The Journal of Fourter Analysis and Applications
Volume 6, Issue 6, 2000

An Operational Calculus for the
Euclidean Motion Group with
Applications in Roboties and

Polymer Science

Gregory §. Chirikjian and Alexander B. Kyatkin

Communicated by D. Healy

ABSTRACT.  In this article we develop analytical and computational teols arising from harmonic analysis
on the motion group of three-dimensional Euclidean space. We demonstrate these tools in the context of
applications in robotics and pelymer science. To this end, we review the theory of unitary representations
af the motien group of three dimensional Euclidean space. The matrixc elements of the irreducible unitary
representations are calculated and the Fourler trangform of functions on the motion group is defined. New
symmeiry and operational properties af the Fourier trangform are derived. A technique for the solution of
convolution equations arising in robotics is presented and the corresponding regularized problem is solved
explicicly for particular functions. A partial differential equation from polymer science is shown to be solvable
using the operational properties of the Enclidean-group Fourier transform.

1. Introduction

The Euclidean motion group, SE(N 3,0 is the semidirect |_::r1:n-l:il.11:1*2 of BY with the special
orthogonal group, SO(N). That is, SE(3) = B &= §O(3). We denote elements of SE(N) as
g =1(a A) € SE(N)where A € SO(N)and a € RY. The group law is written as g1 o g2 =
(a; + Ajaz, AjAz), and g=! = (—ATa, AT). Aliernately, one may represent any element of
SE(N)asan (N + 1} x (N + 1) homogeneous transformation matrix of the form:

A a
Hig) =
or 1

Clearly, H(g;)H(gz) = H(g) o £2) and Hg~hH = H~(g), and the mapping g — H(g) is an
isomorphism between SE (N} and the set of homogeneous transformation matrices.

Keywords and Phrases. convolution, Buclidean group, rigid body motion, diffusion eguations, inverse problems,
regularization, Fourier transform, harmonic analysis.

I The notation SE(N) comes from the terminology Special Evclidean group of N dimensional space.

2The notation - is used to denote semidirect product, as in [17]. We note that = and = are more commonly used.
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The motion group plays a central role in the kinematic geometry of mechanisms [1, 20, 3],
robaots [27, 30, 31], and machines [18]. SE(3) and related groups are also important in computer
vision and image processing [24, 19, 29]. Inthe past 40 years, the representation theory and harmonic
analysis for the Euclidean group has been developed in the pure mathematics and mathematical
physics literature. The study of matrix elements of irreducible unitary representation of SE(3)
was initiated by N. Vilenkin [34] in 1957 (some particular matrix elements are also given in [35]).
The most complete study of SE(3) (the universal covering group of SE(3)) with applications to
harmonic analysis was given by W. Miller in [28]. The representations of SE(3) were also studied
in [33, 32, 21, 17].

However, despite considerable progress in the representation theory of § E(3) and other non-
compact noncommutative groups, these achievements have not yet been widely incorporated in
engineering and applied fields. In this article we try to fill this gap. We review the representation
theory of S E(3), derive the matrix elements of the irreducible unitary representations and define the
Fourier transform for SE(3). We derive new symmetry and operational properties of the Fourier
transform and give explicit examples of Fourier transforms of functions on the motion group. We
apply noncommutative harmonic analysis to two problems: (1) the solution of equations of the form

(fix f2)(2) = falg) (1.1)

where = denotes the convolution of functions on SE(3), fi(g) and fi(g) are known functions, and
f2(g) is to be determined; and (2) solutions to partial differential equations of the form

of e
S Df (1.2)

that arise in polymer science where f{g; L) is a probability density function on 5 E(3) for each value
of arclength L and D is an operator explained in Section 2.2,

Techniques for solving (1.1) where ¢ € SE(2) were presented in [5]. We now consider the
more complicated case of when g € SE(3). Because problem (1.1) is ill-posed, we must seek
regularization techniques for performing approximate deconvolution. The approach taken here is
to generalize Tikhonov regularization (see e.g., [16]) to the Euclidean group. Our approach to the
solution of (1.2) is analogous to the way in which linear diffusion equations with constant coefficients
are solved on the line. In order to solve both of these problems, two analytical tools are required: (1)
the appropriate concept of Fourier transform; and (2) an understanding of how differential operators
acting on functions on the group transform to algebraic operations on the Fourier transform. This is
what we refer to as the operational calculus.

The remainder of this article is structured as follows. In Section 2 we illustrate a physical
situation in which equations of the form of (1.1) and (1.2) appear. Section 3 reviews the representation
theory of SE(3). Sections 4 and 5 define the Fourier transform for SE(3) and derive operational
and symmetry properties of the Fourier transform of real-valued functions on SE(3). In Section 6,
explicit examples of Fourier transforms on SE(3) are given. In Sections 7 and 8, operational
properties derived in this article are used to regularize the solution of (1.1), and provide analytical
solutions to (1.2), respectively.

2. Motivational Examples

Here we present in greater detail problems that motivate the need for an operational calculus
for the Euclidean motion group.
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2.1 Workspace Densities of Robotic Manipulators

In this subsection we explain why the inverse problem stated in (1.1) arises in the field of
robotics.

A robotic manipulator arm is a device that is used to position and orient objects in the plane
or in three-dimensional space. A manipulator is generally constructed of rigid links and actuators,
such as motors or hydraulic cylinders, which cause all motion of the arm. If the actuators have
only a finite number of states, as is the case with stepper motors or pneumatic cylinders, then the
arm has a finite number of configurations and only a finite number of frames® are reachable by the
hand. This is illustrated in Figure 1 for a manipulator composed of passive hinge-like joints and
linear/translational actuators with binary states denoted ‘0" and *1°. This manipulator is capable of
only reaching eight positions and orientations in the plane. Such a manipulator is called a binary
manipulator [4]. The set of all reachable positions and orientations is called the workspace. Clearly,
in the case depicted in Figure 1, the workspace is a discrete subset of SE(2).

1 1 1
0 {\ \‘; N
*;-m—::-;"

A

110 011 100

FIGURE 1 An 8-state binary manipulator.

For discretely actuated manipulators the density of reachable frames in SE(N) determines
how accurately a random position and orientation can be reached. This density information is also
extremely impaortant in planning the motions of discretely actuated manipulator arms [9]. Density
is calculated directly by dividing a compact subset of SE(N) containing the workspace into finite
but small volume elements. The number of positions and orientations reachable by the end of
the manipulator which lie in each volume element is stored. Dividing this number by the volume
element size gives the average density in each element. Efficient methods for the calculation of this
density histogram in the planar case are given in [10, 6]. A smooth density function can be used to
approximate the shape of this density histogram as in [11]. Note that the density function always
takes non-negative real values.

It is an important aspect of the manipulator design problem to specify the density of reachable
frames throughout the workspace. That is, areas which must be reached with great accuracy should
have high density, and those areas of the workspace which are less important need less density.

3 A frame of reference in space is completely determined by the position of its origin and its orientation relative to
another frame.
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For relatively few actuators, the design problem may be solved by enumerating reachable frames
(positions and orientations) and using an iterative procedure as discussed in [4]. However, to compute
this workspace density function using brute force and iterating is computationally intractable for large
n, e.g., it requires K" evaluations of the kinematic equations relating actuator state to the resulting
end frame for a manipulator with n actuators each with K states. InFigure 1, K =2 andn =350
the problem is simple.

A grayscale of the density of frames reachable by a discretely actuated manipulator is shown
in Figure 2 with several configurations of the arm superimposed.* This manipulator is essentially
a serial cascade of modules with the same kinematic structure as in Figure 1, only now each leg
has four states instead of two. Since each leg has four states (and thus the whole manipulator has
4%0 = 10'® states) the workspace density cannot simply be computed using brute force. In fact, it
would take years using current computer technology to enumerate all the positions and orientations
of the frame attached to the end of the manipulator for each discrete configuration.

FIGURE2 A discretely actuated manipulator with 4°¢ states.

The concept of convolution of real-valued functions on SE(N) provides a powerful compu-
tational tool for computing this density efficiently [10, 11]. If we imagine that the manipulator is
divided into two connected parts, then a density function fi(g) can be associated with those frames

4 A density function on 5E(2) can be written as f{g(x, y, #)). What is shown is really the integral of this over & (the
arientation varable) from —x to 50 that a planar picture results.



An Operational Caleulus for the Enclidean Motion Group with Applications in Robotics 587

reachable by the end of the lower half of the manipulator, and a density function f3(g) can be as-
sociated with the end of the upper half of the manipulator. f; is defined relative to the base frame,
and f treats the frame at the end of the lower segment as the base frame. That is, fi(g) = fa(g)
when the manipulator is cut into two equal parts and there are an even number of identical modules.
However, fi and f2 will not be the same function in more general scenarios. By adjusting kinematic
parameters such that actuator strokes are limited or extended, the set of reachable frames (and thus
the density) is altered. This is achieved mechanically by simply inserting or removing rigid stoppers
that specify the physical actuator length corresponding to the discrete states.

While it may not be possible to calculate X" frames to compute the density function of the
workspace, it is often feasible to compute K /2 frames for each of the two segments. For the example
discussed earlier, this would be on the order of billions of arithmetic calculations, which can be done
easily in less than an hour on a not-so-sophisticated computer. The density of the whole workspace
is then generated by the convolution of these two functions:

Ge®= [ A@R (s o) due = 0.

The inverse problem which is of interest is to design the distal end of a manipulator (find
faig)) for given proximal end ( fj(g) specified), so that the workspace of the combination comes
as close as possible to the specified function f3(g). The most natural way to solve this is to use
the Fourier transform of functions on $E(3). In order to do this the matrix elements of irreducible
unitary representations must first be generated, as is done in Section 3.

2.2 Statistical Mechanics of Wormlike Polymers

In theoretical and computational polymer science, the probability density function describing
the frequency of accurrence of position and/or orientation of one end of a polymer chain relative to
the other has received considerable attention (see e.g., [12, 38]). For a stiff polymer such as DNA, a
diffusion equation of the form [7]

8L : k=1 I=l

3 3
éd 1 S ot =
(_-- ¥ gmxf"xf—szfxf+x§)f=o (2.1)
describes the evolution of the probability density function from the proximal end of the polymer
where f(g,0) = &(g) to the distal end where the value f{g, 1) is attained {we are assuming the
length is normalized). 3
The differential operators X are defined as

df (H o xp (:ff;))

dt (22

=0

where for the motion group H = H{g) € SE(3) and

/00 00 f S0t 0 Lo . 0
2 Do 2 000 0 : T R
o=t nsl o o snls 28 te 00 6|’
Lo o 00 L 000 0 i LD
£0 0 D i /000 0 /000 0
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These correspond to infinitesimal rotations and translations about the 1, 2, and 3 axes.
As a concrete example, the Yamakawa helical wormlike model of DNA specifies diffusion
constants of the form [38]:

T | e 0
D= 0 ﬂ'u-l 0 i d=—| xp '
R T

where op and £ are stiffness parameters and &y and 1y specify the prefered helical shape of the chain
in the static state.

In polymer science, (2.1) is usually stated without group-theoretic notation, and solving for the
pdf f(g, 1) is considered a very difficult problem. For this reason, various techniques for computing
moments of f(g, 1) have been devised, though it would be desirable to have f(g, 1) [26 38].

With an appropriate concept of Fourier transform, the differential operators X acting on
functions on the group SE(3) may be transformed to algebraic operations in Fﬂuner space, and
hence in principle (2.1) can be solved using matrix methods. The remainder of this article is devoted
to the review of the § E(3)-Fourier transform and derivation of associate operational properties that
can be used to solve (2.1).

3. Unitary Representations of the Motion Group

In this section we consolidate material presented in [28, 33, 32, 17, 35] to find a complete set
of irreducible unitary representations of the motion group.

3.1 Constructing Unitary Representations

We start by constructing representations of the motion group in the space of functions LT, V),
where T is the dual space of the B? subgroup, and V == C is the space of complex values of these
functions. Functions ¢(p) € LT, V), correspond to the Fourier transforms of the functions
@(r) € LT, V), where T = R?

#(p) = _[r e PTe(r)dr . (3.1)

|
(2m)3/2
Henceforth we will drop the hat over ¢ and use the notation (p) for the Fourier transform as well
as for the function ¢(r) since it is clear which is being considered from the argument.

The rotation subgroup 50(3) of the motion group acts on T by rotations, so T is divided into
orbits 5, where 5, are 5t spheres of radius p =| p |. The translation operator acts on g(p) as

(Ula, De)(P) = e P p(p) . (3.2)

Therefore, the irreducible representations of the motion group may be built on spaces L3(5,, V),
with the inner product defined as

x 2
m,m=fn fn 1) ¢2(p) sin0d0dg , (3.3)

where p = (p sin# cos¢, p sinf sing, pcosf),andp > 0,0 <8 <=7, 0 < ¢ = 2.
The inner product (g, 1) is invariant with respect to transformations

o® > ¢ (a7'p) (3.4)
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where A € §0(3), so the space V is invariant with respect to U(1) rotations (which are isomorphic
to SO(2) rotations for0 = « < 27w).

The parameter «¢ in (3.4) may, in general, depend on p and group element A € §0(3). In this
case, different functions &, (p, A) (where 5 enumerates the irreducible representations of $O(2)),
which are nonlinear functions of group element A, correspond to different irreducible representations
of the motion group. Thus functions ¢(p) may have different internal properties with respect to
rotations.

With the help of functions e;(p, A) we may construct the representations of G = SE(3) =
T & 50(3) from representations of its subgroup G’ = T » §0(2). These representations are called
induced representations of G, denoted by G’ t G.

A formal definition of the induced representations (see, for example, [8, 25, 17]) A(H) 1+ G,

where A(H') are representations of subgroup H of group G, is the following.

Definition. Let V be the space of complex values of functions ¢(o), where ¢ € G/H. The
action of operators U(g) € A + G (g € G) (where A is a representation of subgroup H of group
7, and A acts in V) is such that

U0)0) =A (57" 8510 ) 0 (s710) (3:5)

where 5, is an arbitrary representative of the coset o € G/H.

In our case (we disregard for the moment the translation group 'f'}, G=80(3),H=50(2),
ando =pe S, = 50(3)/50(2).

To construct the representations of the motion group explicitly we choose a particular vector
f = (0,0, p) on each orbit §,. The vector p is invariant with respect to rotations from the S0(2)

subgroup of 50(3)
Ap=p; A €EH;=50(2), (3.6)
where Hp is the little group of p. Foreach p € 5, we may find Ry, = SO(3)/50(2), such that
RepP=p-

Then for any A € 50(3) one may check that
(R;1 A RA_.,,) p=p.

Therefore, G{p, A) = (R;’ AR, p) € Hj. The representations of Hy may be taken to be of the

form ;
By = ™ 0<¢d=2m;

and:s =0, £1.'£2, ... =
Thus, we may construct the induced representation (T = A;(Hp)) 1t SE(3) of the motion
group from the representations of its subgroup Te H;.

Definition. The unitary representations U*(a, A) of SE(3), which act on the space of functions
w(p) with the inner product (3.3), are defined by
(U@, A)p) (@) = P2 4, (R AR, 1) 9 (47'D) 37

where A € 50(3), A; are representations of Hy and s =0, +1, £2, ...

Each representation, characterized by p =| p | and s, is irreducible (they, however, be-
come reducible if we restrict SE(3) to §O(3), i.e., when @ = 0). They are unitary, because
(U'(a, A)g1, U'(a, A)g2) = (91, 92)-



590 Gregory 5. Chirikjian and Alexander B, Kvarkin

Representations (3.7), which we denote below by U* (g, p). satisfy the homomorphism prop-
erty
U'(giog2,p) = U (1. p)- U’ (82, P) ,

where o is the group operation. The corresponding multiplication law for the Q(p, A) factors is [37]
0. 4)0(A7'p. A7'B) = 0. B) . (3.8)

3.2 Matrix Elements

To obtain the matrix elements of these unitary representations we use the group property
Uifa, Ay = U'(a, I) - U*(0, A) . (3.9)

The basis eigenfunctions of the irreducible representations (3.7) of § E(3) may be enumerated
by the integer numbers [, m (for each 5 and p). We note that the values I{/ + 1), m, ps and — pz
correspond to the eigenvalues of the generators J%, J°, P - J,P - P (where J*, P!, i = 1,2,3 are
generators of rotation and translation) of the Lie algebra S E(3) (see [14, 28]) of the motion group
SE(3), which may be diagonalized simultaneously (i.e., they commute). The restrictions for the
{,m,snumbersare! =|s|; I =|m|.

The basis functions may be expressed in the form [28]

hins(0.9) = Q (cos 6) &'+ (3.10)
where
Q"_;m(cos 8y = (—1)* M P;m{cos ay,
3 4

and generalized Legendre polynomials Pj, ,(cos 8) are given as in Vilenkin [35].
It may be shown that these basis functions are transformed under the rotations hfﬂ P =
As(Q(p, A AL, (A~'p) asin [7]

!
(V@ Mk, )@ = 3 Up (@), (3.11)
n=-=l

where the matrix elements U (A) are
Ul o (A) = e"™* (—1)"™ P! (cos B)e ™", (3.12)

where , 8, y are z — x — z Euler angles of the rotation. We note that the rotation matrix elements
do not depend on s.
The translation matrix elements are given by the integral [28]

(Hoy oo U@ D) = [ | pys | 4,m] ()
b 2 y e : >
= f f Q' (cos 8)e~ M o~IPA ol (cos B)e' ™ )¢ sin B dOd . (3.13)
0 Jo
These are written in closed form as [28]
[I',m’ | p.5 | I.m](n}

Pl
& [FFDEE+]) | ;
=|‘\4_?1;';i|""'2 z i* ;k(pa}C{k,ﬂ;!,slf,s]
k=|I'—1 | E+1)

C(kym—m'sU',m' | 1,m) Y™™ (8, ), (3.14)
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where in (3.14) @, ¢ are the polar and azimuthal angles of a, ji; (x) are half-integer Bessel functions,
Y* (8, ¢) are spherical harmonics, and C(k, m — m’; I', m’ | I, m) are Clebsch-Gordan coefficients
(see, for example, [23]).

Finally, using the group property (3.9}, the matrix elements of the unitary representation
Us(g, p) (3.7) (fors =0, £1, £2, . ..) are expressed as

I

Ui wam@ Aip) = Y [I\m' | pos | L i@ UL, (A). (3.15)
J=—I
We note that
O o kp) = (= pm-mipgs . (a, A p). (3.16)

Because (3.14) contains only half-integer Bessel functions, all matrix elements may be ex-
pressed in terms of elementary functions.

4. Fourier Transform

Here we define the Fourier transform of functions f(a, A) € L*(5E(3)). The inner product
of functions is given by

(f.2) = f fla, A)gla, A)dAd’a. (4.1)
SE(3)

To define the Fourier transform for functions on § E(3) we have to use a complete orthogonal basis for
functions on this group. The completeness of matrix elements (3.15) is based on the completeness of
the rotation matrix elements U,{; o(A)on §0(3) [28]. Using the unitary representations U (g, p) (3.7)
(fors =0, %1, x2...), we may define the Fourier transform of functions on the motion group.

Definition. For any integrable complex-valued function f(a, A) on SE(3) we define the Fourier
transform as

FH = fo)y = f f@U (g7, p) dute)
SE(®)

where g € SE(3) and du(g) = dAda where dA = iy sin dadpBdy is the normalized bi-
invariant measure for SO(3) and d°a = da;da:da;.

The matrix elements of the transform are given in terms of matrix elements (3.15) as

B it (D) = f f@ AT, @ A pdAda 42)
SE(3)

where we have used the unitarity property.
The inverse Fourier transform is defined by
|

zemile 2 2
G e Tr(f(P}ULE, p}) podp. (4.3)

f@® = 7 (5)

Explicitly

oo I i o0 3
fa, 4) = 51‘5 P P Yo jr; P2 AP £ i (PYUF 1 (8 AT ) . (44)

4
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Convolution of functions. Recall that the convolution integral of functions fj, fa € LE(SE@3D
may be defined as

(fi*f2)(g) = f filth) f> (I:_] ng) du(h) . (4.5)
SE(3)

One of the most powerful properties of the Fourier transform of functions on BY is that the
Fourier transform of the convolution of two functions is the product of the Fourier transform of the
functions. This property persists also for the convolution of functions on the group. Namely,

Flh=f)=F(H)FUh) (4.6)

or, in matrix form

Fths =3 3 &), o), e

je=|s| k==jf
Plancherel equality. This form of the Plancherel equality is valid

f | f(a, A) |* dAd*a
SE(3)

|'

| & &= =
EZ {; Z Z Zf [ﬂ! J;mfP][ prdp

5] m'=={" m=—1

1 e [
s fﬂ |7 rap. @)

where the Hilbert-Schmidt norm of f (p) is given by

|fol; = Se5 % Z Z [l

s==00 V'=|5| l=|5| m'==1' m=-]

Symmetries. For the real function f(a, A) we note a symmetry property of the Fourier transform,
which follows from symmetry (3.16) of the matrix elements

Bt @ = (DD p-m g (). (4.8)

Cnntracl;mn of indices. It is convenient to rewrite the 4-index Fourier transform matrix element
£ w1 m(P) 25 a 2-index matrix f’ (p)- To satisfy the matrix product definition we define:

ﬂilmr:rlm{p} = .ﬁj(ﬁ'} B {.49:}

wherei =l'('+ 1)4+m' —s2+1; j=ll+1)+m—s2+1.

5. Operational Properties

Properties of translation differential operators. It may be observed from the integral represen-
tations (3.13) and (3.15) that the matrix elements of the motion group satisfy the relation

V3 mtm@ A3 P) = (=P?) Uf .y (@, A3 P) (5.1)
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where V2 is the Laplacian with respect to a. This equation leads to the Fourier transform property
F(Vir@ ) = (-r%) fo). 52)

For the function f(a, A), rapidly decreasing as @ =| a |— 00 and less singular than ;:~ as
a —+ (), the following relation is valid

e (41 %a fla, -4]) (p T +3f(p }) (5.3)
This may be proven using the equation
oh A) = = Tr | f }E-U y) pPd (5.4

the fact that matrix elements of [/ (g, p) are functions of product { pa) [it may be seen from (3.14)],
and integrating (5.4) by parts.
The more general property
1 . df
f( {a fla, A}}) =m=-3f(p)-p ’;LF}

a1 da

follows from (5.3).
We mention also the related property

2 - - 2
1 d
f dAdia = —f p PN 24
SE() 0 3

2n? dp
which follows from the Plancherel equality (4.7) and (5.3).
The equality Eg_a P2 = pcosfe P = —p | 41’5 Qécfms #)e P2 (where @ is the
polar angle of p) and the explicit expressions for the Clebsch-Gordan coefficients lead to the relation

d
ﬂaf{ﬂ.

.
: a_ﬂj. U:’,m';i,m{a’ A p)

12 — w17 =57 2
=-—p (( ) ( }) Up_y mrg,m (@ A5 P)

QI+ 1) @21 -1)17

m ¥
1” (P 1) Uﬁim’:f,m (a, A; p) (3.3)

= (([F + IJ —ma) ({f’-{— 1:]12 —5’2) iy

5 .
{Efr + I} {;r o E I}E (ﬂ" + 3} ) ‘i:"rl"'+1.m".!',n-:i:ar A; P} *

We may get from this relation
1/2
@ (0 + 1) —m?) (1 +1)* =53 .
F(’@m’ m) St ( @+ D+ D@ +3) Jr st m (P)
f{f-l' l}fl m'; EM(P}

(20 + 12 = 1)2

B —m?) (F -5 22 5
= ({ } { )) fif.m";f—].m{p} :
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For operators PE = | a—g'l + 32, which act on the exponent as pEe—ipa = 4 85
0} ., (cos8) ™% (8, ¢ are polar and azimuthal angles of p), we have the relations

pt Upl it (@, A5 P)

=-—p ((II_ ol 10 (fa—sﬂ])]ﬂ s

&'+ 1)@ - l}f'z f'—].m'+1:.|’.m{a= A p)

JT=mYT+1+m)s
—P rr+ 1y f’,m’+[:.l’.m{a’ A; p)

({f’+ 1+m') (' +2+m') ({,u +1)? _5’2))
+p

172

¥ "
@1+ D+ 172 (2 +3) Up 1w 1:0,m (@ AL )

and
P™Up ot (@ AL P)

j'.... 1 4 ¢ !;.r_!_ ¢ I'rz-- 12 |.,-"2.
=—p({ m) ( +m') ( 5]) Us (a, A; p)

@+ 12 -1n1i? I—lm'—Lilm

JT+mY T +1-m)s ‘
P+ 1 Uﬁﬂ'—]:!.m (a, A; p)

({I’—?rl—m’] (!"-E—E—m’] ({f'+ E]E_s'?
—p

2+ D'+ 1) 20 + 3)

b
) UI€+1.m’-I1!,m(n1 Aip).

These relations yield the operational properties
F(P* fla, A))

(4+1—my+2=m)((+ 1) —s?
S @+ D{ + 2@+ 3)

JTFmU+T—m)s 5
I+ 1) Tt st m-1(P)

A= 1+m@+m -\ "
ol ( (20 + 12 — 1]..!2 -ﬁ’.m";!—].m—!{p}

) 12
) -"'}f,m“;r+[,m—1 (p)

and

F(P~ f(a, A))

= (U+1+m}ﬂ+2+m}|{{[+1}2_52})

e (2! 4 D+ 120+ 3)
JTI=mUF1Tm)s 5

R i+ 1) f}',m’:hm+] (p)

5 ((!—1—m;u::-m:. (12— s

172
fff,m’;l+1,m+|(P}

Ll
FE
{21+ 12 — l}fl ) ff".m';i—l.m+1(.p} .

We note that f (p) = 0if | m'(m) |> I'Q).

'l m
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Using integration by parts together with the property (5.2) it may be shown that

[ mar@Pdse) = f (7). V2 £(®)) duta)
SE(D SE(3

1 i -
= f 1 (p F(p) F(p)) PPdp (5.6)
a

2xd

Properties of rotation differential operators. From the fact that [35, 33]
T2 UL (A) = (—Id+ 1) UL(A), (5.7)

A mn

where the Laplacian operator on § 0(3) is given by

72 1 a(_ﬁa)Jr 1 (32 S a2 +32 5.8)
= — — |3inf— —_— | — = — .
A= Snpg g \""Fag) " inip \Ba2 Bady | ay2

(recall that @, 8, ¥ are z — x — z Euler angles of A), it follows that

i .
F(Gr@a), = (L +) i (59)
The straightforward relation
d - "
Figr@m) = fpan®
¥ 1 om'dm

follows from (3.12) and (3.15) and Fourier transform definition (4.3).
The equations [14]

HU (A = iJU+m@-n+1U.,,_ (4)
HyUL(A) = —ifU=n)+n+DU; . (A,
where
: a I8 a
3 !? —_— — —_— I_ e
H_ e ( Mt'ﬁﬂy+sinﬂ&a+£ﬂﬁ)'
: a j a
H = gV _—— [— | :
e E (‘:mﬁay e T ‘aﬁ)

lead to the relations

F(H-f(a, A”;’,m’:!,m = i{'+m' + 1) —m) -ﬁf,m‘+1;f.mip} !
FHe f@ Ay = —iNC—m + DT +m) [ 1 (P) -

6. Analytical Examples

Here we give some examples which illustrate the Fourier transform and inverse Fourier trans-

form and allow us to perform analytical calculations.
First, let us consider rapidly decreasing spherically symmetric functions

flr,A) = f(r).
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Here we have used r to denote translation rather than a. Because this function does not depend
on the Euler angles of rotation, only U ., o(r, A} elements contribute to the Fourier transform.

Moreover, s = 0 because | 5 |< [, !'. Finally, examining the expression (3.14) and using the fact
that

x prlx
f f Y"sin8dfdgd = ~4x Sig8mo .
0 0

we see that only the element U&mm{r. A; p) contributes to the Fourier transform.
For the function f{r) = ™" the Fourier transform gives

fo0.00(P) fs e FRUS 0.0.0(r, A; p)drdA

= 3
i 4"[ Jor sm{prirdr = 8_“ (6.1)
0 P (1+ p?)?

where we have used the fact that [, dA = 1.
The inverse Fourier transform reproduces the original function

] o
ey = o= _[J £00.0,0(P)Ug.0.0,0(r. A; p) p*dp
1 f 8x sin(pr) L
= — pdp = e .
2.1'(2' (1_'_?2}2 r

For the function f(r) = e~ we have for the Fourier transform f (p) = ()32 e~ The
inverse Fourier transform gives the original function.
Another example is the function

fir,A) = ¢ cosé cos B

where # is the polar angle of r and £ is Euler angle (around the x-axis) of rotation A. Because
Ugy(A) = cosp, it may be shown from (3.14) and (3.15) that only fPo.00(P)i Flo o(P)

- - - | - | - & . s
fﬁu;z,u(-"k Flo1.0PY fo20(P): fig.1,0(P)i fig.2,0(p) can give nonzero contributions. Direct
computations show that the Fourier transform elements are {we show only nonzero matrix elements)

8im P

20 BP ;
fi.ﬂ:ﬂ,ﬂip} aﬁ {1 + P-z]z ¥

=0 i P .

fio20(P) = i ‘{1 )

21 Sl

H.o2.00P) 373 (1+P2}2 :

% 8

frazo® = ——=—f— 62)

35 (1+ )’

For the inverse Fourier transform we obtain the following expression for the trace in equa-

tion (4.3)
(sin(pr) — pr cos{pr))

(1+ pz}z pri
The p integration in (4.3) reproduces the original function.

Tr(f{pw{g. p.‘l) = 87 cosé cos f
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We computed also the Fourier transform of the function
fir, A) = rte™" cosf cosf .
The nonzero matrix elements are

f0 _ Rz plpi-9)
fl.ﬂ;ﬂ,lill{p} 3“@ [:1+PI}4 r

odim p (pz— 5}

i i :

f],u:z.u':P]' = i {1+p2}4 !

5 Rix p (p*-5)

flosolp) = — ———5;

1,020 3£ {1 +p2)4

: 32i 2_5

Pl = PR (6.3)

3V5 (1+p?)°

The inverse Fourier transform gives the original function.

We chop all zero elements for I(I') = 2. Therefore, after contraction of four indices to two
using (4.9), the Fourier transform of the examples (6.3) and (6.2) may be written as a block-diagonal
matrix

T
I
=

(6.4)

-

Fi
i %]

The nonzero blocks are the 9 x 9 matrix Fq and two 8 x 8 matrices F.., F i (lower indices
correspond to 5 index). Using (4.9) these matrices may be depicted as

s 0
Fo= ol ol 0 (6.5)
S Ry ] 0

where f3] = f:{].{hu.u{p}' 2= ff 0:2,0(p)- The other matrices are

[Tttt Nat) 0

: D% 5 i 0

Fa=| | 5 ; ©.6)
Y s el 0

bl _ 2kl
where fo5° = f1,0,2,0(P)-
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7. Application of the Fourier Transform to the Solution of
Convolution Equations

In this section we apply Fourier analysis on SE(3) to the solution of the convolution equa-
tion (1.1).

7.1 Regularization of the Convolution Equation
Using the property (4.6), the convolution equation may be written in the form
Lh=h, (7.1)

where f, denotes the 5 E(3)-Fourier transform of function f;.

In general, the Fourier transform can contain an infinite number of harmonics [, " and block
elements 5. We assume that the contribution of the higher (rapidly oscillating) harmonics can be
neglected, and truncate the Fourier transform at some [ = [' for each block and take all nonzero
blocks for | 5 |=< I. Thus, the problem may be reduced to the solution of the matrix equation (7.1).
If the functions are “band limited” (i.e., only a finite number of harmonics give contributions to the
Fourier transform), the Fourier transform matrices are finite (as in examples in the previous section).

For nonsingular matrix fj the inverse Fourier transform is used to generate the solution:

@ =F (A @) - (72)

However, in practice, _ﬁ {p) is usually singular for many or all values of p, and so a means of
regularization is required.

This is a perfect application of the operational properties derived in Section 5. One can extend
the Tikhonov regularization technique [16], used for integral equations of real-valued argument,
to the case of SE(3). That is, instead of solving the original problem, we seek an approximate
solution which minimizes the cost function (this is a particular example of first order Tikhonov
regularization):

¢ = [ (i+D@- 5@ +elL@F + V@)
SE(3)

+ 1 (£8). ~Vif2(@))) die) (73)

for small parameters €, v and i (higher order derivatives may be added for higher order regularization).
Here g = (a, A).

Using the operational properties (5.6) and (5.9) together with the Plancherel equality (4.7), one
can convert this cost function into an algebraic expression in the dual (Fourier) space, do algebraic
manipulations, and convert back using the inverse transform.

The Fourier transform converts (7.3) into

1 % e s 2 N B & ol

B= oo [) ¢ (fz (p) f:fph) B oy L || f2(p) filp) — fa(plﬂz
2 = i
L+ T (H@Akw) pdp, (74

p fa(p)

el +»

where Ap -t m 21+ 1)8p 18
The equation for _fg{p}f which minimizes the functional C may be found by differentiating
(3 (p), fo(p)) with respect to £ (p) (or f2(p))
dc
=
) fz
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(differentiation with respect to fg (p) gives a Hermitian conjugate equation). This equation is written
explicitly as

o (AFF+ (e +v?)1) + nah = Af] @)

where 1 is an appropriately dimensioned identity matrix. After truncating the Fourier transforms
and contraction of indices according to (4.9) this equation is analogous to the matrix equation

fiB+ Af =D (7.6)

for given matrices .4, B, D. Methods for solving this equation can be found in [13, 2, 15].

We have to solve equation (7.5) for smaller and smaller values of the parameters ¢, v, 7.
When the solution starts to exhibit unpleasant behavior (the solution shows singular-like growth in
some regions and starts to oscillate) the calculations must be stopped. “Physical” arguments may
be used in the choice of the particular values of the parameters, i.e., we may want to pay more
attention to the magnitude of derivatives of the solution (in which case we increase parameter v) or
we may be interested in the absolute values of the solution (in which case we increase parameter
¢). The solution for these values of the parameters €, v, 1} is an approximation to the solution of the

convolution equation (1.1).

7.2 An Example Solution of the Regularized Problem

Here we find a solution which minimizes functional (7.3) for n = 0 and some values of € and
v. We solve this problem for particular functions fi(r, 4) = ¢ " and f3(r, A) = ¢7" cosf cosff,
where r =| r |, 8 is the polar angle of r, and § is an Euler angle (around the x-axis) of rotation A.

The Fourier transforms of the functions f; and f3 above are given in (6.1) and (6.2). After
truncation of zero elements and contraction of indices the Fourier transform of f3(g) is written in
matrix form in (6.4), (6.5), and (6.6). Only the s = 0 block of the Fourier transform of fi(g) is
nonzero, and it may be depicted as a 9 x 9 matrix fl with only one nonzero element ( _f] Ju(p). It
is clear that _,ﬁ does not have an inverse. So, instead of solving (7.1}, we look for a solution fz{p}
which minimizes (7.3) (for n = 0). It may be found from equation (7.5) {(without the last term on
the left side). The solution of this equation is

= A A (ASF+ (e +vp?) 1)_l : (7.7)

where 1 is a unit matrix.
Only one (s = 0) block is nonzero. In this 9 x 9 block only one matrix element is nonzero:

; 64 P
AR, = —i————
(52)s = 37+ 7
The s = 0 block of ( fi fﬂ + (e + vpH)1)~! is the 9 x 9 diagonal matrix
B 1
S pepupl ¢ 2
(1+#%)
1
¢ T Besaei (1.8)
1
L 0 0 va+|..l_az

Therefore, fg{p} is given by the 9 x 9 matrix with only one nonzero element
6dm’p
343 (e (1+p?)* +up2 (14 p?)* + an)

(fz)n (p) = —i
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The inverse Fourier transform gives the solution

L Py 0 2
P (fz)31 (P) Ugg.10(r. A; p)p°dp

(cos B cos@ + sin B siné cos(¢p — B)) falr, €, v)

falr, A)

where
32p (sin(pr) — pr cos(pr)) d

s =]
falr,e,v) = f (7.9)
0 32 (e (1+ %) +up2 (14 p2)* + 154::2)

Again, o, f, y are the z —x —z Euler angles, and @, ¢ are polar and azimuthal angles of the translation

vector r.
We now discuss the choice of small parameters € and v. Afier substitution of the solution

_ﬁz{p} into the functional (7.4) the ¢, v dependent part of the functional may be written as
2
o0 32p° (é (14 p?)° + vp? (14 szi) +2048 e m2p? + 2048 v 2 p*

C{Er "I} =f 4 4 2 Pzdp 1
o 27 (e (14 p)* +vp2 (1 + p2)* + 64m2)

where we dropped the terms which do not depend on e, v. We depict C(e, v) in Figure 3. Cle, v)
does not have any global minimum except € = 0, v = 0. However, we cannot choose the parameters
€ and v as small as we wish because for each value of € we can find an approximate value of v where
the solution starts to develop “unpleasant™ behavior. For € = 0 we depict in Figure 4 the values of
f2(r, 0, v) (we depict the range of values of f2 between —0.2 and 0.4) as a function of r, v. We see
that for values of v smaller than 10~> — 10~ the solution is increasing rapidly at r = 0.1 — 0.3
{and exceeds the “natural” scalesz 1 of maximal values of fi{g) and fi(g)) and oscillatory “tails"
appear at 7 = 1.0 — 2.5. The v dependence of f is depicted in Figure 5a for r = 0.25, and in
Figure 5b for r = 1. Thus, a value of v in the range 10~* — 1073 is an appropriate choice of v for
€ = 0. The “threshold” solution f> is depicted in Figure 6 for v = 0.001 and € = 0.

We may also find the “threshold” value of € for v = 0 (an analogous analysis shows that €
should be chosen in the range ¢, = 5 - 1073 — 5 . 102) and we may find v for any € between 0
and ¢;. The particular choice of € and v depends on whether we want to emphasis the restriction
on absolute value of f2(g) (parameter €) or pay more attention to the restriction on magnitude of
derivatives of the function (parameter v).

We note that this example was chosen because the regularization technique can be demonstrated
in closed form. We have implemented this technique for the design of planar robot arms [22]. Good
results are achieved (in the sense of least-squared error) for @ x 9 truncated Fourier matrices in the
planar case. To achieve similar accuracy in the three-dimensional case we would expect to use up
to! = 4 and |s| = 4 Fourier matrices {matrices truncated at ! = 4 are 25 x 25 for s = 0), and
use a six dimensional grid for discrete values of translations and rotations. Implementing the theory
presented in this article in manipulator design thus remains computationally challenging, and we are
actively addressing this problem using the techniques presented here.

7.3 A Note About Real Solutions

In the above example we find a real solution for given real functions fi(g) and f3(g). This
is a particular example of the fact that if f1{g) and f5(g) are real, then fa(g) given by (7.2) (for
non-singular fltp}} or (7.7) (in the regularized problem) is a real function. It follows from the
following consideration. Even after truncating the Fourier transform matrices of fi{g) and fi(g)
the approximation to f1(g) and f3(g) given by inverse Fourier transform equation (4.4) (where the
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e

epsilon

FIGURE3 The Cie, v} dependence on €, v parameters. The €, v axes are depicted in the logarithmic scale,

sum is for {, I’ from 0 to some {op.p and for 5 from —l.pep to lchap ) gives real functions. This is valid
because the matrix elements of the Fourier transform and the matrix elements of U (g, p) satisfy (4.8)
and (3.16), which means that

£z 3 — FI 5
f!’,ﬂ;{.ﬂ UI,CI;F’,E'.I i fj”,ﬂ;hﬂ UI,ﬂ:I".ﬂ

and

] 5 e 5
f!’,m";!.m Ur.m:.r‘.m’ = fi".—m':!.—m I, —ml' —m'

where m or m’ # 0, and f can be either f] (p) or fg,{ p). This means that the sum in (4.4) is real
because (I, 0; I, 0) elements are real and (I, m’; [, m) elements come in pairs with the complex
conjugate elements {I', —m'; [, —m).

If the truncated f] { p) is invertible, then the solution of the convolution equation (1.1) exists
(where fi(g) and f3(g) are approximated by the finite sum in (4.4)). If f2(g) has imaginary part
fz"‘“ (g) then (fi * f3™)(g) = 0, because fi(g) and f3(g) are real functions. But this equation
means that f:.f"‘{p} fl {p) = 0 which is only possible for g"'{p} = 0 for non-singular fll: p). It
means that the imaginary contribution is zero. We may conclude also that if two (or several) matrices
satisfy the symmetry relations (4.8) the product of these matrices (or inverse matrices) also satisfy
the symmetry relations (4.8) (it follows from the above fact and the fact that if f;(g) and f3(g) are
real, the convolution of these functions is also real).

If the _f] { p) is a singular matrix then the regularized solution given by (7.7} (or solution of (7.4))
is a real solution after taking the Fourier transform. It follows from the above mentioned fact that
the product of several matrices with the symmetry properties (4.8) has the same symmetry [itis clear
that the matrices proportional to the unit matrix and matrix A have the symmetry (4.8)]. Or we
may conclude that only a real solution minimizes the functional (7.3), because if we conclude that
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5

FIGURE4 The r, v-dependence of fa(r, 0, v). The v axis is depicted in the logarithmic scale.

some complex function f>(g) minimizes (7.3) we find that we may decrease further the value of this

functional (for real fj{g) and f3(g)) if we put the imaginary part of f2(g) to be zero.

ing PDEs from Polymer Science

Solv

8.

By defining

(8.1)

ar, it may be shown that [7]:

L]

7|

)

(u (ﬁxp (:J?

ad
 dt

u (X p)
making a change of variables, and using the

fact that § E(3) is unimodul

i+ P) f:{P} .
(2.1) can be transformed to the infinite system of linear differential equations:

X

This means that

(8.2)

3
2. Dy (
iy jeml

In principle, f(a, A; L) is then

wh

found by simply substituting

= exp (LB’)

ff(p; L)
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nu
FIGURES (a) The v dependence of f2(0.25, 0, v). The v axis is depicted in the logarithmic scale.

into the § £(3) Fourier inversion formula (4.4). Explicitly, for i = 1, 2, 3 we have

- d d
W (X,-,p)=dIU{m 2 (0. ROT (&i,0); PMlicg =8,y U, (ROT (&1, )li=o

1
dt
where ROT{e;, 8) is a counterclockwise rotatation by & round natural basis vector ¢; (i.e., (e;); =
3;‘_;'].
The second equality in the above expression for u®(X;, p) follows easily from the structure of
the matrix elements 'S , . We note the §O(3) operational property
romlm
d ! CJ' 1 K]
d—Umn {RDT{EL f})|z=u = 2 —n'ﬁmrl n= Ecn'sm—l,ﬂ (3.3}
d i
~Unn (ROT (&2, limg = Ec’_,,am+.,n + 5 CnOm—tn (8.4)
< Uns (ROT(€3,0)le=g = —indms (8.5)

where ¢, = T=n){(I + n + 1) for ! = |n|. From the operational property (5.5) we see that

= d
Y sl m (me) = = Urmwim (€3, 15 Plio
i

= prjifrm-'ﬁl"—],iam’.m + ip Sy m + ip Kf.m S 1—18mt m (8.6)

m's
i+ 1)

: (frf—m’l) (" -szn)“’z

2+ 1)@ - 1)1z

where

K
I'.m
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nu

FIGURES (b) The v dependence of f3(1, 0, v).

This allows us to write the elements of B*(p) as

(]
m 5

B e
where
: {3 L v : :
K. . = Ejgj Dy; ,,;; (E}-Um » (ROT (e;,i‘]'}imﬂ) (EUH.M (ROT (E.r-f]}|;=n)
- d
>d (EULW (ROT (e;, IJJI;:ﬂ)

9. Conclusions

In this article we reviewed the theory of irreducible unitary representations of the Euclidean
motion group in three-dimensional space. We calculated the matrix elements of these irreducible
unitary representations and used this set of matrix elements to define the Fourier transform of func-
tions on the motion group. We derived new symmetry and operational properties of this Fourier
transform. These tools were applied to the solution of the convolution equation (1.1), and the regu-
larized problem (7.3) was explicitly solved for particular functions. We discussed the effect of the
choice of small parameters in the regularized problem (7.3). The operation calculus developed here
for the Euclidean motion group was also used in this article to solve a class of partial differential
equations from theoretical polymer science.
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Eo.z2f

r

FIGURE6 The r dependence of f5 for v = 0.001 and € = 0.

This article illustrates that the non-Abelian Fourier transform is a powerful tool for the solution

of linear integral equations and partial differential equations on the motion group.
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