the
n × n identity matrix, and θ ∈ [0, π] is the angle of
rotation.

N =

 0 −n3 n2
n3 0 −n1
−n2 n1 0


where n = [n1,n2,n3]T ∈ R3 is the unit vector describ-
ing the axis of rotation, which connects the origin and
any point on the unit sphere, and p · n = 0. Together,
{θ, d,n,p} define the Plücker coordinates of the screw
motion.

If we write (1) as

Ai = XBiX−1 where i ∈ {1, 2}, (2)

then explicitly calculating and equating the matrix
product gives two invariant relations,

Fig. 3. Two arbitrary rigid-body motions, Hi which is shown acting
on yi and Hj which is shown acting on yj , their Plücker coordinates
and the parameters of the four described conditions (in red) [27]

θAi = θBi dAi = dBi (3)

where dAi and dBi are computed from Ai and Bi as in
(2). Additionally, let

lAi(t) = pAi + tnAi and lBi(t) = pBi + tnBi

be the directed screw axis lines of Ai and Bi in three-
dimensional Euclidean space. If the lines are not paral-
lel or anti-parallel, i.e., if nAi 6= ±nBi , then the distance
between the two lines is given by

∆(lAi1 , lAi2 ) =
|[nAi1 ,nAi2 ,pAi2 − pAi1 ]|

‖nAi1 × nAi2 ‖
(4)

where for any a,b, c ∈ R3, the triple product is
[a,b, c]

.
= a · (b × c). In the current context we can

think of i1 = 1 and i2 = 2 but in later discussion i1 and
i2 can represent more general values.

If in addition, ∆(lAi1 , lAi2 ) 6= 0, i.e., if the lines are
skew, then the angle φ(lAi1 , lAi2 ) ∈ [0, 2π) is uniquely
specified by

cosφ(lAi1 , lAi2 ) = nAi1 · nAi2 (5)

sinφ(lAi1 , lAi2 ) = ∆(lAi1 , lAi2 )−1[nAi1 ,nAi2 ,pAi2−pAi1 ].

Therefore, if θAi1 , θAi2 ∈ (0, π) and φ(lAi1 , lAi2 ) /∈
{0, π}, then a unique solution of (1) exists if and only
if the following four conditions hold:

1) θAi1 = θBi1 and θAi2 = θBi2 ;
2) dAi1 = dBi1 and dAi2 = dBi2 ;
3) φ(lAi1 , lAi2 ) = φ(lBi1 , lBi2 );
4) ∆(lAi1 , lAi2 ) = ∆(lBi1 , lBi2 ).

If these do not hold, then a solution will not be possible
[26]. Fig. 3 illustrates the Plücker coordinates, and
the parameters of the above four conditions for two
arbitrary rigid-body motions [27]



II. FINDING X WITHOUT KNOWING A-B
CORRESPONDENCE

In this section we pose two possible algorithmic
solutions to the problem of solving for X using in-
complete sensor data. The first method uses the first
two, θ and d, invariants to compute a correlation.
The second method uses all four invariants to extract
corresponding (Ai, Bi) pairs from the data.

A. Using θ, d and Correlation
The first method presented leverages the θ and d

invariants to “re-shift” temporally misaligned data.
Given n, (Ai, Bi) pairs drawn from simulated sensor
data, we shift the set of A’s by a set amount to mimic
the effects of the asynchronous data transfer. The SE(3)
invariants are then extracted from each of the Ai’s and
Bi’s in the new temporally shifted set. We can then
perform a correlation of the A invariants (θA, dA) with
the B invariants (θB , dB) using the Discrete Fourier
Transform (DFT).

Given a sequence of N complex numbers, the DFT
is defined as Fn = F [{fk}N−1k=0 ](n) where

Fn
.
=

N−1∑
k=0

fke
−2πin k

N

and the inverse transform is given as:

fk
.
=

1

N

N−1∑
n=0

Fne
2πik n

N

The convolution theorem for the Discrete Fourier Trans-
form indicates that a correlation, Corr(f, g), of two
sequences of finite length can be obtained as the inverse
transform of the product of one individual transform
with the complex conjugate (∗) of the other transform:

Corr(f, g) = F−1[F ·G∗]

The location of largest correlation corresponds with the
amount of shift in the A’s. Fig. 4 shows an example
case where the data streams are shifted by -13 units.
The shifted theta streams can be seen in the top graph
and the correlation plot, where the maximum value is
at the predicted location (-13), is shown in the bottom
graph. This method accurately recovers the shift in the
data streams and then corrects the shift to calculate for
X .

Though this approach is the most accurate with
uniform shifts, it is also robust to other forms of data
stream inconsistencies. If there are gaps in the data
and either the gaps are large enough to distinguish
(based on large changes in the invariant curves), or the
data is time-stamped, we can create substreams of data
between gaps. The algorithm can then predict shifts of
individual stream subsets to give corresponding pairs
of A’s and B’s. However, the algorithm begins to break
down if there are largely varying, non-uniform shifts,

Fig. 4. Shifted Data Streams for the Theta Invariant and Their
Correlation

or a large number of small gaps in the data. As an
alternate option, we therefore present the following
algorithm that uses all four invariants.

B. Using All Four Invariants
Suppose that data streams of sensor measurements

A = {Ai} and B = {Bj} are presented and there
are both significant unknown temporal shifts between
these two sets, and gaps within each one. The number
of points in these sets are |A| = m and |B| = n.

Here we present an approach to recovering X and es-
tablishing a correspondence between the subsets A′ ⊂
A and B′ ⊂ B that do correspond where |A′| =
|B′| = p ≤ min(m,n). For such data, we find the
correspondence, which is a permutation on p letters,
π ∈ Πp, such that AiX = XBπ(i) for i = 1, ..., p where
Ai ∈ A′ and Bπ(i) ∈ B′.

We accomplish this using the invariants of the Spe-
cial Euclidean group, SE(3), under conjugation. The
procedure is as follows. Compute (θA

i

, dA
i

) for each
Ai ∈ A and (θBj , dBj ) for each Bj ∈ B. Next,
form a 2D grid on the θ-d plane that ranges from
mini,j(θAi , θBj ) to maxi,j(θAi , θBj ) and mini,j(dAi , dBj )
to maxi,j(dAi , dBj ). This grid will give r rectangles, e.g.,
if it is a 10 × 10 grid, then r = 100. Assuming that
no data falls exactly on a grid line, this will partition
A and B into r disjoint subsets: {A1,A2, ...,Ar} and
{B1,B2, ...,Br} where

Ai1 ∩ Ai2 = ∅ and

r⋃
i=1

Ai = A,



and similarly for B.
The reason for doing this is that all candidate A’s and

B’s that can potentially match will be in corresponding
partitions Ai and Bi, since having the same value of θ
and d is a necessary condition for a solution to AX =
XB to exist. Constructing the grid with finite resolution
allows for the possibility of some measurement error in
A’s and B’s.

Let |Ai| = mi and |Bj | = nj . Then
r∑
i=1

mi = m and

r∑
i=1

nj = n.

Pick two bins for which all of the numbers in the
pairs (mi1 , nj1) and (mi2 , nj2) are small, but greater
than 2, to allow for the fact that measurement error
may result in incorrect binning, and also that the angle
φ(lAi1 , lAi2 ) might not always be in the range (0, π).
We interrogate all mi1 × nj1 × mi2 × nj2 possibilities
as candidates. The further necessary conditions for the
existence of a solution are φ(lAi1 , lAi2 ) = φ(lBj1 , lBj2 )
and ∆(lAi1 , lAi2 ) = ∆(lBj1 , lBj2 ). From among all pairs
that satisfy these conditions, we can use existing AX =
XB solvers (such as the Kronecker-product-solver used
in [3],[28]) to determine X .

C. Solving AX = XB Using Kronecker Products
To solve our, now registered, AX = XB problem, we

use a common method that finds a least-squares solu-
tion. The core of this approach is to use the Kronecker
product. Recall that If C is a matrix, vec(C) is the long
vector produced by stacking the columns of C. This is
a linear operation in the sense that

vec(α1C1 + α2C2) = α1vec(C1) + α2vec(C2).

Moreover, if ⊗ denotes the Kronecker product, and
C,D,E are matrices with dimensions compatible for
multiplication, then

vec(CDE) = (ET ⊗ C) vec(D).

If D is already a column vector (n×1 matrix), then it is
unaltered by the vec(·), and if D is a row vector (1× n
matrix) then vec(·) transposes it. If C is a matrix and α
is a scalar, then

α⊗ C = C ⊗ α = αC,

the scalar multiple of C by α.
This means that we can write the AX = XB equation

as [3]
Jix = bi (6)

where

Ji =

 I9 −RBi
⊗RAi

O9×3

tTBi
⊗ I3 I3 −RAi

 (7)

x =

 vec(KRX)

KtX

 and bi =

 09

tAi

 (8)

Fig. 5. Algorithm 2 Success Rate for Varying Amounts of Shift and
Number of Small Gaps

Im is the m×m identity, Om×n is the m× n zero matrix,
and 0n is the n-dimensional zero vector.
Ji is a 12 × 6 matrix and bi is six-dimensional. By

stacking multiple such equations for different pairs
(Ai, Bi), we obtain Jx = b where J is 12n× 6n and b
is 6n-dimensional. The least-squares solution for x can
then be found using SVD methods or using a pseudo-
inverse.

For example, the least-squares solution to ‖Jx−b‖M
where M = MT ∈ R6n×6n is

x = (JTMJ)−1JTMb. (9)

This is the over-constrained pseudo-inverse (as op-
posed to the under-constrained one typically used in
redundancy resolution).

Finally, the Kronecker product solution does not
guarantee that KRX in (8) is in SO(3). However there
are procedures for projecting KRX back into the group
SO(3) to result in RX . For a more in-depth discussion of
these methods and proofs of their veracity see [3],[28].

III. RESULTS

A. Simulated Sensor Data

Fig. (5) shows the success of this algorithm with
different amounts of shift and gaps in the data. The
percentages of shifts correspond with the percentage
of data that does not overlap between the two data
streams. The percentage of gaps correspond to the
percentage of data that is missing from either of the two
shifted data streams. Clearly the algorithm is highly
robust to unknown and missing correspondences of all
kinds.

B. Effectiveness of the Proposed Algorithms for SO(3)

For some applications of the AX = XB problem,
the sensor data is only rotational (such as IMU data
in [2]). The (Ai, Bj) pairs are now drawn from the
group of rigid-body rotations, SO(3), a subgroup of
SE(3). In this case there is no d or ∆. The presented
algorithms are still successful for data of this type,
despite the absence of translation information. For the



algorithm using correlations we are still able to use
θ to successfully match the data streams. The second
algorithm, which uses the binning procedure, is also
successful, using only the θ and φ invariants.

IV. CONCLUSIONS AND FUTURE WORK

We establish that the AX = XB problem can make
use of the invariants inherent in the structure of the A’s
and B’s to correct for unknown and missing correspon-
dences in the sensor data streams. These invariants are
used in two algorithms, the first of which can realign
uniformly asynchronous data and, in some cases, data
with gaps. The second algorithm solves for X for
most instances of shifts and gaps in the data streams.
The problem is motivated by an ultrasound calibration
problem, though the results will be applicable to many
scenarios in which the AX = XB problem arises.

For the AX = XB problem, it is also recognized
that information obtained from the sensors will have
errors other than unknown correspondences. Each sen-
sor reading will contain uncertainty about the quantity
measured, and therefore, even if correspondences can
be determined, the data may still contain noise on each
of the motions (Ai, Bi). Our future goal is to leverage
these algorithms when this form of noise is present, to
achieve a reliable estimation of X .
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