=3 Autonomous Robots 10, 91-106, 2001
X (©) 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Modular Robot Motion Planning Using Similarity Metrics

CHIH-JUNG CHIANG AND GREGORY S. CHIRIKIJIAN
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
chiang @caesar.me.jhu.edu

gregc @jhu.edu

Abstract. Inorder for a modular self-reconfigurable robotic system to autonomously change from its current state
to a desired one, it is critical to have a cost function (or metric) that reflects the effort required to reconfigure. A
reconfiguration sequence can consist of single module motions, or the motion of a “branch” of modules. For single
module motions, the minimization of metrics on the set of sets of module center locations serves as the driving force
for reconfiguration. For branch motions, the question becomes which branches should be moved so as to minimize
overall effort. Another way to view this is as a pattern matching problem in which the desired configuration is
viewed as a void, and we seek branch motions that best fill the void. A precise definition of goodness of fit is
therefore required. In this paper, we address the fundamental question of how closely geometric figures can be made
to match under a given group of transformations (e.g., rigid-body motions), and what it means to bisect two shapes.

We illustrate these ideas in the context of applications in modular robot motion planning.

Keywords: metric, group, optimal assignment, morphing, pattern matching, modular robots

1. Introduction

In this paper we review and apply metrics between
shapes consisting of finite sets of points in Euclidean
space. We review some well-known metrics in com-
putational geometry and compare the applicability
and computational requirements of each metric in the
context of self-reconfiguring robots. All of the met-
rics considered provide means of judging how similar
geometric objects are.

The particular application explored here is modular
self-reconfigurable robot motion planning. A number
of researchers have explored such robots, with Fukuda
and Kawauchi (1990), Fukuda et al. (1991), Kokaji
(1988), and Kelmar and Khosla (1988) having paved
the way. Fukuda and Kawauchi (1990), and Fukuda
et al. (1991) considered cellular robotic systems in
which a heterogeneous collection of independent spe-
cialized modules are coordinated. Beni and Hackwood
and coworkers addressed theorerical issues relating to
cellular robotic systems (Beni, 1988; Hackwood and

Wang, 1988). Yim (1993, 1994) considered modular
robots composed of a few basic elements which can
be composed into complex systems, and used for vari-
ous modes of locomotion. Murata et al. (1994) consid-
ered a ‘fractal’ system composed of modules with zero
kinematic mobility, but which can ‘walk’ over each
other in discrete quanta due to changes in the polar-
ity of magnetic fields. Chirikjian (1993, 1994) intro-
duced the concept of “metamorphic” robots consist-
ing of a homogeneous collection of modules, and with
coworkers proved certain things about the computa-
tional complexity of the self-reconfiguration process
(Chirikjian et al., 1996; Pamecha et al., 1997). Chen
and Burdick (1993) provided a tool for defining equiv-
alence classes of modular robot configuration with
the same shape and morphological function. Hamlin
and Sanderson (1997) considered reconfigurable truss
structures. Pamecha et al. (1996) implemented meta-
morphic robotic systems composed of several two-
dimensional module designs. Murata et al. (1998)
considered a system of modules that can achieve

92 Chiang and Chirikjian

three-dimensional self-reconfiguration. Kotay et al.
(1999a) and Kotay et al. (1999b) described a three-
dimensional system composed of molecule robots that
can be reduced to metamorphic robots. A number of re-
cent works have addressed modular self-reconfigurable
systems to locomote over steps (Hosokawa et al.,
1999) and for use as deployable structures (Lipson and
Pollack, 2000).

The remainder of this paper is structured as follows.
In Section 2, basic definitions and examples which
will be used throughout the paper are presented. In
Section 3 applications in modular robot motion plan-
ning are discussed. In Section 4 we present a new
algorithm for self-reconfiguration based on recursively
bisecting robot configurations. In Section 5 we present
numerical results.

2. General Definitions

In this section we provide general mathematical def-
initions which will be used throughout this paper.
Section 2.1 reviews the concept of a group, and
provides several examples of geometric importance.
Section 2.2 reviews the definition of a metric and pro-
vides examples. Section 2.3 examines metrics on equiv-
alence classes generated by the action of a group on a
metric space.

2.1. Defining Properties and Examples of Groups

A group (G, o) is a set, G, together with a binary op-
eration, o!, such that the following group axioms are
satisfied (Chirikjian and Kyatkin, 2000):

- 810(82083) =(81082)083V8i €G.

. There exists an element e € G such that goe=g
VgeG.

3. There exists a g=! € G such that g=' 0 g = e for

each g € G.

[N R

A groupis said to acton a set, X, if forall x € X and
all g € G, g - x is defined in such a way that g - x € X,
and (g1 08)-x = g1 -(82-x) Vg, 81,8 € G and
e-x =X.

A very important group in the context of robotics is
the group of rigid-body motions. This group, also called
the special Euclidean group or Euclidean motion group,
is denoted as SE(N), consists of all pairs g = (R, b),
where Risan N x N rotation matrix and b € RV It has

the group law g1 08> = (R R, R1b, + by). This group
actsonRY asx’ = Rx + b. In addition to being a group,
SE(N) can be viewed as an N(N + 1)/2-dimensional
manifold.

Another important group is the group of permuta-
tions of n letters, denoted IT,. It is a finite group con-
taining n! elements. We denote elements of IT,, as

1 2 . n
”=<n<1> @) - n(n))‘

We will use both of these groups in subsequent sec-
tions of this paper.

2.2. Definitions and Examples of Metrics
Given a set S, a metric is a nonnegative real-valued

function,d : § x § — R, which has the following prop-
erties (Munkres, 1975; Zikan, 1990):

VA,BeS, d(A,B)>0 and d(A, B) =d(B, A)
d(A,B)=0<= A=B
VA,B,C eS8, d(A,B)+d(B,C)>d(A,C).

The pair (S, d) is called a metric space.

Note that we will be dealing with metrics on sets
of points (e.g., measuring distance between any two
points in RY) and sets of sets of points (e.g., measuring
distance between any two sets of points in RY). When
the distinction is required, we will use S to represent
a set of points and S to represent a set of sets. It will
be clear from the context when this distinction needs
to be made.

It is interesting to note that given metric spaces
(S,dy) and (S,d;) then the following are metric
spaces: (a) (S, a1d; + aady) for ap, ap e RY; (b) (S,
max(dy, db); (©) (S, f(dy)) where f(0)=0, f'(0) >
0, f/(xX) > Oand f (x) < O for all x € R". In
fact, f(x) need not even be differentiable, as long
as it is positive and nondecreasing with nonincreas-
ing slope. Concrete examples of acceptable functions,
S x),are f(x)=log(1+x), f(x) =x/(1+x), f(x) =
min(x, T) for some fixed threshold T e R*, and
fx)=x"for0O<r <1.

One often encounters functions which are promising
because they satisfy the triangle inequality, but fail one
or more of the other metric properties. For example,
if A={ay,...,a,}and B = {by, ..., b, } are sets of
elements such that g;, b; € S forall i and j, and S is
the set of all finite point sets with elements in S (i.e.,

a,b € Sand A, B € S) then a directed Hausdorff
metric on S is defined as:

h(A, B) = max mind(a, b)
acA beB

where d is any metric on S. It is well known that the
triangle inequality holds for h(A, B) (see e.g., Zikan,
1990).

Since in general h(A, B) # h(B, A) we may “re-
pair” this by defining the undirected Hausdorff distance
as

H(A, B) =max(h(A, B), h(B, A)). (1)

The undirected Hausdorff distance does satisfy the met-
ric properties (see e.g., Alt et al., 1988).

A metric that we have shown to be useful in the
context of modular robot motion planning, which we
refer to as the optimal assignment metric, is defined as
(Chirikjian et al, 1996; Pamecha et al., 1997):

8 (A, B) = min ”

mell,

n
> dr(ai baiy). ()
i=1
where IT, is the set of all possible matchings/

permutations of labels of the n points and A and B
each have n points.

2.3. Metrics on Equivalence Classes

In this subsection we examine how metrics can be used
not only to provide a measure of distance between ob-
jects in space, but also to determine how similar two
objects are.

A metricd:S x S — R is said to be G-invariant if
d(A,B) = d(g-A,g- B)Vg € G for some group
G and all A, B € S under the closure condition g - A,
g-BeS.

For example, if S= RY and A, BeS are sets
of points in RY, then the undirected Hausdorff
metric, H(A, B), and the optimal assignment met-
ric, 8P’ (A, B), are SE(N)-invariant when d(a, b) =
d>(a, b) (the Euclidean metric). That is, these metrics
on point sets inherit invariance under rotation and trans-
lation from the underlying metric.

Two objects A and B are said to be similar? (or equiv-
alent under the action of a group G) if d(A,g-B) =0
for some g € G and the G-invariant metric d(-, -).

Recall that the concept of “equivalence” of objects
A and B (denoted A ~ B) satisfies the properties of

Modular Robot Motion Planning 93

reflexivity (A ~ A), symmetry (if A ~ Bthen B ~ A),
and transitivity if A ~ B and B ~ C, then A ~ C).
An equivalence class, [A] € S/ ~, determined by
A€ Sisdefined as [A]={A" € S: A"~ A}. Any set S
can be decomposed into disjoint equivalence classes
(Munkres, 1975).

‘We note that the function

dg(A, B) = mind(A, g o B) (3)
geG

is a metric on the set of all equivalence classes of S
(which has elements [A]={A'€S:d(A,go A) =
0 for some g € G}) whend (A, B) is a G-invariant met-
ric on S. See Chirikjian and Kyatkin (2000) for a proof
of this.

3. Applications in Modular Robot
Motion Planning

This section describes the application of the optimal
assignment metric 8V (-, -) to the motion planning of
modular robots. We begin by reviewing the concept of a
“metamorphic” robot, illustrate the locomotion of such
robots, and discuss their configuration space. Finally,
applications of the optimal assignment metric to this
problem are discussed.

3.1. Defining Properties and an Example

A metamorphic system (Chirikjian, 1994) is a col-
lection of independently controlled robotic modules,
each of which has the ability to connect, disconnect,
and climb over adjacent modules. Each module allows
power and information to flow through itself and to its
neighbors. A change in the metamorphic robot topol-
ogy results from the locomotion of each module over its
neighbors. Thus a metamorphic system has the ability
to dynamically self-reconfigure.

Metamorphic systems can be viewed as a large
swarm (or colony) of connected robots which collec-
tively act as a single entity. What distinguishes meta-
morphic systems from other reconfigurable robots is
that they possess all of the following properties:

1. All modules have the same physical structure, and
each must have complete computational and com-
munication functionality.

2. Symmetries in the mechanical structure of the mod-
ules must be such that they fill planar and spatial
regions with minimal gaps.

94 Chiang and Chirikjian

3. The modules must each be kinematically sufficient
with respect to the task of locomotion, i.e., they must
have enough degrees of freedom to be able to ‘walk’
over adjacent modules so that they can reconfigure
without outside help.

4. Modules must adhere to adjacent modules, e.g.,
there must be electromechanical or electromag-
netic connectors between modules which can carry
load.

Potential applications of metamorphic systems com-
posed of a large number of modules include : (1) obsta-
cle avoidance in highly constrained and unstructured
environments; (2) ‘growing’ structures composed of
modules to form bridges, buttresses, and other civil
structures in times of emergency; (3) envelopment of
objects, such as recovering satellites from space.

One design which satisfies all the properties men-
tioned above is based on square modules. The square
modules can completely fill the plane without any gaps.
The centers of the square modules form a Cartesian lat-
tice and each module can be viewed as part of a lattice
structure. The fact that the centers of the square mod-
ules form a Cartesian lattice is important since we can
adapt this concept and expand it to the spatial case with
a cubic module design.

Each module, as shown in Fig. 1, carries male or
female connectors on each of its edges. Because of the
symmetry of the modules, the locomotion always re-
sults in edges with opposite polarity (i.e., male/female
connectors) meeting with each other. This symmetry is
maintained over the entire structure.

The male connector consists of two parallel plates
with space in between. There is one driving gear and
two rollers mounted on the bottom plate. An H-shaped
mating link called the shuttle with racks attached to
both sides are driven by the driving gear. The shuttle
remains connected to the male connector while sliding
back and forth in the rails formed by the tracks of both
male and female connectors.

The female connector consists of three parallel plates
with seven gears mounted on the middle plate. The two
outermost gears mesh with the rack of the shuttle of its
neighboring male connector. One of these two gears is
actuated by a D.C. motor and serves as a driving gear
for the female connector. The top and bottom plates,
called the jaws, can slide open or close along three
guiding rods perpendicular to the plates. This opening
and closing jaw movement is actuated by a D.C. motor.
The jaws remain closed unless there is another module

Figure 1. Motion sequence demonstrating the diagonal transfor-
mation.

coming from the direction perpendicular to the edge of
the female connector. In that case, the jaws open so that
the shuttle of the incoming module can come in. The
shuttle is locked in position when the jaws close, thus
completing the mating process. In the case of releasing
the connection, we have to follow the above sequence in
reverse order. A total of six D.C. motors are needed in a
single module, two each for operating the driving gears

in the male connectors, the driving gears in the female
connectors, and the jaws opening/closing mechanisms.

3.2. The Locomotion Process

The reconfiguration of metamorphic robots with square
modules takes place by the locomotion of modules
around each other while remaining connected to each
other at all times. There are two types of such ‘slid-
ing’ motion: (a) Vertical or horizontal motion, which
involves the motion of a mobile module in the vertical
or horizontal direction; (b) Diagonal motion, which in-
volves the motion of a moving module in the diagonal
direction.

The locomotion procedure for vertical or horizontal
motion is first to identify the mating pair of connectors
and actuate the driving gear of the female connector
to move the module in the desired direction. Once the
mobile module is making the initial connection with
the new neighboring module, the driving gear of the
female connector in the new mating pair of connec-
tors is actuated until the mobile module reached the
designated position.

The motion sequence demonstrating the locomotion
procedure for diagonal motion is shown in Fig. 1, steps
1 to 5. Step 1 shows the original position of the two
adjacent modules; the left one, the mobile module, is
about to move to its diagonal direction to the top of the
fixed module. In step 2 the driving gear of the female
connector drives the mobile module halfway up then
the driving gear of the male connector takes over and
moves the mobile module one full module distance
up. In step 3 the driving gear of the male connector
in the mobile module slides the shuttle one half of a
module distance to the right to make connection with
the female connector for the fixed module. In step 4 the
connection between the first pair of connectors releases
and the shuttle moves back up to its normal position.
In step 5 the driving gear for the male connector brings
the shuttle back to its normal position while the driving
gear for the female connector moves the mobile module
further right to the final position. This completes one
diagonal move of the module.

3.3. Configuration Space of Metamorphic Robots

The configuration space of a metamorphic robot can be
viewed as a graph where each vertex represents a single
configuration of the robot, and each edge represents the

Modular Robot Motion Planning 95

8 (2) 1 (2) 7

(1) (1)
13 18 5 15 9

(0 \ @ (2) (1)
(2) (2 (2) (2)
4 ¢ L W

2 2
2) (2) (2) 2)
@ N @ e

1 6 1
(1))))

12 (2)

10

e

(2) 11

Figure 2. The C-space graph showing the neighboring relations of
the configurations.

fewest moves required to get from one configuration to
the next closest one. In the case of square modules, we
count a diagonal move as two moves, and sliding from
one lattice space to an adjacent one as a single move.
The graph shown in Fig. 2 is then the configuration
space for ametamorphic robot with two square modules
which may move relative to a fixed (hatched) square
base. Each vertex in this graph corresponds to one of
the configurations shown in Fig. 3.

The motion planning problem for metamorphic
robots can be formulated as the shortest path in this
configuration space graph. The only problem with this
approach is that the graph size grows exponentially in
the number of movable modules. Thus, it is not practi-
cal to do a graph search when there are many movable
modules, and a heuristic approach is required. In prac-
tice, the optimal assignment metric

§D(A, B) = min Zd1 (ai, bn(i))
i=1

well, “—

performs quite well as an estimate of the actual number
of module moves required to get from one configura-
tion to another, where d; (-, -) is the Cartesian lattice
distance (which reflects module motion constraints).
A good lower bound on the minimal number of
moves required to reconfigure a metamorphic robot is
also obtained by using the lattice metric and optimal
assignment (Pamecha et al., 1997). This lower bound
is based on the fact that the minimal number of single-
module moves required for a single module motion in a

96 Chiang and Chirikjian

N

1

|
]
%

N

N
\
N

—_
—_—

N
B
|

N

15 16 17 18
7] 7 [
7 Ll A

Figure 3. Configurations of a metamorphic robot with 2 movable
square modules.

lattice will be no less than the lattice distance between
the initial and final spaces. Furthermore, if it were pos-
sible to track the sequence of motions of an optimally
reconfiguring metamorphic robot, we could compute
the lattice distance between each module in its initial
and final lattice spaces, and the sum would be a lower
bound on the total number of module motions. Since
this is not possible, we will assign modules in two con-
figurations in such a way that the sum of the lattice dis-
tances between matched modules is minimized over all
possible matchings. This minimal sum will be at most
the aforementioned lower bound. Since this is some-
thing that can be computed relatively efficiently, this is
the lower bound we will use. Thus the optimal assign-
ment metric can be used as both a cost function, and
lower bound on the number of single-module moves
required to complete the reconfiguration process. A
detailed comparison of this in the context of the meta-
morphic robot motion planning problem for the case
of hexagonal modules can be found in Pamecha et al.
(1997).

5]
+
7 T AR

~~

a) (b) (c)

Figure 4. (a) present configuration, (b) new configuration, (c)
module labeling.

3.4. An Example Calculation

In this subsection we use one example to demonstrate
how an optimal assignment is calculated.

Consider the example in Fig. 4. Figure 4(a) shows
the present configuration, Fig. 4(b) shows the new con-
figuration and Fig. 4(c) shows a labeling of the modules
in the two configurations.

The matrix D = [d;;:] formed by the distances be-
tween various modules is shown in Eq. (4).

23

1 /2 3 4
D=2]|3 4 5)
3\4 5 6

Performing column operations (subtracting /,, the
minimum element of each column, from each column
respectively), we get the matrix in Eq. (5). Similarly
performing the row operations, we get the reduced
matrix in Eq. (6).

000

D=|1 11 (5)
2 2 2
o] o o

D=|o0 [o] o O
o o [o]

The reduced matrix D contains several combinations
of three independent s any of which solves the prob-
lem and gives the value of 6 (A, B) by summing en-
tries in the original matrix in the same places as the
independent zeroes.

Choosing the boxed solution above, the value of
8W(A, B) is given as,

SV(A,B)=diy +dyy +dsy =2+4+6=12.

2] 1] [2]
3 3 1|
7 %
Initial €D} (2)
Configuration
(2]
| 3] 3] 2 3]
1 | 1 1 | 2|
(3) (4) (5)
(3] [3]
2l 2] 3
(5)) Final

Configuration

Figure5. A complete reconfiguration sequence involving two serial
configurations.

The minimal value is achieved by matching modules
with the same subscripts in the above expression.

Figure 5 shows a complete reconfiguration sequence
involving two serial structures. For each move, the
moving module moves into an empty space while re-
maining connected to at least one other module. Also,
at each time, only one module is allowed to move.

Since we are counting a diagonal move as two moves,
the above reconfiguration sequence takes 12 moves
in total. It is also the minimum number of moves
required to realize the reconfiguration process since
8MW (A, B) = 12, and we know this is a lower bound
on the minimal number of moves.

4. Using Metrics for Bisecting Configurations

The motivation for bisecting configurations is to divide
the motion planning problem into smaller pieces by
generating a certain number of intermediate configura-
tions and use them as consecutive goal configurations
to improve the overall performance and avoid some lo-
cal minima during normal motion planning processes.
Theoretically, if we keep bisecting configurations the
distance between consecutive intermediate configura-
tions will be down to either 1 or 2 (within a single
module motion). By doing so, we can put the starting

Modular Robot Motion Planning 97

and final configurations together with these intermedi-
ate configurations in sequence thus solving the motion
planning problem without going through the simulated
annealing algorithm used in Pamecha et al. (1997).

4.1. The Basic Idea

This problem is very similar to the shape interpolation
problem of two given sets of points. In shape interpo-
lation, we first find an optimal assignment between the
two sets of points then calculate the “average” set of
points in the middle.

However, there are several essential aspects in bi-
secting configurations that mark the differences be-
tween these two problems. First of all, we have to make
sure the new configuration generated is connected to
meet the kinematic property of a metamorphic robotic
system. Secondly, the mid-configuration must have the
same number of modules as the starting and final con-
figurations. Since all modules must be placed on lattice
points only, it is possible that there is more than one
average of matched pairs occupying the same position.
In such cases, we have to put back more modules un-
til the numbers of modules agree. Thirdly, we have to
be sure that the mid-configuration is properly “cen-
tered”, i.e., the distance between starting configuration
and mid-configuration and the distance between mid-
configuration and final configuration should be approx-
imately the same.

A “straightforward” bisection, which simply takes
the average of each optimally assigned pair of mod-
ules, will not work. A bisection following this method
usually will result in overlapping module paths and/or
modules not sitting on the lattice. For an illustration
of a straightforward bisection, consider the following
example. Figure 6(a) shows the initial configuration of
arobot with 3 movable modules, Fig. 6(b) shows the fi-
nal configuration and Fig. 6(c) shows the overlap view
of the two configurations.

1’

o
1,3

(@) ©)

Figure 6. Straightforward bisection example: (a) initial configura-
tion, (b) final configuration, (c) overlap.

98 Chiang and Chirikjian

5 T
L L

(a) (b)

Figure7. Optimally assigned paths for two possible optimal assign-
ments: (a) 1 - 3,2—->2,3—>1;b)1—>3,2—1,3->2.

@ (b)

Figure 8. One possible bisected configuration for each optimal
assignment.

There are two sets of possible optimal assignments
for the given initial and final configurations:

@l —>3,2—-2,3->1
and (b)1 - 3,2 1,372

Figure 7 shows the respective optimally assigned paths
of the two cases. Figure 8 shows one possible bisected
configuration for each matching. From Fig. 8(a) we
can see that a straightforward bisection can have over-
lapped modules and the bisected configuration is not
connected. From Fig. 8(b) we see that not all modules
are on the lattice. Clearly, this method does not work.

In the next subsection, a method to grow the mid-
configuration according to an algorithm for distributing
a weight index to proper lattice grid points is described.
Any mid-configurations generated by this method will
meet the three characteristics discussed above.

4.2. Weight Distribution Algorithm

The first step in bisection configurations is to find an
optimal assignment between the starting and final con-
figurations. For each pair of matched modules, calcu-
late the average of the x and y coordinates to give the
coordinates of a module in the middle. Since each mod-
ule has to fall on the square lattice, non-integer module
coordinates are not accepted. We have to find a way to
distribute the unit weight associated with the module
with non-integer coordinate to several adjacent lattice
points when this happens.

Let the unit weight of one module be 16 (it will
become clear later why 16 is chosen). There are four
possible combinations of the (x, y) coordinates of the
averaged position of each matched pair.

1. Both x and y coordinates are integers. In this case,
the total weight of 16 is placed at a single point
(x,).

2. Only the x coordinate is an integer. In this case,
the weight is distributed equally between 2 adjacent
points (x,y — 1/2) and (x, y + 1/2) so that each
point has a weight of 8.

3. Only the y coordinate is an integer. In this case,
the weight is distributed equally between 2 adjacent
points (x — 1/2,y) and (x + 1/2, y) so that each
point has a weight of 8.

4. Neither coordinate is an integer. In this case, the
weight is distributed equally among 4 adjacent
points (x,y —1/2), (x,y +1/2), (x —1/2,y) and
(x + 1/2, y) so that each point has a weight of 4.

See Fig. 9 for an illustration of proper weight distri-
bution.

If, in any case, the base module (0, 0) has non-zero
weight, we should redistribute the weight assigned to
it to its 4 neighboring points with each of the 4 points
gets one fourth of the original weight. The unit weight
is chosen to be 16 so that after such redistribution the
minimal weight of any point will still be at least 1.

After we have finished n such weight distributions
(n is the number of modules in the starting configura-
tion) for the n pairs of matched modules, we have a set
of lattice grid points with variable density of weight
index. We will then grow the mid-configuration from
the base module according to the overall weight distri-
bution pattern. We first initialize the mid-configuration
to contain the base module only. In the first step, we
generate a neighbor list containing all the neighbor-
ing points of the current mid-configuration. Any new

1. e | —» | 16

8
2. - —

8
3. + —» | 8 | 8

4 4
4. —

4| 4

Figure 9. Four cases of weight distribution.

module added can only be picked from this neighbor
list to ensure overall connectivity. In step two, we check
all the points in the neighbor list to pick a point (x4, Ve)
with maximal density «. If « is greater than zero, we
will just add (x4, ¥,) to the mid-configuration and in-
crease the total number of modules by 1. If the module
count is n then the mid-configuration is complete, oth-
erwise we have to go back to step 1 to start the next
iteration. If « is zero, that means all the candidate points
have zero weight index. Since new modules can only be
picked from this list, we need a new measure to assign
anew index to each of the points in the neighbor list to
justify the selection of any specific point from the list.
The new measure is achieved by assigning a neighbor
index to each point in the neighbor list. The neighbor
index is calculated by summing the weight index of its
4 neighboring points. We then check all the points in
the neighbor list to pick a point (xg, yg) with maxi-
mal neighbor index 8. We add the point (xg, yg) to the
mid-configuration based on the assumption that a point
with larger neighbor index has a better chance of being
picked as part of mid-configuration. We then increase
the total number of modules by 1. If the module count
is n the mid-configuration is complete, otherwise we
go back to step 1 to start the next iteration.

In summary, starting with the base module only,
the algorithm adds one module at a time to the mid-

Modular Robot Motion Planning 99

configuration at the previous step. The key point is to
maintain the connectivity of mid-configuration at all
time so we don’t need the connectivity check after the
procedure. The algorithm stops when the total number
of modules of the mid-configuration agrees with that
of the starting or final configuration.

Below pseudocode is provided which implements
the above discussion.

Weight Distribution Algorithm for Generating
Weight Pattern
Step 0
Start with a mid-configuration containing the
base module (0, 0) only
Module Count = 0
Go to step 1
Step 1
Generate the neighbor list from the neighbor
of mid-configuration
Go to step 2
Step 2
Go through the neighbor list to pick a point
(%o Yo) With maximal density «.
If ¢ > 0, go to step 3a,
Else go to step 3b
Step 3a
Add (x4, yy) to mid-configuration
Increase Module Count by 1
If Module Count = n, go to step 4, else go
back to step 1
Step 3b
Assign a neighbor index to each point in
neighbor list by summing the weight
index of its 4 neighboring points
Go through the neighbor list to pick a point
(xg, yg) with maximal neighbor index B.
Add (xg, yg) to mid-configuration
Increase Module Count by 1
If Module Count = n, go to step 4, else
go back to step 1
Step 4
Mid-configuration is complete. Stop.

5. Simulation Results
5.1. Examples of Bisecting Configurations
In this subsection, we will use the bisecting tech-

niques described in the previous section to find the
mid-configuration of any two given initial and final

100 Chiang and Chirikjian

(a)

~—~
—

Figure 10. Example 1: (a) initial configuration, (b) final config-
uration, (c¢) 1/4 configuration, (d) mid-configuration, (e) 3/4 confi-
guration.

configurations. In the current simulation codes, we first
ask for the user to input the initial and final configu-
rations in two separate windows. The codes will first
generate the mid-configuration of the two given start-
ing configurations then generate the 1/4 configuration
by bisecting with the initial and the mid-configuration
and generate the 3/4 configuration by bisecting with
the mid-configuration and the final configuration. At
the end of the simulation, the codes will output the 1/4,
mid-, and 3/4 configurations to three separate windows.
This is a 2-level bisection. For a k-level bisection of the
configurations, we will have 2f — 1 intermediate con-
figurations. Figures 10 to 12 show the results of the
simulation with three sets of initial and final configu-
rations.

5.2. Motion Planning with
Intermediate Configurations

In this subsection, we will apply the idea of bisect-
ing configurations to the motion planning problem

(b)

L]

(e)
(d)]

(c)

Figure 11. Example 2: (a) initial configuration, (b) final config-
uration, (c) 1/4 configuration, (d) mid-configuration, (e) 3/4 confi-
guration.

(a)
|

©

(d) (e)
i %

Figure 12. Example 3: (a) initial configuration, (b) final config-
uration, (c) 1/4 configuration, (d) mid-configuration, (e) 3/4 confi-
guration.

of metamorphic robots with square modules. To gene-
rate motion between configurations we use a vari-
ant on the simulated annealing algorithm in Pamecha
et al. (1997). We use the three sets of initial and final

Table 1. Results for configurations of Fig. 10. Distance
between initial and final configurations is 70.

Bisection ~ Avg.moves Max. moves Min. moves
No 115.5 288 80
1-level 111.3 202 78
2-level 98.3 170 80
3-level 98.0 136 82

Table 2. Results for configurations of Fig. 11. Distance
between initial and final configurations is 69.

Bisection Avg. moves Max. moves Min. moves

No 131.8 277 85
1-level 102.1 133 81
2-level 92.6 111 87
3-level 91.0 103 85

Table 3. Results for configurations of Fig. 12. Distance
between initial and final configurations is 52.

Bisection ~ Avg.moves Max. moves Min. moves

No 194.7 308 92
1-level 153.5 244 88
2-level 115.3 158 92
3-level 115.0 176 90

configurations in Figs. 10 to 12 to run the simulations.
We ran ten trials of motion planning simulations on
each set with no bisection, 1-level, 2-level, and 3-level
bisections respectively and record the total distance
traveled (or the total number of moves made). The in-
termediate configurations are used as consecutive goal
configurations during the simulation. The results for
the three cases are shown in Tables 1 to 3.

As can be seen from the tables, more levels of bi-
section yields better results in all three cases. Although
the improvement for a 3-level bisection over a 2-level
bisection is not obvious, the performance of a 2-level
bisection is much better than the ones with no or only
1-level of bisection. Generally, when more intermedi-
ate configurations are used as consecutive goal con-
figurations during the motion planning, the chances of
reaching a local minima are reduced, thus cutting down
oscillations and reducing the total number of moves
made. The fact that there is no significant improvement
for 3-level bisections over 2-level bisections in the ex-
amples can be viewed as the numbers of local minima

Modular Robot Motion Planning 101

between intermediate configurations in both cases are
similar.

5.3. Branch Motion

Instead of moving only one module in each reconfigu-
ration step, we would like to explore the possibility for
multiple-module motion or branch motion. There are
several general questions regarding the branch motion:

1. How do we recognize the branches in the configu-
rations?

2. How do we check the mobility for the branches?

3. We need to evaluate the cost or efficiency for both
single module and branch motions, i.e., how and
when do we want to make a branch motion instead
of a single module motion at a certain step?

Since the reconfiguration process for metamorphic
robots using square modules consists of translations
only, the shape and orientation for the branches shall
remain the same before and after the motion. If we try
to enumerate and examine every possible branch in the
whole configuration without setting an upper limit of
the number of modules in a branch, the problem will
become unmanageable. To simplify the problem we
only look at two-module branches as a start.

In this context, two branches A and B are similar if
they are translationally equivalent. L.e., if d; (A, B) in
Eq. (3) is zero, where G is the group of translations in
the square lattice.

Not every branch is movable due to the kinematic
constraints, especially for those branches close to the
base module. However, for every movable branch, at
least one of the modules must be a movable module
under single module motion. With this in mind, when
we try to look for appropriate branch candidates in the
whole configuration, we don’t need to go through each
and every one of the modules. Instead, we generate a
list consisting of movable modules in the single module
motion. For every module in the list we then check for
possible branch candidates. A two-module branch is
formed by attaching a module to any module in the list
in one of its four neighboring positions. If the attached
module is also a member of the original configuration
then the branch is a valid branch candidate, otherwise
the proposed branch does not exist.

There are two types of two-module branches: vertical
and horizontal. For each type of a vertical or horizontal
branch, there are twelve different motion patterns: up,

102 Chiang and Chirikjian

() down

(5) up & right

(7) right & down

(8) down & right

(10) left & down

4 module

Figure 13. Twelve motion patterns for a vertical branch.

down, right, left, up and right, right and up, right and
down, down and right, down and left, left and down,
left and up, and up and left. Depending on the type
of the branch and the intended motion pattern there
will be some more conditions the branch candidate
must satisfy to have a valid branch motion. For exam-
ple, if a given vertical branch with module coordinates
(x,y) and (x, y + 1), respectively, is to move up in the
y-direction, the new branch module coordinates will
be (x,y + 1) and (x, y + 2), respectively. Therefore,
the position (x, y + 2) in the lattice must be empty be-
fore the branch motion. In addition, there should be at
least one module available for the branch to hold on
to during the motion. In this case, the holding mod-
ule can be any of the four positions: (x + 1,y + 2),

(11) left & up

7
// branch D empty

module

(3) right

(6) right & up

(9) down & left

(12) up & left

modulé

x—1,y+2),x+1,y+1),and (x — 1, y+1). The
final condition is that after the branch motion, the new
configuration must remain connected.

Figures 13 and 14 show the physical relationships
among branch modules, empty module positions and
holding modules for different motion patterns with ver-
tical branch and horizontal branch, respectively. The
corresponding coordinates are listed in Tables 4 and 5.

Now that we know how to check the mobility of a
branch candidate, the next question is when do we make
a branch motion instead of a single module motion at
a certain step.

Let’s denote the distance between the current config-
uration and the final configuration as § and the distance
after a certain move as §'. For a single module motion,

Modular Robot Motion Planning 103

(1) up

() down

(3) right

(4) left

(5) up & right

(6) right & up

(7) right & down

(8) down & right

(10) left & down

7
/j branch D empty

module

4 module

Figure 14. Twelve motion patterns for a horizontal branch.

A8 =8 —8canbe +2,+1,0, —1 or —2 whereas for a
branch motion, Ad can be +4, +2, 0, —2 or —4. Poten-
tially, a branch motion can decrease the distance more
quickly and possibly can prevent the reconfiguration
process from getting stuck in some local minima. So at
a certain step, if there is some branch motion available
that will decrease the distance, i.e., Ad is either —2 or
—4, it is preferable to make the branch motion.

In summary, we have to first generate a list consisting
of movable modules. We then check for branch candi-
dates from every module in the list with its neighboring
modules. If any branch candidate along with some type
of motion patterns can decrease the distance we will
make the proposed branch motion. If no branch mo-
tion can decrease the distance after we have searched

(11) left & up

(9) down & left

(12) up & left

moduls

through all possible branch candidates then a single
module motion is made. After each step, whether it’s
branch motion or single module motion, the movable
module list is updated and the reconfiguration process
continues until the final configuration is reached.

Figure 15 shows an example for the test of the branch
motion code. Figure 15(a) is the initial configuration
and Fig. 15(b) is the final configuration. The simulation
results after ten trials of the branch motion code and
the single module motion code are shown in Table 6.

We also test the three sets of initial and final config-
urations in Figs. 10 to 12 of the previous section. The
results are listed in Tables 7 to 9.

As can be seen from tables, the branch motion code
performs better than the single module motion code

Chiang and Chirikjian

Table 4. List of Coordinates for different motion patterns for a vertical branch with
module coordinates (x, y) and (x, y + 1).

Intended motion

Empty module positions

Holding modules

Up

Down

Right

Left

Up and right
Right and up
Right and down
Down and right
Down and left
Left and down

Left and up

Up and left

(x,y+2)
(x,y=1)
@+1L,y+D,(x+1,y)

x=1Ly+1D,(x-1,y
x+1Ly+D,(x+1,y+2)

(x,y+2)
x+Ly+D,(x+1,y+2)
(x+1,y)
G+Ly,x+Ly—-1
x+1L,y+1
x+1Ly),x+1,y—-1)
(x,y—=1
=Ly, x-1y-1
(r,y -1
=Ly, &x-1y-1
x—1y+1
x—Ly+D,(x—-1,y+2)
(x—1,y)
x—1Ly+D,x—1,y+2)
(x,y+2)

x+1L,y+2),x-1y+2)
x+1Ly+D),x—=1,y+1)

x+1y), =1y
x+Ly—D,(x—1,y—1
G+1L,y+2),x+1,y-1D
x—-1Ly+2),x—-1,y—1
x+1,y)
(x,y+2)
(xr,y—=1
x+1,y+1
x—=1y+1)
(x,y—1

(x,y+2)

x—=1

Table 5. List of Coordinates for different motion patterns for a horizontal branch
with module coordinates (x, y) and (x + 1, y).

Intended motion

Empty module positions

Holding modules

Up

Down

Right

Left

Up and right
Right and up
Right and down
Down and right
Down and left
Left and down

Left and up

Up and left

x,y+1),x+1,y+1)
@, y—D,x+1Ly—-1
(x+2,y)

(x—=1y)

x+1Ly+D,x+2,y+1)

(x,y+1
x+Ly+D,x+2,y+1
(x+2,y)
+Ly—D,x+2,y-1
x+2,y)
x+1Ly—-D,x+2,y—1)
(x,y—=1
(—Ly—=1D,xy—-1
x+1,y-1
x=1Ly-D,(xy=-1
(x—=1,y
x—-—1Ly+1D,x,y+1)
x—1,y)

G=1Ly+D, G y+1D
x+1Ly+D

x—1Ly+D,x+2,y+1
—Ly-D,x+2,y-1D
G+Ly-D.&x+2,y-1D
x+Ly+D, x+2,y+1
—=Ly-D,(x,y-1

(x—Ly+D,(x,y+1
(x+2,y)
(x,y+1D
(x,y—=1D
(x+2,y)
(x—=1y)

(x+1,y—1

x+1,y+1

x—=1y)

(@) (b)

Figure 15. Example 4: (a) initial configuration, (b) final confi-
guration.

in all examples tested. So the condition we imposed
on searching for branch motion candidates that de-
crease the distance is valid. An interesting observa-
tion is to compare the results for motion planning with
intermediate configurations and with branch motions.
For the three examples in Figs. 10 to 12, only config-

Table 6. Results for configurations of Fig. 15. Distance between
initial and final configurations is 36.

Motion type Avg. moves Max. moves Min. moves
Single module 59.6 78 48
Branch 514 72 42

Table 7. Results for configurations of Fig. 10. Distance between
initial and final configurations is 70.

Motion type Avg. moves Max. moves Min. moves
Single module 115.5 288 80
Branch 87.2 102 82

Table 8. Results for configurations of Fig. 11. Distance between
initial and final configurations is 69.

Motion type Avg. moves Max. moves Min. moves
Single module 131.8 277 85
Branch 94.4 173 71

Modular Robot Motion Planning 105

Table 9. Results for configurations of Fig. 12. Distance between
initial and final configurations is 52.

Motion type Avg. moves Max. moves Min. moves
Single module 194.7 308 92
Branch 88 176 70

urations in Fig. 11 yields better results using bisected
configurations. Both Figs. 10 and 12 yield better results
using branch motion.

6. Conclusions

A number of metrics on geometric objects and equiva-
lence classes of geometric objects were reviewed. We
formulated a technique that uses these metrics to bi-
sect two shapes. We showed how these concepts can
be used to generate sequences of intermediate shapes
that interpolate two given shapes. The motivation for
this work was modular robot motion planning, and ap-
plications in this area were discussed. In future work,
we intend to combine the ideas of branch motion and
bisected configurations as well as searching for longer
or differently shaped branches.

Acknowledgment

This work was supported by NSF Award IIS 9731720;
and a 1994 Presidential Faculty Fellow’s Award.

Notes

1. A binary operation acts in such a way that g; o go € G for all
g1,82 € G.

2. Note this definition is a generalization of the standard concept.

3. Often the notion E4 is used to denote an equivalence class,
whereas we use [A]. The notation S/~ reflects the fact that an
equivalence relation divides a set into disjoint equivalence classes.

References

Alt, H., Melhorn, K., Wagener, H., and Welzl, E. 1988. Congruence,
similarity and symmetries of geometric objects. Discrete Comput.
Geom., 3:237-256.

Beni, G. 1988. Concept of cellular robotic systems. In IEEE Int.
Symposium on Intelligent Control, Arlington, VA, August 24-26,
1988.

Chen, I. and Burdick, J. 1993. Enumerating non-isomorphic assem-
bly configurations of a modular robotic system. In Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and
Systems, Yokohama, Japan, pp. 1985-1992.

106 Chiang and Chirikjian

Chirikjian, G.S. 1993. Metamorphic hyper-redundant manipulators.
In Proceedings of the 1993 JSME International Conference on
Advanced Mechatronics, Tokyo, Japan, August 1993, pp. 467—
472.

Chirikjian, G.S. 1994. Kinematics of a metamorphic robot system.
In Proceedings of the 1994 IEEE Int. Conf. on Robotics and
Automation, San Diego, CA, May 1994, pp. 449-455.

Chirikjian, G., Pamecha, A., and Ebert-Upoft, I. 1996. Evaluating
efficiency of self-reconfiguration in a class of modular robots.
J. of Robotic Systems, 13(5):317-338.

Chirikjian, G.S. and Kyatkin, A.B. 2000. Engineering Applications
of Noncommutative Harmonic Analysis, CRC Press: Boca Raton,
Florida.

Fukuda, T. and Kawauchi, Y. 1990. Cellular robotic system
(CEBOT) as one of the realization of self-organizing intelligent
universal manipulator. In Proceedings of the 1990 IEEE Confer-
ence on Robotics and Automation, pp. 662—667.

Fukuda, T., Kawauchi, Y., and Hara, F. 1991. Dynamic distributed
knowledge system in self-organizing robotic systems; CEBOT. In
1991 IEEE Conference on Robotics and Automation, pp. 1616—
1621.

Hackwood, S. and Wang, J. 1988. The engineering of cellular
robotic systems. In IEEE Int. Symposium on Intelligent Control,
Arlington, VA, August 24-26, 1988.

Hamlin, G.J. and Sanderson, A.C. 1997. TETROBOT: A modu-
lar approach to parallel robotics. IEEE Robotics and Automation
Magazine, 4(1):42-50, March 1997.

Hosokawa, K., Fujii, T., Kaetsu, H., Asama, H., Kuroda, Y., and
Endo, 1. 1999. Self-organizing collective robots with morpho-
genesis in a vertical plane. JSME International Journal Series
C-Mechanical Systems Machine Elements and Manufacturing,
42(1):195-202.

Kelmar, L. and Khosla, P.K. 1988. Automatic generation of kine-
matics for a reconfigurable modular manipulator system. In Proc.
1988 IEEE Conf. on Robotics and Automation, pp. 663—668.

Kokaji, S. 1988. A fractal mechanism and a decentralized con-
trol method. In Proc. U.S.-Japan Symp. Flexible Automation,
pp. 1129-1134.

Kotay, K., Rus, D., Vona, M., and McGray, C. 1999a. The self-
reconfiguring molecule: Design and control algorithms. In 7999
Workshop on Algorithmic Foundations of Robotics.

Kotay, K. and Rus, D. 1999b. Locomotion versatility through self-
reconfiguration, Robotics and Autonomous Systems, 26:217-232.

Lipson, H. and Pollack, J.B. 2000. Towards continuously reconfig-
urable self-designing robotics. In Proc. 2000 IEEE International
Conference on Robotics and Automation, San Francisco, CA, April
2000, pp. 1761-1766.

Munkres, J.R. 1975. Topology: A First Course, Prentice Hall, Inc.,:
Englewood Cliffs, NJ.

Murata, S., Kurokawa, H., and Kokaji, S. 1994. Self-assembling

machine. In Proceedings of the 1994 IEEE International Confer-
ence on Robotics and Automation, San Diego, CA, pp. 441-448.

Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., and Kokaji, S.
1998. A 3-D self-reconfigurable structure. In Proceedings of the
1998 IEEE International Conference on Robotics and Automation,
Leuven.

Pamecha, A., Chiang, C.-J., Stein, D., and Chirikjian, G.S. 1996. De-
sign and implementation of metamorphic robots. In Proceedings
of the 1996 ASME Design Engineering Technical Conference and
Computers in Engineering Conference, Irvine, CA.

Pamecha, A., Ebert-Uphoff, I., and Chirikjian, G.S. 1997. Useful
metrics for modular robot motion planning. /IEEE Transactions
on Robotics and Automation, 13(4):531-545.

Yim, M. 1993. A reconfigurable modular robot with many modes
of locomotion. In Proceedings of the 1993 JSME International
Conference on Advanced Mechatronics, Tokyo, Japan, pp. 283—
288.

Yim, M. 1994. New locomotion gaits. In Proceedings of the 1994
IEEE International Conference on Robotics and Automation, San
Diego, CA.

Zikan, K. 1990. The theory and applications of algebraic metric
spaces. Ph.D. Thesis, Stanford University.

Gregory S. Chirikjian was born August 16, 1966 in New
Brunswick, New Jersey, USA. He received the B.S.E. degree in en-
gineering mechanics, the M.S.E. degree in mechanical engineering,
and the B.A. degree in mathematics, all from The Johns Hopkins
University, Baltimore, MD, in 1988. He then received the Ph.D. de-
gree from the California Institute of Technology, Pasadena, CA, in
1992. Since the summer of 1992, he has been with the Department of
Mechanical Engineering, Johns Hopkins University, where he is now
an Associate Professor. Dr. Chirikjian is a 1993 NSF Young investi-
gator, a 1994 Presidential Faculty Fellow, and a 1996 recipient of the
ASME Pi Tau Sigma Gold Medal. His research interests include the
kinematic analysis, motion planning, design, and implementatation
of “hyper-redundant,” “metamorphic,” and “binary” manipulators.
In recent years Dr. Chirikjian has expanded the scope of his research
to include applications of group theory in a variety of engineering
disciplines.

