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Abstract—This paper considers a novel form of hyper-redundant mobile robot locomotion which is
analogous to the ‘sidewinding’ locomotion gait employed by several species of snake. It is shown that
this gait can be generated by a repetitive traveling wave of mechanism deformation. This paper considers
primarily the kinematics of the sidewinding gait. The kinematic analysis is based on a continuous
‘backbone curve’ model which captures the robot’s important macroscopic features. Using this continuous
model, we first develop algorithms which enable travel in a uniform direction. We subsequently extend
this basic gait pattern to enable changes in the direction of travel.

1. INTRODUCTION

Hyper-redundant robotic systems have a very large or infinite relative degree of kine-
matic redundancy. They are analogous to snakes, worms or elephant trunks. Many
conceivable applications require the hyper-redundant robot to maneuver, via some
form of locomotion, around its environment. This paper considers one possible way
to implement hyper-redundant robot locomotion.

DEFINITION. Hyper-redundant robot ‘locomotion’ is the process by which net dis-
placement of a hyper-redundant mobile robot arises from internally induced bending
and twisting of the mechanism. Actuatable wheels, tracks or legs are not necessary.

DEFINITION. A hyper-redundant robot gait is a repetitive sequence of mechanism
deformations which enables the net locomotive displacement.

For a given mechanism, different gaits will have correspondingly different speed,
robustness and maneuverability characteristics. A gait which is well suited to one type
of terrain or task may be ill suited to another situation. For maximum adaptability, a
hyper-redundant robot should be capable of switching between several different gait
types.
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In [1, 2] we developed two classes of hyper-redundant robot gaits which were based
on standing or traveling waves of mechanism distortion. These gaits, which enable
locomotion along a curvilinear path, are idealizations of gaits used by inchworms,
earthworms and slugs. Some of the gaits used by snakes, such as the creeping gaits
employed in predation [3], can also be modeled using the methods of [2]. These
locomotion schemes have been implemented and their viability demonstrated in an
actual 30 d.o.f. hyper-redundant robot mechanism [2, 4].

However, other forms of locomotion used by creatures with hyper-redundant mor-
phologies may not fit into either of these previously analyzed gait classes. In particu-
lar, snakes also employ sidewinding, concertina and undulating gaits [3]. This paper
develops and analyzes a novel locomotion scheme which is qualitatively identical to
the sidewinding locomotion of desert snakes.

We study this problem for two reasons. First, sidewinding motion is one of the most
complicated forms of locomotion seen in nature. A better insight into the mechan-
ics of this gait can lead to a broader understanding of robotic locomotion. Second,
in previous work the authors have undertaken a broadly-based program to overcome
some of the obstacles which currently prevent widespread and practical deployment of
hyper-redundant, or snake-like, robotic systems. The ability to locomote in a variety
of context- and task-dependent ways is vitally important to practical hyper-redundant
robotic applications. The sidewinding motion analyzed in this paper is yet another
means of hyper-redundant robot mobility that can be added to our previously devel-
oped repetoire. Empirical evidence indicates that the sidewinding gait can generate
greater acceleration than other gaits. Thus, sidewinding would be most useful for im-
plementing fast gross displacement, while the algorithms in [2] would be most useful
for precise locomotory movements.

To our knowledge, there have been no previous analytical studies in the robotics
literature concerning sidewinding gaits. However, many researchers have investigated
hyper-redundant, or ‘snake-like’, robotic systems. For a history of the mechanical de-
sign and kinematics research in this area, see [5, 6]. Here we focus on prior work in
hyper-redundant robot locomotion. To our knowledge, the ‘active cord” mechanism of
Hirose and Umetani [7] was the first hyper-redundant robotic system to successfully
demonstrate locomotion. Hirose [8] has also extensively investigated a gait which is
analogous to the undulatory gait commonly employed by many snakes. Hirose and
coworkers have developed and demonstrated numerous mobile hyper-redundant mech-
anisms and mechanical morphologies, see [8, 9] and references therein. While some
of these hyper-redundant mobile robots are a hybrid between a snake-like vehicle and
a wheeled vehicle, we consider locomotion schemes which do not rely on actuatable
wheels, tracks or legs. A conceptual scheme for locomotion of a Variable Geometry
Truss (VGT) robot is discussed in [10], though no explicit analysis or algorithms for
locomotion are given. Others have developed ‘inch-worming’ devices for crawling
through pipes [11].

While the robotics literature is devoid of previous studies on sidewinding gaits,
a number of biologists have examined sidewinding [3, 12-16]. In general, these
previous works were highly qualitative or empirical. Here we give the first quantitative
description of sidewinding motion.
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2. QUALITATIVE DESCRIPTION OF SIDEWINDING LOCOMOTION

Figure 1 schematically depicts a snake undergoing sidewinding locomotion. One
notices two interesting facts while observing a sidewinding snake. First, the snake
appears to be moving sideways. Second, if the snake is moving uniformly across a
sandy surface, a set of parallel tracks, which are neither parallel nor perpendicular
to the direction of motion, will be left in the sand after the snake passes. Let these
tracks be called ground contact tracks (GCTs). For travel in a uniform direction, the
GCTs will be parallel lines. However, Section 5 will show that these tracks may
assume more complicated forms during turning maneuvers. The portions of the snake
in contact with the ground will henceforth be termed the ground contact segments
(GCSs). A GCS is at rest with respect to the ground, i.e. it does not slip on the
terrain.

Net snake displacement, or locomotion, is produced by moving the snake to sequen-
tial GCTs. The sequence of displacements is periodic and proceeds as follows. The
sidewinding cycle begins with the head of the snake lifting from the current GCT and
moving toward the next GCT. The lifted portion is termed an arch segment. The body
is peeled away from the most forward ground contact track until almost one-quater
of the snake’s body is cantilevered. A point just behind the head touches the ground,
establishing a point on the next GCT.

Successive body segments are ‘layed’ down along this newly established GCT,
while segments are simultaneously ‘peeled’ away from the prior GCT. The length of
a fully formed GCS remains constant because the ‘peeling’ and ‘laying’ are done at
the same rate. In this way, a GCS effectively travels the length of a GCT, even though
the GCSs are at rest with respect to the ground. Because each contact segment travels
the length of the entire snake, each line left behind in the sand is approximately the
length of the snake.

After a certain amount of the snake is in contact with the forward GCT, the process
is repeated. For most snakes, the body straddles three GCTs, or two during transitory
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Figure 1. Schematic of a sidewinding snake.
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phases. Thus, the steady state geometry of the sidewinding form is composed of
multiple ground contact and arch segments. The net direction of snake travel is the
sum of two components. The first is parallel to the GCT and arises from the motion
of the ground contact segment along the track. The second component comes from
the fact that the snake is continually reaching toward a new GCT.

One could imagine that sidewinding motion arises from a series of ‘waves’, where
each wave is an arch segment that travels from the head of the snake to the tail.
The GCSs are the interludes between the passing waves. In Section 4 we show that
sidewinding can in fact be generated by a traveling wave of mechanism distortion.
This traveling wave nature of the sidewinding gait is consistent with numerous exper-
imental and analytical studies of the nervous systems of snakes and related animals
(such as lampreys) which locomote via undulatory motion [17]. These studies show
that the component of the nervous system which controls locomotion supports travel-
ing waves of electrical activity. These rhythmic patterns of neural oscillation in turn
drive the muscle contractions which generate undulatory locomotion.

Not all snake species employ sidewinding. Further, a sidewinding species may
choose other gaits in a given situation. There are two plausible reasons why some
snakes choose sidewinding. First, experimental evidence indicates that sidewinding
can generate the greatest acceleration. This is not difficult to understand in light of the
above discussion. The GCSs afford a large surface area of contact between the ground
and the snake. Further, the friction between the snake and the ground is static, and
not sliding, friction. Thus, sidewinding snakes can generate large reaction forces at
the GCS. These forces can in turn generate rapid acceleration. Further, because these
reaction forces are distributed over two or more GCSs, the sidewinding geometry
is very stable. Second, desert dwelling snakes in particular may prefer sidewinding
motion because it prevents overheating while traversing hot desert sands. Only small
portions of the snake are in contact with the hot desert sand, while the remaining
segments are repeatedly cooled when they are lifted in the air.

In the rest of this article, the important kinematic phenomena of the sidewinding
gait are abstracted in terms of a ‘backbone curve’, which is reviewed in the next
section.

3. KINEMATICS OF HYPER-REDUNDANT ROBOT BACKBONE CURVES

We assume that regardless of mechanical implementation, the important macroscopic
features of a hyper-redundant robot can be captured by a backbone curve and as-
sociated set of reference frames which evolve along the curve. A backbone curve
can be thought of as the curve which is a continuous approximation to the spine or
centerline of the hyper-redundant mechanism [6, 18]. A backbone curve parametriza-
tion and set of reference frames are collectively referred to as the backbone reference
set. In this paradigm, inverse kinematics and trajectory planning tasks are reduced
to the determination of the proper time varying behavior of the backbone reference
set. Depending upon the actual mechanical implementation of the robot, the associ-
ated backbone curve may be non-extensible (or fixed length) or extensible (variable
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length). We review here the kinematics of non-extensible backbone curves. Extensi-
ble backbone curve kinematics, which are not needed in the sidewinding gait, can be
found in [5, 6, 18].

3.1. A backbone reference set parametrization

The Cartesian position of points on a non-extensible backbone curve can be paramet-
rized by:

X(s, 1) = /s (o, t) do, (1)
0

where s is the arclength parameter at time ¢, i.e. |3X/3s| = 1. We often assume that
distance is normalized so that s € [0, 1]. X(s, t) is a position vector from the base of
the backbone curve to the point on the backbone curve denoted by curve parameter s.
The base is defined as the point s = 0. (s, ¢) is the unit tangent vector to the curve at
5. The parametrization of equation (1) has the following interpretation. The backbone
curve is ‘grown’ from the base by propagating the curve forward along the backbone
curve tangent vector, which is varying its direction according to (s, t).

Any parametrization of the unit sphere can be used to parametrize u(s, t) in (1).
The explicit time dependence will often be suppressed for clarity of presentation, e.g.,
(s, t) will often be written as #(s), etc. In this work, we select:

i(-) = [sinK () cosT(), cosK(-)cosT(-), sinT()]", )

where K (s) and T (s) are angles which determine the direction of #(s) with respect
to the reference frame attached to the backbone curve base (s = 0) (see Fig. 2). By
convention, the initial conditions K (0) = T'(0) = 0 are assumed.

Note that this alternate parametrization can be related to the classical Frenet—Serret
method for parametrizing curves, as follows:

k2 = (T)? + (K)*cos® T,

. (TK —=TK)cosT — (T)*K sinT (3)
r=KsinT — 5
s

a(s,
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Figure 2. Definitions of K (s,¢) and T(s, !).
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where x and T are, respectively, the curvature and torsion of the backbone curve [19],
and a dot represents differentiation with respect to s.

In summary, the backbone curve, which describes the important macroscopic shape
of a hyper-redundant manipulator, is a function of a reduced set of intrinsic ‘shape
functions’. For non-extensible spatially deforming backbone curves, two intrinsic
functions uniquely define the backbone curve shape. Here we use K (s, ¢) and T (s, 1),
although any spherical parametrization of i(s,t) is acceptable. Alternatively, one
could parametrize the backbone curve with the classical curvature and torsion func-
tions: k(s,t) and t(s,?). The complete configuration of a non-extensible spatial
hyper-redundant robot requires a third independent function, called the roll distribu-
tion [18], which measures how the manipulator twists about the backbone curve. We
neglect this coordinate here, as the sidewinding gait is nominally independent of the
roll distribution.

The backbone curve is an abstraction of a real hyper-redundant robot geometry.
A continuous backbone curve shape, which is computed as the solution to a motion
planning problem, can be directly used to determine the actuator displacements of
hyper-redundant mechanisms with continuously deformable structures, such as those
actuated by tendons or pneumatic/hydraulic structures. However, to apply this frame-
work to discretely segmented hyper-redundant morphologies, a ‘fitting’ procedure is
required. The goal of this fitting procedure is to determine the actuator displacements
of the discrete morphology robot so that it exactly or closely follows the backbone
curve model. We do not dwell on this aspect, as it is adequately treated in [6, 18].
The spatial Stewart platform fitting algorithm of [18] is used in ensuing examples.

4. IDEALIZED SIDEWINDING LOCOMOTION: THE UNIFORM DIRECTION CASE

This section considers in detail how to construct a sidewinding gait for motion in a
uniform direction. The following section will extend these results to enable changes in
motion direction. We assume the hyper-redundant robot is locomoting on flat ground.

In light of the discussion in Section 2, the sidewinding gait can be idealized as
a form of traveling wave locomotion in which the arch segment shape is a ‘wave’
that propagates from the head to the tail. The goal of this section is to synthesize the
backbone curve shape functions which implement the sidewinding gait. For simplicity,
we shall choose to construct the shape functions in the K (s, #)—T (s, ) shape function
coordinates.

The following notation and assumptions are used in the sequel:

(1) The backbone curve is non-extensible, with arclength parameter s. s = 0 is the
‘head’ of the backbone curve.

(2) At a given instant of time, let the snake be in contact with the ground via N
ground contact segments. Index these segments by j, with j = 1 indexing the
segment closest to the head. Note that some of these segments may be not be
fully formed at any instant.

(3) Let the arc-length of the backbone curve segment contained in the jth fully
formed GCS be denoted by L,;. Similarly, let L,; denote the arc-length of the
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Jjth fully formed arch segment. Typically, these lengths are uniform for all fully
formed ground contact and arch segments: Lq; = L, and Ly, = L;. However,
the ensuing analysis does not make this assumpnon Note that Lg; may be zero,
implying that the GCS is merely a point.

4) Let 5 1(t) and s, 2(r) denote the most forward and rearward points of the jth
GCS (see Fig. 3). Similarly, let s. ;3(0) denote the most rearward point of the
Jjth arch segment. s, l(z‘) s, ,(1) and s; 3(f) move along the backbone curve with
wave speed w: ds 1(r)/dt = ds, 2(z‘)/dt =ds, 3(t)/dzf = w. In this idealized flat
ground case where the snake 1s moving in a umform direction, we assume that

1,2(t) = 51,10) + Lg; and sj‘3(t) = sj‘z(t) + Ly;-
The problem of determining the global backbone curve shapes which implement
sidewinding motion can be decomposed into the following steps:

(1) Find the static arch and ground contact segment shapes that satisfy necessary
geometric constraints.

(2) Ensure that the arch and ground contact segment shapes blend smoothly at their
intersection,.

(3) Convert the resulting shape to a traveling wave form. That is, for shape function
S(s,1): 8(s,t) = 8(s — a4y (t), 1), where o, (¢) takes the form:

o (1) :w[t —-[(t, Lat 1)] — Lg, (4)
[4)]

where I(t,1,) = t,[(¢t/tp)] (see [1, 2] for definitions and notation).

The choice of o () in equation (4) induces a constant velocity wave of mechanism
deformation, whose shape is defined by the arch segment geometry, to travel the length
of the backbone curve with speed w. The wave repeats at period (L, + 1)/w, causing
continuous periodic motion. One wave is required for each active arch segment.

'The total backbone shape can then be constructed as the piecewise sum of shape
functions which separately control the shapes of the arch segments and the ground
contact segments:

N
K(s,1) =) Kg;(s —esO)W(s — (), 5,5, )
j=1

(5)

+ Koj(s — e (0)W (s — (1), 5,5, 5),
T(S t)—-—ZTgJ al(r) (S*—a,(t) Sj 1’ ‘,2) (6)

+ Ty (s =)W (s — s (1),5, 55, 3),

where W (-) is a window function:
1 forsels, s

W (s, sn, — [ 7
(5 50 51) {O otherwise. @
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Ka;(s,1), Tyj(s, 1), Kg;(s,t) and Ty, (s, ) are, respectively, the shape functions for
the jth arch and ground contact segments of the backbone curve.

The GCSs are straight lines for sidewinding motion over flat ground. Consequently,
Kg,(s,t) and T, (s, 1) assume the simple forms (for all j):

Kg(s,t) =0, To(s,t) =0. 8)

The next subsection develops constraints for the class of functions which can be arch
segment shape functions.

4.1. The arch segment shape functions

In this section we focus on a single arch segment, as this is the simplest unit of
the sidewinding gait geometry. Nearly all of the important attributes of the gait are
determined by the arch segment.

Consider the jth arch segment. For convenience, we drop the subscript j, though it
is implicit. Assign two local coordinate systems, F, and F3, at s, ;2 and s, 5 (Fig. 3).
Let the x-axes of these coordinate frames, respectively denoted X, o and X, ;30 be
collinear with the GCTs. Equivalently, they are collinear with the backbone curve
tangent at 5 , and s, 5. Let the respective z-axes, denoted by z, 2 and Z, 30 be normal
to the plane of locomotion, while the y-axes are chosen to complete coordlnate system
using the right-hand-rule.

Let us introduce a normalized arc-length on the arch segment: § = (s—s, 72)/ Laj, e
& € [0, 1]. Points along the arch segment, as measured in F5 can be parametnzed as:

R p](é) E_’
5® = | py® | = L, / a(0) do, ©
p;(&) 0

where i, (s) is the tangent vector to the arch segment in the interval s € [s.

j20 53l
Further, we assume that the parametrization equation (2) is in effect:

ia(€) = [ cos Ka(§) cos To(§), sin Ka(§) cos Tu(§), sin Tu(8)]". (10)

Ground Conthgt
/ Segment

Figure 3. Identified points and frames of an arch segment.
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In this local coordinate system, the arch segment must satisfy:

p'0)=x 2 =110, 0]T = tangent to ground contact track at s 129
pl) = 55(8,-'3) - E(sjyg) = [d)}, dy, 017, (11)

p'(1) =%, , = tangent to ground contact track at s 30

where a prime indicates differentiation with respect to s. d, is the distance between
the parallel ground contact tracks, while dj; is the displacement of two ends of the
arch segment along the ground contact line direction (Fig. 3).

For the case of parallel ground contact lines employed in uniform motion, X

j2 =
=[1, 0, 0]". Thus, to satisfy condition (11), we require that:

X,
Ka(sj'z) = Ka(sjj) = Ta(sj'z) = Ta(sjj) =0 (12)

and:

i
L. f cos Ko (£) cos T () d& = di,
0
1
L. f sin Ko (£) cos T(€) d€ = dy, (13)
0

1
La/ sin T, (¢) d& = 0.
0

We further require that:

£
f31nT(E)d§ 0 v&el0,1], (14)
0

so that the arch segment does not touch the ground anywhere between its end points.
Consequently, any functions K, (s), T,(s) which satisfy equations (12)~(14) are suit-
able candidates for the arch shape functions.

The problem of finding the shape of the arch section can also be posed as a hyper-
redundant robot inverse kinematic problem. One can think of the arch segment as the
backbone curve of a hyper-redundant manipulator whose base is located at Ec'(s ) and
whose end-effector must reach x(s 3) with certain constraints on orientation. Two of
the authors have previously developed schemes for solving this problem, using the
intrinsic kinematic modeling scheme of Section 3 [6, 18, 20].

In one approach [20], the calculus of variations is used to find the shape functions
which cause the manipulator (here, the arch segment) to satisfy necessary boundary
conditions while also minimizing a user defined criteria, such as the total bending of
the robot. This approach is physically appealing in this problem because it is likely
that real snakes choose the shape of the arch segment to minimize some criteria, such
as energy or total bending. However, this approach is computationally less attractive
for the current application.
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Alternatively, a ‘modal’ approach can be used to efficiently compute inverse kine-
matic solutions in a practically useful way [6, 18]. In this approach, the backbone
curve shape functions are restricted to a modal form:

Nk Ng+Nt
Ko, ) =Y ai(®)pi(s);  Tals,)= Y ai(t)di(s). (15)
i=l i=Ng+1

The {¢;(s)} are termed mode functions, while the {a;(¢)} are termed modal participa-
tion factors. Nx and Ny are, respectively, the number of modes distributed in the K
and T shape functions. Their number must equal or exceed the number of geometric
constraints on the respective shape functions. The {¢;} are specified by the user. For
given {¢;}, the arch segment shape is determined by the {a;}. The inverse kinematic
problem reduces to the search for the proper {a;} that satisfy the constraints. The next
section shows by example how the mode shapes can be chosen to reflect the physical
characteristics of the problem.

4.2. An example

In general, F3 may be displaced relative to F, with 6 d.o.f. However, for uniform
motion on flat ground, F3 has only two relative degrees of freedom with respect to
F>, and thus only one mode need be distributed in each of the functions K, and T,,.
Assume K, and T, have the form:

Ka(s, 1) = a,(t)$,(s), Ta(s, 1) = ay(1)d,(s). (16)

To satisfy (12), ¢,(s) and ¢,(s) must assume zero value at the end points of the arch
segment: ¢, (sj ) =&, (sj 3 = (/)2(s] ) = ¢2(s 3) = (. Additional physical insight
mto reasonable choices for ¢, (s) and ¢,(s) can be realized as follows.

Note that sin T, (s) encodes the vertical component of the tangent to the arch segment
backbone curve. The vertical height of the arch segment should be increasing from
zeroats;,toa point roughly in the middle of the arch segment, and then decreasing
to zero afterwards. At the maximum height of the arch segment, T, assumes zero
value. While T,(s) need not have any symmetry, for simplicity’s sake we assume
¢, (s) is odd about the midpoint of the interval [s; ,, s, ;1. Thus, the maximum height
of the arch segment occurs at § = 1/2 and the arch height is uniformly increasing or
decreasing on either side of this point.

K, nominally encodes the angle which the projection of #(s) onto the locomotion
plane makes with respect to the x,-axis. Though K,(s) need not have any symmetry,
we again assume that K,(s) is even about the midpoint of the arch segment. In this
way, the arch segment has a nominally ‘S-shaped’ geometry.

Among the simplest shape functions which satisfy the above constraints and as-
sumptions are the following piecewise continuous functions:

2ng for £ € [0, 1/2],

¢, () = {271?(1 — &) for& e[1/2,1],

a7
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2mé for & € [0, 1/4],
¢,(5) = (1 —2&) for& €[1/4,3/4], (18)
2n(é — 1) for & €([3/4,1].
Substituting (17) and (18) into (2), a tedious calculation shows that at & = 1:

na 1

2cos | —  [ma . /ma
p;(1) = xl(s“) - xl(sj‘z) = 7r—(;2—<ji—2_2- [al sin <—-2—l> —a, sin (-—-2-2)][,(,,

1 2

. 71.'[11
2sin (*2—) ) ma, ] Tia,
pz(l) == xz(sj'_,,) - xz(sj'z) = ;EM a; sin "-2— —a, Sin T La,

P3(1) = %55 5) — x3(5;,) = 0.
(19)
Dividing the p, component by the p, component, it can be seen that:

A

2
a; = = Atan 2[(x2(sj,3) - xz(sj.z))’ (‘xl(sj,3) - xl(sj,z))] =

- Atan2[dy, d]. (20)

Squaring and adding the first two components of (19), a, can be found as the root to
the following transcendental equation:

Ba’ — a,sin (71;—2> = Ba? —a, sin (%) 1)

where a, assumes the value computed using equation (20). This equation will have
two roots in a,, but due to symmetry properties of ¢, (s), both roots lead to the exact
same shape. Figure 4 shows the actual geometry of an arch segment constructed using
these shape functions for the case (p,(1), p,(1), p5(1)) = (0.3, 0.6, 0.0).

These simple mode functions are advantageous because they lead to nearly closed
form solutions for the desired modal participation factor values. However, there
are infinitely many other modal expansions of K, and T, which satisfy constraints
(12)~(14) but do not have closed form solutions as above. The modal participation
factors can be efficiently computed in these cases by using a method analogous to the
‘resolved’ rate trajectory planning approach. This method is derived as follows. The
derivative of the forward kinematic map for a backbone curve segment restricted to
modal form is:

p =74, (22)
where T is the modal Jacobian with elements:
ap; (1

Ty = 220 23)
day

which is analogous to the traditional manipulator Jacobian matrix, only now modal
participation factors are used instead of joint angles.
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Figure 4. Example of arch segment geometry.

Equation (22) can be used in two ways. In the first method, if p is time varying
(as in Section 5) then (22) can be solved for a. Assuming that a modal participation
factor initial condition, a(0), is known, the inverse of (22) can be numerically inte-
grated to find the time varying modal participation factors which cause the tip of the
arch segment to track p(t).

Equation (22) can also be used in an iterative fashion to determine the correct a for
a given p. For a given initial guess of modal participation factors, o, the forward
kinematic equations can be exactly or numerically solved to find p(1). This position
will differ from the desired position because c:zo is an estimate. The following iteration
will converge to the proper modal participation factors:

G = dg- +a7—1(2k—1)(ﬁu - .B(;k-h 1)). (24)

P is the desired value of p(1) (the touch down point of the arch segment as measured
in F,), while [)’(fik, 1) is the computed forward kinematics using the estimated modal
participation values, dr. The index k indicates the iteration number. « is a positive
scalar which controls the convergence rate of the iteration. For small o (x < 1), this
iteration will converge to the proper set of modal participation factors which solves
the modal inverse kinematic problem.

It is not always possible to compute the elements of the modal Jacobian in closed
form. However, it is always possible to numerically compute the components using
Liebnitz’s rule. For example, if K, and T, have the forms of equation (16), T is a
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2 x 2 matrix with components:

3p, (1) 1
‘J"ll — freeed L[IJ ¢1 (g:) COs Kwave (E) cos Twave (s) ds’
aal 0
1
le — a—’é—la—(-!—) = —LaJ /(; ¢2(§) Sin Kwave(g) Sln TW&V&(S) d&"
2 1 (25)
ap,(1) :
Ty = —2 = —L,, / @, (&) sin Kyaye (€) €08 Tyave (£) dE,
Bal 0
1
ras D _ f $5(€) €05 Kuyaye (€) 5in Tyaye (8 dE.
8a2 0

Figure 5 shows three different arch segment backbone curve shapes side by side
to indicate that a wide variety of mode shapes lead to very similar arch segment
geometry. In each case, the participation factors were computed using the modal
Jacobian approach. Thus we see that the choice of particular mode functions is often
not highly critical to the success of this method.

Also note that a given choice of mode functions restricts the ‘workspace’ of the arch
segment. That is, there is a limited range of location of the tip of the arch segment
relative to the base of the arch segment for a given set of modes. This restriction in
turn will limit the range of directions which the sidewinding robot can move.

In Fig. 6, the arch and ground contact segments are assembled into an entire snake.
This mechanism will sidewind if the backbone curve segments are given the traveling
wave form of (5) and (6). Figure 7 shows a sequence from a computer simulation of
the sidewinding gait described in this section. The lines on the terrain surface show
the evolution of the contact points as the sidewinding gait progresses.

If we define the ‘average velocity’, (v), of the sidewinding gait to be the net
displacement that the head or tail of the backbone curve makes during one complete

—— N\

 T—

Figure 5. Three different arch segment shapes.
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Figure 6. ldealized sidewinding shape.

Figure 7. Stuart platform ‘fitted’ to backbone curve of Fig. 6.

wave cycle, then it can be shown that:

a— 2 2
o) = NS, = dy) tdp 6

w

where we assume that L,; = L, for all j.

Note that the sidewinding gaits discussed in this section can also be implemented
in robotic mechanisms which do not have a continuous morphology. Figure 8§ shows
a robot consisting of a concatenation of Stuart platforms. The fitting method of [18]
is used to ‘fit’ this structure to the continuous backbone curve solutions. Figure 9
shows snapshots from a computer simulation in which this discrete morphology robot
implements the sidewinding gait.

Note that in this section we assumed that the number of modes distributed in the
arch segment mode functions equaled the number of geometric constraints on the arch
segments (two). Additional modes can be added to generate more complex arch seg-
ment shapes. In this case, the modal Jacobian inverse in equation (24) is replaced by
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Figure 8. Snapshots of computer simulation of sidewinding kinematics.

its pseudo-inverse. Iteration of (24) will converge to the minimum norm modal par-
ticipation factors which satisfy the geometric constraints. Modal Jacobian null space
terms can be added to modify the internal geometry of the arch segment [6, 18].

5. TURNING AND CHANGES IN DIRECTION

This section considers ways in which a sidewinding hyper-redundant robot could
change the direction of its nominal motion. Recall that the direction of travel is the
sum of a component parallel to the GCT and one along a vector from the beginning
of one arch segment to the beginning of the next. To turn, at least one of these
components must change. Below we outline methods for modifying the direction of
travel by modifying these components. Note that none of these methods involves
sliding and thus the GCSs are always in contact with the environment via static
friction.

5.1. Turning via head placement

A change in direction can be most simply effected by placing the head on the next
GCT at a different relative position. This effect is demonstrated in Fig. 10 which
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Figure 9. Discrete morphology robot implementing sidewinding motion.

depicts an overhead view of the backbone curve shape during a sequence in which
the head abruptly changes it placement. Even though the GCTs remain parallel and
the same distance apart, changing the arch displacement vector alters the net direction
of travel. Note that it also alters the shape of the robot. This may be unacceptable in
some cases, as the new shape required to move in a particular direction may lead to
less efficient motion.

Temporary deviations from the nominal direction of motion can be implemented by
a ‘jog’ (Fig. 11), in which the arch placement is altered only between one pair (or
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Figure 10. Turning by alternation of head placement.

Figure 11. A ‘jog’ in arch placement.

a few pairs) of adjacent GCTs. The net direction of motion is the same before and
after the jog. However, the path of the motion is displaced. This behavior is useful
for detouring around obstacles. Since the robot has the same shape before and after
the jog, this maneuver does not substantially slow the robot’s progress.

5.2. Turning via skew GCTs

A change in direction can also be implemented by changing the angle between two
successive GCTs from parallel to skew (Fig. 12). This is done during the arch segment
forming phase. The head touches down on the next GCT so that the backbone curve
tangent is at an angle to the previous track. All subsequent GCTs are parallel to this
new skew track. This effects a change in motion in which the sidewinder shape is
the same before and after the transition caused by the skew displacement.
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Figure 12. Turning via skew ground contact lines.

There is a limit of on the magnitude of the direction change that can be made using
this method. The limiting process depends on the direction of the turn. If the skew
angle is too large, then either the robot must intersect itself at some point during the
motion or the distance between the skew GCTs may exceed the reach of the arch
segment. Thus, this method is limited to shallow turns. Also note that in this form
of turning, the shape of the arch segment must continuously change to accommodate
the varying touch-down point. Thus, the arch segment can no longer be a traveling
wave with a fixed wave shape. The modal Jacobian method discussed in Section 4
can be used to compute the values of the modal participation factors at each instant
of time during the turning transition. However, at least three modes are required.

5.3. Turning by curvilinear GCTs

Turning can also be implemented by ‘bending’ the GCTs during the turning sequence.
As in the skew method above, the ground contact lines are parallel before and after
a turning transition region. However, in the turning transition region, the ground
contact lines are curved to smoothly blend the two sets of parallel GCTs. During the

Figure 13. Turning via curved GCTs.
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Figure 14. Snapshots of curvilinear turning simulation,

turning process, robot segments are laid down along the curved ground contact lines
(see Figs 13 and 14). Turning is most easily accomplished if the length of the ground
contacts segments is small.

This method of turning not only affects the arch segment shape in the transition
region, but also affects the whole sidewinder geometry. This turning process involves
a ‘twisting’ of the arch segments as the robot moves through the transition, e.g. Fig. 15
shows a top view and a side view of the arch segment during the turning process. The
touch-down point for each arch segment is slowly rotated so that the offset vector
for each segment maintains the same length, but changes direction. This, like the
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Figure 15. Side and top views of arch segment backbone curve during curvilinear turn sequence.

placement method of Section 5.1, involves using a less than optimal shape during
the turning transition. But unlike the head placement method, a global change of
direction can be accomplished because the direction of the parallel ground tracks has
changed. This method can implement turns which are much sharper than the skew
line method.

The major disadvantage of this turning method is computational cost. The arch
segment shapes are time varying, and each segment shape is different. Thus, the
modal Jacobian computational method must be repeatedly used on each arc segment.
Further, at least three mode shapes are required for each arch segment.

6. CONCLUSION

This paper presented a novel analysis and a set of algorithms for hyper-redundant
robot locomotion which is analogous to the sidewinding motion of desert snakes.
The analysis in this paper focused on continuous morphology mechanisms, but we
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showed by way of example that a discrete mechanical structure can also implement
this gait.

This gait, which extends our previously developed repetoire of hyper-redundant
locomotion gaits, is most useful for fast gross displacement. This paper did not
consider sidewinding locomotion over uneven terrain. Sidewinding is really only
feasible and advantageous over relatively level ground. We [2] developed algorithms
for curvilinear locomotion over uneven terrain and used the same kinematic framework
as in this paper, and thus it is possible to smoothly transition from a sidewinding gait
to the curvilinear traveling or stationary wave gaits studied in [2].
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