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Partial differential equations (PDE’s) for the probability density function (PDF) of the position and orien-
tation of the distal end of a stiff macromolecule relative to its proximal end are derived and solved. The
Kratky-Porod wormlike chain, the Yamakawa helical wormlike chain, and the original and revised Marko-
Siggia models are examples of stiffness models to which the present formulation is applied. The solution
technique uses harmonic analysis on the rotation and motion groups to convert PDE’s governing the PDF’s of
interest into linear algebraic equations which have mathematically elegant solutions.

PACS number(s): 36.20.Ey, 87.16.Ac, 05.10.—a, 02.30.Jr

I. INTRODUCTION

A quantity of importance in polymer science is the prob-
ability density function describing the relative occurrence of
positions and orientations of the distal end of the chain for a
given position and orientation of the proximal end [1-4]. For
flexible chains, the orientation distribution quickly reaches
its limiting form, which is a constant over all orientations
[2]. Hence, the distribution of end positions (without regard
to orientation) has been the subject of intensive study over
the past half century (see, e.g., [5,3,6] for complete reviews
of the literature), and remains of interest to the present day
[7.8].

In the case of stiff chains (e.g., DNA), a much greater
length is required for the orientation distribution of the distal
end relative to the proximal one to reach its limiting form,
and it cannot be considered constant when considering rela-
tively small segments of the chain. Hence, it is important to
characterize the evolution of a joint positional and orienta-
tional probability density function in such cases.

The statistical mechanics of DNA and other stiff (worm-
like) chains has received much attention in the literature (see,
e.g., [9-29]). In particular, stiff polymer theories based on
diffusion processes and path integral techniques can be
found in [30-33]

Experimental measurements of DNA stiffness parameters
have been reported in [34-38,4]. Efforts to characterize in-
tegrals of the joint positional and orientational probability
density function (PDF) over many of its arguments can be
found in [25,39], and the whole distribution in the case of the
helical wormlike chain can be found in [4]. DNA elastic
properties and experimental measurements of DNA elastic
twist/stretch coupling have also been reported in [40—44].

The approach presented here solves the most general in-
extensible case, and draws on a number of group-theoretical
notations. The utility of our approach is that it is so general
that it is valid for any second-order stiffness and chirality
model. As an example of this generality, we show later in the
paper how the Kratky-Porod [45-47], Yamakawa [4], and
Marko-Siggia [48] models all fit within our framework. We
note that while our model is applicable to DNA, it is not
limited to this case. In analogy with the way the Kratky-
Porod (KP) model for stiff polymers was introduced prior to
the discovery of DNA, we expect our model to be applicable
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to numerous manmade stiff molecules to be invented in the
twenty-first century.

Orientations are described as elements of the rotation
group, SO(3) [the set of 3 X3 real matrices satisfying ATA
=1 and det(A)=1]. Translations (and positions) are de-
scribed as elements of three-space: ae R*. The Euclidean
motion group (or special Euclidean group), SE(3), is the
semidirect product of R* with the special orthogonal group,
SO(3). We denote elements of SE(3) as g=(a,A) € SE(3),
where A € SO(3) and aeR?. The group law is written as
g1°g,=(a;+Aa,,A A,) and g~ '=(—A"a,A7). Any ele-
ment of SE(3) can be written as the product of a pure trans-
lation and pure rotation as (a,A)=(a,l)°(0,A).

One may represent any element of SE(N) as an (N+1)
X (N+ 1) homogeneous transformation matrix of the form

A a

H(g)= o

Clearly, H(g\)H(g2)=H(g°g;) and H(g~")=H'(g),
and the mapping g— H(g) is an isomorphism between
SE(N) and the set of homogeneous transformation matrices,
and so we henceforth make no distinction between g and
H(g).

When describing a frame of reference or motion [which
are both elements of SE(3)], the translations (or positions)
will be parametrized in either Cartesian or spherical coordi-
nates,

a a sin 6 cos ¢

a=| a, | =| asinfsin¢

as acos @

Rotations (or orientations) are parametrized using ZXZ Euler
angles,

A(a’ﬂ’ y) = Qrot[e3 ’a]th [el ’B]Qrol[e3 ’ 7]’
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where (), [e;,¢] denotes the rotation matrix describing
counterclockwise rotation by ¢ about the natural basis vector
e; which has elements (e;);= J;; .
II. MODEL FORMULATION

As is often the case in theoretical polymer science, analo-
gies between the motion of a particle along a path and the
motion of an observer traversing a polymer chain allow for
tools from classical and quantum mechanics to be applied.

In particular, a number of authors have derived potential
energies of bending and/or twisting of a stiff chain that are of
the form

E= fLU[w(s)]ds,

0

where L is the length of the macromolecule and

1
U=5wTBw—bTw+3’. )

Here B=BTeR**3 is a positive semidefinite matrix, b
eR3, and B’ € R. w is the “‘angular velocity’> of a frame of
reference which traverses the macromolecule, coinciding
with each frame [a(s),A(s)] affixed to the backbone of the
molecule for each value of arclength s. This ‘angular veloc-

ity’” is the dual vector of the skew symmetric matrix A’A,

where the overdot denotes d/ds. That is, @Xx=ATAx for
all xe R3. This is completely analogous to the definition of
angular velocity of a rigid body as seen in the body fixed
frame with s taking the place of time. Henceforth, we will

use the notation U= U(w)=U(A,A) to denote the fact that
the bending energy is a function of the rotation matrix and its
derivative through of the definition of w.

As well-known examples of Eq. (1) from the polymer
science literature, consider the following.

The Kratky-Porod model [1,45]:

@ 0 0 0
B=| 0 a O, b=|0], pg'=0
0O 0 O 0
The Yamakawa model [4]:
@ 0 0 0
B= 0 g 0 , b= agKo
0 0 By BoTo
’ 1 2 2
B :E(ﬁOTO_I_aOKO)'
The Marko-Siggia DNA model [48]:
A" 0 B Bow,
1
B=| 0 A 0|, b=| 0 |, ,8’=§ng.
B 0 C Cow,

The revised Marko-Siggia model [49]:
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A+B*C 0 B Bw,
B= 0 A 0|, b= 0 [,
B 0 C Cwg
’ 1 2
B :ECwO.

Other modifications of these models may be made to include
stretching effects [50], though the current presentation is re-
stricted to the inextensible case.

We now generate the diffusion equation that governs the
evolution of the positional and orientation probability density
function F(a,A;s) for all values of 0<s<L. Assuming that
the proximal end is fixed at the frame (0,7), then F(a,A;0)
=6(a)5(A). Here the Dirac delta function on the motion
group is written as the product of those for R* and SO(3).

Under the constraint that the molecule is inextensible, and
all the frames of reference are attached to the backbone with
their local z axis pointing in the direction of the next frame,
one observes

a(L)ZfoLu(s)ds and u(s)=A(s)e;. (2)

Hence, the PDF of interest can be formulated as the follow-
ing path integral over the rotation group:

A(L)=A L
F(a,A;L)zL(O)I 5(a(L)—f0 u(s)ds)
L
X exp —f U(A,A')ds}D[A(s)], (3)
0

where it is assumed that the bending energy U is measured in
units of kzT. Path integration over the rotation group has
been studied extensively in the literature in the context of
quantum mechanics (see [51-54] and references therein).
Our notation and formulation follows that in [4].

Using the classical Fourier transform pair

f09= [ stae=*ara

_ 1 2 ik-a ;3
= [ joeran, @
one writes

. A(L)=A L

F(k,A;L)=L(0)I exp _jo (ik-u+U)ds |D[A(s)].

Treating the innermost integrand as i times a Lagrangian
with kinetic and potential energies,

T=-iw'Bw

and

V=i[b-o—B']+k-u
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(the constant B’ can be ignored) one calculates the momenta
and Hamiltonian in the usual way, which for this case means

dL
py=o——H=-i

+b’B 'p+k-u.
o, b'B  'p+k-u. (5

1
s Tp—1
ZPBP

Here and henceforth B is assumed to be positive definite (and
hence invertible).
The quantization

pi=—iX¥ (©)

is used, where the differential operators Xf acting on func-
tions on the rotation group are defined as

df(A-Q e .t dffA(I1+1X;
B (= O ] i )
! =0 ! |z:0
(7)
where
0O 0 O
X,=10 0 —-1],
0 1 0
0
X2: 0 5
0O -1 0
X;=|1 0 0
0O 0 O

The superscript R in X ,R denotes the fact that the infinitesimal
rotation 7+ ¢X; is applied on the right of the argument of the
function. This corresponds to an infinitesimal motion relative
to the body-fixed frame in a rigid body.

Using the ZXZ Euler angles (a,f,7y) these operators
have the explicit form

L J smy J J
1= cot,Bsmy s1n,8 e 0570,8
X _ Jd cosy d . d g
cot,Bcosy& S Ja s1ny(w, 8)
d
X§=—.
370y

The Schrodinger-like equation corresponding to the
Hamiltonian (5) and quantization (6) is
aﬁ“ P
z?L

This takes the explicit form

PRE 62

3

a A
E (B XEXR—2B b, XF) + ik-u | F=

aL 2 kil 0.

&)
Henceforth we will use the quantities D=B~ ! and d=
-B~'b.

The classical Fourier inversion formula (4) then converts
9) to

9 1 3 3
— E D XRxR— Z dXxF+u-v,

oL 2. F=0,

(10)

which is a partial differential equation (PDE) on the motion
group, SE(3). The initial conditions are F(a,A;0)
=0d(a)o(A).

Integrating F over all positions, ae B>, results in a purely
orientational density function:

f(A;s)=jR3F(a,A;s)d3a.

Performing this integration over the initial conditions and
Eq. (10) results in the SO(3)-diffusion equation

3

a1
2 D XRxR— 2 d xRk

L3, f=0 (11)

with initial conditions f(A;0)=(A).

Equation (11) is a partial differential equation that gov-
erns the evolution of the function f on the rotation group
SO(3). It is solved in series form in Sec. III using techniques
from noncommutative harmonic analysis. Equations similar
to Eq. (11) have been derived in, e.g., [36,37]. Our goal in
this paper is to solve both Eq. (11) and (10) in a numerically
efficient and mathematically elegant way.

III. HARMONIC ANALYSIS ON THE ROTATION GROUP

The matrix elements of the irreducible unitary representa-
tions IUR’s of SO(3) are given to within an arbitrary unitary
transformation by [55-57]:

U(g(a,B,y))=(—1)"""e imatnnpl (cos )
(12)

where
(I=m)!(I+m)!]"?
Prn(cos B)= [m

. B one
X gin™ " Ecosm+71EPETmn,ern)(COS ﬁ)

(13)

and P}""(-) are the Jacobi polynornials.

The matrices U’ with entries Umn are (21+1)X(21+1)
dimensional, and the indicies take the range of values —/
<m,n<I. These representation matrices posess the homo-
morphism and orthogonality properties
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Ul(A1A)=U"A)U'(Ay) (14) 1 1
(Xlle)sznn:ZlenclfnwLIUfn,nfz__(Cfn 51 1
and
1 1.1
- S, 85, 51,1 +Cn —n— I)Umn 4cncn+lUmn+2’
(A A)dA=—""""—r (15
LO() m,,()U a(A) Qi+ 1) (15)

Any square-integrable function on SO(3) can be ex-
panded in a Fourier series as

o

i i
fW=2 @i+ ¥ 3 U

=[§0 21+ 1) Tr(f'UY), (16)

where the entries of the Fourier transform matrix F(f)!=f!
are defined as

Fon= J AU, (A NdA. (17)
SO(3)

Here dA=(1/87%)sin BdadfBdy is the invariant integration
measure for SO(3) normalized so that [go3)dA=1. Hence,
by expanding the PDF in the PDE in Eq. (11) into a Fourier
series on SO(3), the solution can be obtained once one
knows how the differential operators X,R transform the ma-
trix elements U’ m.n(A). In fact, this is well known, and can
be found in [55, 56] (adjusted for the differing definitions of

mn) as
/ 1 l l 1 Lyql
X Umn_z 71Um,n71_§CnUm n+1-> (18)
o, 1
XZUmn_ElcfrzUm,nfl-i_zlc Um ntls 19)
XR Ufnn_ - anﬁnn > (20)
where ¢\ =\(I—=n)(I+n+1) for I=|n| and c =0 other-

wise. From this deﬁnmon it is clear that c,\ 0.c" (n+1)
=cl el _=c",, and ¢)_,=c' ., . Equations (18)—(20)

follow from Eq. (14) and the fact that

d | 1 1,
EUmn(Qrot(elat))|t:0:§C—n5m+l,n_Ecnamfl,n’
(21)
d i
EUmn(Qrm(eZ’t))|t:02567n5m+1n+2cn5m Ln>
(22)
d ! )
_U (Qrol(e3 vt))|t:0:_ln5m,n' (23)

dt

By repeated application of these rules one finds

1 1
(XIZQ)ZUﬁnnZ_ZCI*nCl*n+1Umn 2__(6*71 £L 1

1
[N
+Cn —n— I)Umn 4cncn+1Um n+2»

R\277l 1
(X3) U -n Umn’
XBxRy! _il i Ul +i(_ I
142 m,n_4C*nC*n+l m,n—2 4 CnCn—1

l 1
+cn —n— I)Umn 4 Cn n+1Umn+2’

xExky! _btro
m,n 4C—nc—n+]

Umn ,t— (c

—n 111

_ 1 1 l
Cn —-n— I)Umn 4 n+1Umn+2’

Ry Ryl l lyql
X1 X3U,, ., l—( et 2Unmn-11¢,Up 1),
xhxtul =it gt ey
mn~ 2 C_n m,n—1 L 2 Cp mn+1->
kykp 7D (nt1) ;)
X3X2Um,n_ 2 — m,n—1 2 CoVmn+1-

X§X§U£n,n:§(clfnuin,n* 1 + Cl[‘l Uﬁn,nJr 1)‘
As a direct result of the definition of the SO(3)-Fourier
inversion formula (16), one observes that if a differential

operator X transforms U mn

Xxu! —x(n)U

m,n m,n+p>

then there is a corresponding operational property of the
Fourier transform

f(Xf)ﬁn,n:x(m_p)fﬁnfp,n‘ (24)

We use this to write

l

f(x )mlz_chm 1fm+1n 2 Con— lfm 1n>

1 1
Ryl .1 2l Y]
]:(Xzf)mn_zlcfmfl m+l,n+2 lcm*lfmfl,n’

f(X f)ﬂlll mffnn >
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1 \
f((XIle)zf)fnn:ZcfnJrlclfmflfinJrZ,n_ Z(lemcfnfl

1
11 M 1 1 M
+Cmcfm7l)fmn+chm+lcmfl m—2n>

1
R\2 N l / il l 1
f((XZ) f)mn__ZCerlC*m*l m+2,r1_Z(Cfmcm71

1

11 ) 1 1 M
+Cmcfm71)fmn_chm+lcm71 m—2n°
.7:((X§)2f)f"n— _m2f£nn’

F(XTXT+X3XD))),

m,n

i 1 / ik i 1 1 M
:Ecm+lc—m—lfm+2,n_Ec—m+lcm—lfm—2,n’

FUXTXS+XTXT)
2m+1 . " 2m—1 PR
=1 2 Com—1 m+1,n+l 2 Cm—1 m—1n>
FXZXS+X5XE) Dy
_(2m+1) o 2m-1) , .,
- 2 Com—1 m+1,n

2 Cm—1 m—1,n"

)

mn

Collecting everything together we have

i,j=1

3 3
1
f((i > D,.jxfxf+i:21 dxR

min(/,m+2)
— Il
Am,kfk,n >

k=max(—1[,m—2)

1
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where
(Dy=Dy) i
I} _ I} l
A+ 2= 3 T aPur[CmiiComots
) 2m+1) ] 1 ] ;
Am+1= T(D23_1D13)+ §(d1+ld2) Com s
D,,+D)
I _ ( 11 22 ! / 1 1
Am,m_[_ 8 C—r1zcm—l+cmc—m—l)
Dsy3m?
- 3; _l.d3m:|,

l (2m—1) . 1 1,
Apm—1= T(D23+1D13)+ 5(_d1+ld2) Con—1»

! 1
Com+1Cm—1-

(Dy1—Dy) i
I _
Am,m—z_[ 8 4 12

Hence, application of the SO(3)-Fourier transform to Eq.

(11) and corresponding intial conditions reduces (11) to a set
of linear time-invariant ODE’s of the form

21l

—p =AT! with J1(0)=Iy.,. (25)

Here 1,;,; is the (21+1)X(2/+ 1) identity matrix and the
banded matrix A’ are of the following form for /=0,1,2,3:

1 1
'Afl,fl “’471,0 “’471,1
0_ 40 _ 1_ 1 1 1
AP=A3,=0, A'=| Ao Ao Ay |,
1 1 1
Al,—l AI,O Al,]

AL,
AL, AL
A= A5, Aj.,
0o AL
0 0

2 2 2
A 0,0 A 0,1 A

2
-1,0

2
A—l,l

021>

2 2 2
AI,O Al,l A1,2

2
AZ,O

A3, A3
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3 3 3
A3 Az, Az
3 3 3 3
A, 3 AL, , A2, Al,, 0 0
3 3 3 3 3
A71,73 A,l,,z ./4,1,,1 A*I,O A*l,l O

A= 0 Ab—r  Ado
0 0 A
0 0 0
0 0 0

As is well known in systems theory, the solution to Eq.
(25) is of the form of a matrix exponential,

FLy=etA', (26)

Since A’ is a band-diagonal matrix for /> 1, the matrix ex-
ponential can be calculated much more efficiently (either nu-
merically or symbolically) for large values of / than for gen-
eral matrices of dimension (2/+1)X(2/+1). One also
gains efficiencies in computing the matrix exponential of
LA' by observing the symmetry
Afn,n = ( - 1 )m_nAl—ﬂl,—fl'

Matrices with this kind of symmetry have eigenvalues that
occur in conjugate pairs, and if x,, are the components of the
eigenvector corresponding to the complex eigenvalue A, then
(—1)™x_,, will be the components of the eigenvector corre-
sponding to \ [58].

In general, the numerically calculated values of f/(L) may
be substituted back into the Fourier inversion formula (16) to
yield the solution for f(A;L) to any desired accuracy. In the
specific case of the Kratky-Porod model, the analytical ex-
pressions for the Fourier transform matrices FUL) are of a
simple enough form to write analytically by inspection. L.e.,
since D|;=Dxy=1/ay, D33—0, and every other parameter
in D and d is zero, the matrices A’ are all diagonal. This
implies that the nonzero Fourier coefficients are of the form
ff”,m(L) =exp(LA f,,,m). However, for m #0 the value of D33

causes f' (L) to be zero and what remains is a series in [
with m=0:

pr(A;L)=l:20 (21+1)e 10+ DLRa0yL ()

ZIZ:() (2l+l)efl(Hl)L/ZO‘OP,(cos B).

A technique analogous to that presented here is presented
in Sec. IV for solving Eq. (10).

IV. HARMONIC ANALYSIS ON THE MOTION GROUP

We now develop the tools required to solve Eq. (10) in an
elegant way. The differential operators analogous to those in
the case of pure rotation take the form

CONFORMATIONAL STATISTICS OF STIFF. .. 885

0 0 0

o O O O

Ado  Asr Ajp
Alo ALl Al Al
Asg AL A3 Al
0 A3 A3, AL,

df(H-(1+1X;))

—r B
X f(H)= ar

27

for the motion group where H=H(g) € SE(3) and

00 0 0 0010
_lo o -1 o] _ 0000
Y=o 1 o] 7121 0 0 of
00 0 000 0
0 -1 0 0 00 0 1
R ool _ |00 00
=10 ool *7lo 0o o0 of
0 0 0 0 000 0
000 0 0000
_loo o1l _ oo oo
%=10 0 0 o] %70 0 0 1
0000 0000

These correspond to infinitesimal rotations and translations
about the 1,2, and 3 axes.
In Appendix A we show that

xR for i=1,2,3

(ATV,), 5 for i=4,5,6

SR_

i

(28)

where X% is defined in Eq. (8), and (V,);=d/da; . Observing
the definition of u in Eq. (2), it is easy to see that u-V,

=)?§ , and hence Eq. (10) can be written as

3 3

g 1 e r -
—— = > DXRXR-% 4 XR+XR|F=0. (29)
JL 2 =1 =1

With an appropriate concept of Fourier transform, the differ-

ential operators Yf acting on functions on the group SE(3)
may be transformed to linear algebraic operations in Fourier
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space [59], and hence in principle Eq. (29) can be solved
using matrix methods. The remainder of this section is de-
voted to the details of this calculation.

The unitary representations U*(a,A) of SE(3), which act
on functions ¢(p) € L>(S?) with the usual inner product, are
defined by [60,59]

[U'(a,A)pl(p)=e P A (R, 'A Ry-1) H(A™'p),
(30)

where A € SO(3),R}, is the rotation matrix which converts
(0,0,0)" to any pe R? with |p|=p, and A, are representa-
tions of SO(2) enumerated by s=0,*1,*+ 2 . (See Ap-
pendix B for a detailed explanation of these quantities.)

Each representation, characterized by p=|p| and s is ir-
reducible [they, however, become reducible if we restrict
SE(3) to SO(3), i.e., when |a|=0]. They are unitary, be-
cause (U’(a,A)¢,,U’(a,A)p,)=(¢,,p,). The set of all
such representations is also complete.

Representations  (30), which we denote below by
U’(g,p), satisfy the homomorphism properties

U*(g1°82.p)=U(g1.p) - U’(g2.p),

where © is the motion group operation and - denotes the

composition of linear operators.

A. Matrix elements

To obtain the matrix elements of the unitary representa-
tions we use the group property

U'(a,A)=U’(a,l)-U*(0,A). 31)

The basis eigenfunctions of the irreducible representations
(30) of SE(3) may be enumerated by the integer numbers
I,m (for each s and p). The range for the [,m,s indices are

The basis functions may be expressed in the form [56,60]

hy, (6,6)=0Q" . (cos §) e )¢ (32)

where

I 1\l 20+1
Q- n(cos@)=(—1) ypm P (cos6),

and generalized Legendre functions an ;(cos ) are given in

Eq. (13).
It may be shown that these basis functions
are transformed under rotations
hy (P) = A(Q(p,A)) hy, (A~ 'p) as [59]
(UX(O’A) m S) (p)_ 2 Unm l1, S(p)’ (33)

where U i .(A) are matrix elements of the transposed SO(3)
IUR’s in Eq. (12).
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The translation matrix elements are given by the integral
[60]

(", Us@nh!, )=[1".m" | p,s|l,m](a)
a (27 Y
:J f Q. (cos b)
0 0 ’
><e7"(’”’“)"’ef"""“Qi,m(cos )
XMt sin 0dOd . (34)

Finally, using the group property (31), the matrix elements of
the unitary representation U®(g,p) (30) (for s=0,%1,
*2,...) are expressed as

U, (a,Asp)=

Lil(@)U},(A).
(35)

1" ,m'";l,m

1
> [m' | p.s
i==1

B. Fourier transform

Here we review the definition of the Fourier transform of
functions F(a,A) e L*>(SE(3)). To define an invertible Fou-
rier transform for functions on SE(3) we have to use a com-
plete orthogonal basis for functions on the motion group.
Proofs for the completeness and orthogonality of matrix el-
ements (35) can be found in [60,59]. Hence, using the uni-
tary representations U(g,p) (30) (for s=0,=1,+2 .. .), the
Fourier transform of functions on the motion group may be
defined as follows.

Definition. Given a complex-valued function F(a,A) on
SE(3), the Fourier transform is the matrix-valued function

FF)=}(p)= LE@) F(e)U(s:p)dg.

where g=(a,A) e SE(3),dg=dA d’a, and U(g;p) is the
unitary matrix with elements (35).

The matrix elements of the transform are given in terms
of matrix elements (35) as

ﬁ;’,m’;l,r11(p): f F(a’A)U;,m;l’,m’(a’A;p) dA d3a,
SE(3)
(36)

where we have used the unitary property.

The inverse Fourier transform recovers F(g) from F(p)
as [59]

. 1 (= .
F(g)=f"(F)=—J Tr[F(p)U(g.p)]1p*dp.
2mJo
(37)
In component form this is written as
1 o0 e’ o ! l -
IEE= S | an
2% s=— =|s| [=Is| pr=—yr m=—1Jo
Xﬁ;,l71;l',l1z’(p)Uj’,m’;l,m(a’A;p)' (38)
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We note that as a direct result of Egs. (14), (35), and the
above inversion formula,

f F(a,A)d =—E Z
SO(3)

oc2
p-dp
27 =0 m'=—1 0

001' A(p)[1',m" |p.,0] 0,0](a).

If this distribution of end positions is then integrated over the
surface of a sphere with radius a=|a|, the result is the end-
to-end distance distribution:

a2
_zjvj F(au,A)dudA
w2 Js?Jso3)

2 o R
—=a*| "y dp Ry (p)1001p.0] 001, (9

It is easy to verify that [0,0]|p,0]0,0](a)=J,,(pa)
=sin(pa)/pa. These expressions provide a means of address-
ing PDF’s of end-to-end relative position and end-to-end dis-
tance when knowledge of orientation is not critical.

C. Operational Properties and Solutions of PDE’s

By the definition of the SE(3)Fourier transform F[ - ] and

operators X,R reviewed in earlier subsections of this section,
one observes that

R d v s(,—1
FIX;Fl= LE@)E[F(gOCXP(tX"))]"°U (g7 '.p)dg.
(40)

Here g can be thought of as H(g) and exp(tf,-) is an element
of the subgroup of SE(3) generated by X;, which for small
values of ¢ is approximated as I+tX;. By performing the

change of variables 4= goexp(tX;) and using the homomor-
phism property of the representations U°(-), one finds

vR d s v —1
FIRFI= [ FO) U Cesp(1Reh ! )] -od
SE(3) dt

(41)
d . -
:E[U (exp(£X;).p)]l,=0
xf F(h)U*(h™',p)dh. (42)
SE(3)
By defining
SV d s v
u'(X;,p)= E[U (exp(tX;).p)]l,-0>

we write

FIREF1=u' (R, .0)E(p).

Hence, Eq. (29) can be transformed to the infinite system
of linear differential equations.
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——=BF, (43)

where

1 - -
=5 2 Duu*(X,.p)u(Xy.p)
k=1

3
+[§1 du*(%).p)—u*(Xe.p).

In principle, F(a,A;L) is then found by simply substituting
F¥(p;L)=exp(LB*) into the SE(3) Fourier inversion for-
mula (38). In practice, however, exponentiation of a nondi-
agonal infinite-dimensional matrix poses some difficulties
that need to be addressed. This is the subject of the next
section.

Explicitly, for i=1,2,3 we have

us()?,- ,p) = d_ U;r,mr;[,m(oaexp[txi];p)h:o

d
= 51,1'd_Umr,,,,(eXP[in])|z:o,
where exp[tX;]=Q,s[€;,t]. The second equality above fol-
lows easily from the structure of the matrix elements
Uy i and d/dthn L(exp[£X;])],—o are given explicitly in

Eq. (23). This, together with the fact that [59]

d
Ltl, f/m(X6=p) dt U[, ,,m(te3,1 p)|t 0

!

. K
_lpK[',mfa 71/5m m l’lém’,m

m s
Pra
+ipKf,m 61’,1715m’,m=
where
(172 m )(ZIZ_SZ)
1)[!2

s

Kl’ m' ’
\ler+ner-

allows us to write the elements of B*(p) as

s _ . s
Bl’,m’;l,m_Am mél, lpKl’,m’5 *115
m's o
_ p—l/(lr+1)5l,15 m_lp Kl,m 517,1715”1!,}”.

V. NUMERICAL RESULTS

From a theoretical point of view, the solution to Eq. (43)
subject to the initial conditions F*(p;0)=I is simply F*
=exp[LB*(p)]. This may then be substituted into the
motion-group Fourier transform to find the PDF F(g;L) for
any value of L.

In practice, however, we must truncate B*(p) at finite
values of s,/, and p. When the end-to-end distance PDF is of
interest, Eq. (39) suggests that we need only consider s=0.
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We truncate at [=Lg and p=Pp, and denote the corre-
sponding finite matrix as [Bo(p)]LB for 0<p<Py. In the

numerical results that follow, we exponentiate L[B°(p)] Ly

and examine the convergence of the 00;00 element of
exp(L[B°] 1,) and the behavior of the PDF found by substi-

tuting this truncated solution into Eq. (39).

In the numerical results that follow, all stiffness and
length parameters are normalized by persistence length as in
[4]. The parameter « is related to the temperature, Boltz-
mann constant and persistence length as

kyT

(84 0 = K .

In our numerical results, we take A=1, and assume units
such that kz7=1. For the helical wormlike chain model Ya-
makawa defines [4]:

Bo=ay(1+a)!

where o is the Poisson ratio. As in [4], we take a,=0.5 and
o=0. In [4] the following moment of end-to-end distance
was calculated:

R¥)=c.L———
(R%) 2 V2 2
2 2
Ty 2k ) )
X 74——4[(4—1) yeos(vL)—4wsin(vL)] |, (44)
r
where
4+ 7'3 43)
Co=—""—"7—"7 4
4+K%,+7’%
VZ(K(2)+T(2))]/2
and

r=(4+17)".

Here kg, and 7, are the unperturbed values of curvature and
torsion of the helix. In our notation, (R*)={|al|?).

Figure 1 shows our technique used to find the end-to-end
distance PDF for the KP model with L=1 and «;=0.5.
(This is the Yamakawa model with 8y,= k= 7,=0.) In this
numerical implementation we chose B,=10""' and k,= 7,
=0 in order to use our method (which was derived with
nonsingular stiffness and flexibility matrices). We show how
the form of the PDF converges for different values of trun-
cation parameters.

Figure 2 shows the end-to-end distance PDF for the
Kratky-Porod model with L=1 for several of its parameters
and the truncation values Ly and Pyz. We set Ly and Py by
choosing successively higher values until the shape of the
PDF converged. For the ay=2 case (which is very stiff)
small oscillations are still present. If we choose Ly and Pp
large enough, these oscillations can be made negligibly small
(in the L? sense), but this requires a greater computational
burden.
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-05)

— — - Ly=4;P;=100
--------- Ly=7; P, =60
Ly=7: Py =130

End-to-End Distance PDF (KP Model; o,

) ) n n 1 n n ) . 1
0 0.5 1

Normalized Distance a

FIG. 1. End-to-end distance PDF for the KP model: successive
approximations for one stiffness value.

In Figs. 3—5 we show the end-to-end distance PDF’s for
the Yamakawa helical wormlike chain model for several pa-
rameters and compare it with the KP model for various val-
ues of normalized length L. Following [4]: For HW1, &
=2.5 and 77,=0.5; for HW2, k;=5.0 and 7(,=1.0; for HW3,
ko=1.0 and 77=1.0; for HWS, k;=30.0 and 77=28.0.
Clearly for smaller L, the chain is effectively stiffer, and our
Fourier method exhibits some Gibbs-type oscillations.

Figure 6 shows how the moments of the end-to-end dis-
tance PDF generated using our technique at discrete values
of L matches with the closed-form result (44) presented in
Fig. 4.14 of [4] .

The benefit of our approach is that the PDF contains all
the information to generate any desired moment. While we
have demonstrated the compatability of our method with
theKP and helical wormlike models, our method is valid for

9F —_— - 0,=01(Lg=5;P;=60)
......... 4, =05(Ly=7;Pg=100)

o F — — — q,=1(L,=9;P,=180)
0, =2 ( Ly =10; Py =250)

End-to-End Distance PDF for KP Model
®
T

Normalized Distance a

FIG. 2. End-to-end distance PDF’s for the KP model for several
different stiffness values.
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14 ¢ [
1BE ¢ ; N
Y & T HW (L, =10;P, =150) r { \ P, = 150)
e 1) b {Fen1%0
HE — — HW5(L,=8;P,=100) [ ; Py = 150)
F KP(Ly=8;Py= 150) L | — — - HW5 (L =5; P, = 150)
10 ; 3L I \ KP (Ly = 5; Py = 100)
g of oo
R 2oesf |
s Ok s F o7
g TF -
g $ 2r
2 sf g 1
2 st 'E 15F / '/\ \‘\
:‘? 4i § E ’ / \ ‘\‘
& E a ot s
3E r \
of E
E 05 [
1 E a
oE r
= Q peze=="" N lTieme o TraM
4 E T ST TS T TS R R S R S S S S|
0

Normalized Distance a

FIG. 3. End-to-end distance PDF for the HW and KP models
with L=0.5.

any second-order stiffness model (with arbitrary linear
chirality term).

VI. CONCLUSION

This paper contributes three ideas to the understanding of
the conformational statistics of stiff macromolecules. First, a
PDE governing the PDF’s for inextensible stiff macromol-
ecules with arbitrary (though uniform) local stiffness and
chirality characteristics is derived. This PDE describes a pro-
cess that evolves on the Euclidean motion group. Second,
analytical tools for the solution of this PDE are presented.
Third, we show how this analytical framework can be used
to numerically generate PDF’s of interest in polymer science,

75
n
7 A
65 I\
N )
— — - HW5(L,=5.P,=100
55 o KP(L(B=B7;PB=E100))

End-to-End Distance PDF for L=1
b iad w bl
- o v o n o~ O oo

o
o

o

w
© ETIT T T O T T T O T T T T T T T T T

&
wn

Normalized Distance a

FIG. 4. End-to-end distance PDF for the HW and KP models
with L=1.

Normalized Distance a

FIG. 5. End-to-end distance PDF for the HW and KP models
with L=2.

the moments of which match with moments generated using
other techniques.
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APPENDIX A: THE OPERATORS X7

In this appendix it will be helpful to associate each matrix

X, defined in Sec. IV with a vector (X;)V in the following
way:

-
®

-
o

HW2

. o a -
SRk
ATiTh

HwW1

o
©

HW

<R*>/C_L
o
o0

o
o

HWS

o
o

o
0

KP

o o o
N W
IIIlIIIIlIIIIlIIII?IIII

o

a

]
o
n

log,, L

FIG. 6. Comparison of moments generated numerically and ana-
lytically.
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1 0 0

0 1 0

_ 0 _ 0 _ 1
(X1)v_ ol (Xz)v: K (Xs)v: ol’

0 0 0

0 0 0

0 0 0

0 0 0

- 0 ~ 0 _ 0

(X4)V= uE (X5)V= ol° (Xe)V= 0

0 1 0

0 0 1

Given elements of SE(3) parametrized as H=H(q), the
differential operators )?,R are calculated as

df(H-(1+1X)))

i (A1)

XEf(H)=
=0

By defining q® such that H(q+tq®")=H(q)(I+tX,), and
expanding both sides in a Taylor series in 7, one observes
that

6
oH
H+tHX,;= H+t2 —qj "+ 0(r?)

since
(q;+1q5")],—o.

R,ifi
15 = dr

Differentiating with respect to ¢ and setting =0 then yields

6
JH
X.: H—l_ RI,
~3 oy
or
=§ JOH\V e
= 6(1] /

The 6 X 6 matrix with columns [H ™~ '(9H/dq J-)]\/ is denoted
Jr - One then writes

q'= T (X)V,

which is used to calculate

S S5 4
Xir=2 —qu”:JEIZ <xj>Vi. (A2)

Let q,,9,,q3 parametrize rotation (i.e., the Euler angles) and
q4.95.q¢ parametrize translation (i.e., the components of the
vector a). Then J% and its inverse take the explicit forms
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Jr 0s
0, AT

Jg' 03
jR: )a

0, A

and JR‘=(

where 05 is the 3 X3 with zero entries and Jp is the matrix
relating rates of rotation parameters and angular velocity (in

the body-fixed frame): w=Jg[q,.¢2.q5]". Substitution of
these definitions into Eq. (A2) results in Eq. (28).

APPENDIX B: HELICITY REPRESENTATIONS

In this appendix we explain the term Ay (R, "AR A=1p)
(which is often called a helicity representation) in Eq. (30).

Let H; denote the group which leaves the point ve S? fixed.

To calculate the representations of Hj explicitly, we first
choose a particular coset representative €'=e3eS2

=S50(3)/SO(2). The vector v is invariant with respect to
rotations from the SO(2) subgroup of SO(3), and for this

particular choice of v we not only have H;=S0O(2), but
rather H;=S0(2).

For each ve §? we may find R, € SO(3)/SO(2), such
that

R, v=v.

Explicitly, this rotation matrix is the one which has an axis
pointing in the direction defined by vXv, and has a rotation

angle whose sin is ||[vXv]. In general, the rotation R(a,b)
which transforms a unit vector a into the unit vector b,

b=R(a,b)a,
is defined by

(1—a-b)

R(a,b)=e‘=I+C+
lax b]|?

Cc?, (B1)

where c=aXb and C is defined by Cx=cXx. This follows
easily from the fact that ||aXb||=sin 6,, and a-b=cos 6,
where 0=<6,,< is the counterclockwise measured angle
from a to b as measured in the direction defined by ¢. Hence,
in the current context,

RVZR(QI v):emalr[;rXV]

where mati{c¢] is the skew-symmetric matrix such that
(matr[ c])x=cXx.

For any A € SO(3) it follows from the definition of R,
that

RA—IVV:A71V

Multiplying both sides by A, making the replacement v

=Rv§' on the right-hand-side, and multiplying both sides by

R, ! means

(R,"AR,-1y) v=V.

Therefore,
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A
Q(v,A)=(R,"AR,-1,) €Hj;.

The representations of H; may be taken to be of the form

Aj:p—e?, 0s¢p<2m,

and s=0,%£1,*2,....This is just the usual Fourier series on
§'=S0(2).

We now derive the form of Q(v,A) explicitly. At first
sight this would appear to be a complicated function of v and
A. We show that this is not as complicated as one might
believe.

We begin by observing that

RAflV:R(Q’,A — lv) — emalr[{lX(A7 Iv)]‘
Using general rules for cross-products, one finds that

vX (A 'v)=A " [(AV)XV)]
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and
matif A ™' {(AV) X v}]=A " 'matr [ (AV) X V]A.

Since conjugation commutes with the matrix exponential,
it follows that

RA,IV:A*IR(A;‘,’V)A:Aflematr[(A‘A/)Xv]A‘

Substitution of this into the definition of Q(v,A), and using
the fact that

R, '=exp{—matr[ (VX v) T} = exp {matr] (vx )T},
one finds
O(v.A) = emarl (3] a3 v,

(B2)

While the derivation here is for unit vectors v, everything
follows in exactly the same way for p=pv.
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