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Abstract

In this paper, the author presents the bi-invariant (Haar) integral for the
group of rigid-body motions (Euclidean group) in three-dimensional space in
terms of finite screw parameters, and proceeds to develop the matrix elements
of irreducible unitary representations in this parameterization. This allows
one to integrate and expand functions of motion described in terms of screw
parameters.
In robot kinematics, the screw-parameter description of a finite rigid-body

motion is well known. This description of motion in three-dimensional space
(which follows from Ball’s work on finite screws) provides an elegant way to
view rigid-body kinematics. In contrast, the theoretical physics community
usually uses Euler angles and spherical coordinates to parameterize rigid-body
motions. It therefore comes as no surprise that in the field of Fourier analysis
on groups, which has been developed in large part by theoretical physicists,
that the Euler-angle/spherical coordinate description of rigid-body motions is
most common.
The contribution of this paper is to formulate Fourier analysis on the group

of rigid-body motions in terms of screw parameters. The geometrically mean-
ingful nature of the screw parameters combined with the group Fourier trans-
form provides a tool for insight into problems that can be posed as convolutions
on the Euclidean group. Such problems include workspace generation of serial
linkages, kinematic error propagation, and the statistical mechanics of macro-
molecules.
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1 A Review of Screw Theory

The Euclidean motion group (also called the special Euclidean group of 3-dimensional
space and denoted SE(3)) consists of all pairs of the form g = (a, A) where A ∈ SO(3)
and a ∈ IR3 (Recall that SO(3) denotes the set of all 3 × 3 rotation matrices).
For any g = (a, A) and h = (b, B) ∈ SE(3), the composition law for rigid-body
(Euclidean) motions is written as g ◦h = (a+Ab, AB), and the inverse of a motion is
g−1 = (−ATa, AT ). Alternately, one may represent any element of SE(3) as an 4× 4
homogeneous transformation matrix of the form:

H(g) =

 A a

0T 1

 .
Clearly, H(g)H(h) = H(g ◦ h) and H(g−1) = H−1(g) and the mapping g ↔ H(g)
between SE(3) and the set of homogeneous transformation matrices is bijective. In
group-theoretic language, SE(3) is the semidirect product of IR3 with the special
orthogonal group, SO(3), and we write SE(3) = IR3 /ϕ SO(3).
A screw axis is a line in space about which a rotation is performed and along

which a translation is performed 1. Given a motion (a, A), the direction of the screw
axis is the axis of the rotation A, but the translation along the screw axis is not
simply a. We now review the decomposition of an arbitrary rigid-body motion into
its screw parameters.
Any line in space is specified completely by a direction n ∈ S2 and the position

of any point r on the line. Hence, a line is parametrized as

L(t) = r+ tn, ∀ t ∈ IR.

Since there are an infinite number of vectors r on the line that can be chosen, the
one which is “most natural” is that which has the smallest magnitude. This is the
vector originating at the origin of the coordinate system and terminating at the line
to which it intersects orthogonally. Hence the condition r · n = 0 is satisfied. Since
n is a unit vector and r satisfies a constraint equation, a line is uniquely specified by
only four parameters. Often instead of the pair of line coordinates (n, r), the pair
(n, r×n) is used to describe a line because this implicitly incorporates the constraint
r · n = 0. That is, when r · n = 0, r can be reconstructed as r = n× (r× n), and it
is clear that for unit n, that the pair (n, r× n) has four degrees of freedom. Such a
description of lines is called the Plücker coordinates. For more on this subject, and
kinematics in general, see [1, 2, 3, 4, 12, 15, 19, 20].

1The theory of screws was developed by Sir Robert Stawell Ball (1840-1913) [1].
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Given an arbitrary point x in a rigid body, the transformed position of the same
point after translation by d units along a screw axis with direction specified by n is
x
0
= x + dn. Rotation about the same screw axis is given as x

00
= r + eθN (x

0 − r)
where N = −NT is the unique skew-symmetric matrix with the property Nx = n×x.
Since eθNn = n, it does not matter if translation along a screw axis is performed

before or after rotation. Either way, x
00
= r+ eθN (x− r) + dn.

Another way to view this is that the homogeneous transforms

trans(n, d) =

Ã
1I dn
0T 1

!

and

rot(n, r, θ) =

Ã
eθN (1I− eθN)r
0T 1

!
commute, and the homogeneous transform for a general rigid-body motion along
screw axis (n, r) is given as

rot(n, r, θ)trans(n, d) = trans(n, d)rot(n, r, θ) =

Ã
eθN (1I− eθN)r+ dn
0T 1

!
. (1)

A natural question to ask at this point is how the screw axis parameters (n, r)
and motion parameters (θ, d) can be extracted from a given rigid displacement (a, A).
Since this is well known for pure rotations (see e.g., [17]), half the problem is already
solved, i.e., n and θ are calculated by inverting the expression

A = A(n, θ) = eθN = 1I + sin θN + (1− cos θ)N2 (2)

where n ∈ S2 and θ ∈ [−π,π].
What remains is to find for given A, n, and a the variables r and d satisfying

(1I−A)r+ dn = a and r · n = 0.
This is achieved by first taking the dot product of the left of the above equations with
n and observing that n · eθNr = n · r = 0, and so

d = a · n.
We then can write

(1I− eθN)r = a− (a · n)n. (3)

Next we introduce the unit vector

u =
1q

n21 + n
2
2

 −n2
n1
0

 , (4)
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where n1 and n2 are the first two components of n. This is simply a choice we make
that has the property u · n = 0 and kuk = 1. In this way, {n,u,n × u} forms a
right-handed coordinate system. We may then write r in the form

r = bu+ c(n× u).

This may be substituted into (3) and projected onto u and n× u to yield the set of
linear equations Ã

1− cos θ sin θ
− sin θ 1− cos θ

!Ã
b
c

!
=

Ã
a · u

a · (n× u)
!
, (5)

which is solved for b and c, provided θ 6= 0. In this special case, any r in the plane
normal to n will do.
We note also that the translation vector a can be expressed as

a = [c sin θ + b(1− cos θ)]u+ [−b sin θ + c(1− cos θ)](n× u) + dn. (6)

This means that the magnitude of the translation can be written in terms of screw
parameters as

a = kak =
q
(b2 + c2) sin2 θ + (b2 + c2)(1− cos θ)2 + d2.

The bi-invariant volume element (Haar measure) with which to integrate functions
on SE(3) is (to within an arbitrary constant) of the form

dg = dAda

when g = (A, a), where dA is the normalized Haar measure for SO(3) and da =
da1da2da3 is the Haar measure for IR

3. Using the screw parameterization in (6), we
see that

da = 4 sin2(θ/2)dbdcdd.

Likewise, to within a constant factor,

dA = 4 sin2(θ/2)dn

where dn is an integration measure for the sphere. For instance, if n = n(λ, ν) where
λ and ν are respectively the polar and azimuthal angles, then

dn = sinλdλdν.
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2 Group Representation Theory

A group representation is a mapping from the group into a set of invertible linear
transformations (matrices) that preserves the group law. In kinematics, the descrip-
tion of rigid-body motions using homogeneous transformation matrices is an example
of a representation of SE(3). More generally, a goal of representation theory is the
enumeration of all representation matrices that cannot be block diagonalized by sim-
ilarity transformation. Such representations are called irreducible. It may be shown
that every irreducible representation is equivalent under similarity transformation to
a unitary matrix. Since unitary matrices are convenient to work with (since their
inverse is the Hermitian conjugate), a powerful mathematical theory has been built
on irreducible unitary representations (IURs) of groups.
Basically, the collection of matrix elements of all the IURs of a group serves as an

orthogonal basis for the set of all square-integrable functions on the group. That is, if
G is a group and g ∈ G, then any function f ∈ L2(G) can be expanded as a weighted
sum (or integral) of U lmn(g) over all m,n, l. Here m,n indicate the entry (element)
in the unitary matrix U l(g). The parameter l enumerates the set of IURs. In the
past, the author and coworkers have used the IURs of SO(3) in the commutation of
a spherical motor [5], and the IURs of SE(2) (the group of motions of the plane) in
the design and inverse kinematics of discretely-actuated manipulator arms [11, 6].
We now review the form which the matrix elements Ũ lmn(A) take when rotations

are parameterized as A(θ,n(λ, ν)) = exp(θN(λ, ν)) where Nx = n × x, and n is a
unit vector defining the axis of rotation with spherical coordinates (λ, ν).
One finds the matrix to be of the form [21]

Ũ lmn(A(θ,n(λ, ν))) = i
m−ne−i(m−n)ν

 1− i tan θ/2 cosλq
1 + tan2 θ/2 cos2 λ

m+n P lmn(x)
where x satisfies

sin x/2 = sin θ/2 sinλ

and P lmn(x) are polynomials defined in [6]. The range of indices is l = 0, 1, 2, ... and
m,n ∈ {−l,−l + 1, ..., l − 1, l}. A function with band-limit B in this context is one
for which all l ≥ B can be neglected in the expansion.

3 Irreducible Unitary Representations of SE(3)

We define unitary representations of SE(3) (see e.g. [6, 16, 18, 22] for discussions
and definitions) in the following way.
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We start to construct the representation of the motion group in the space of
functions ϕ(p) ∈ L2(T̂), where T̂ is a dual (frequency) space of the IR3 subgroup.
Functions ϕ(p) correspond to the Fourier transforms of the functions φ(r) ∈ L2(T ),
where T = IR3, are defined as

ϕ(p) =
1

(2π)3/2

Z
T
e−ip·rφ(r) dr. (7)

The rotation subgroup SO(3) of the motion group acts on T̂ by rotations, so T̂
is divided into orbits Sp, where Sp are S

2 spheres of radius p =| p |. The translation
operator acts on ϕ(p) as

(U(a, 1I)ϕ)(p) = e−ip·a ϕ(p). (8)

Therefore, the irreducible representations of the motion group may be built on spaces
ϕ(p) ∈ L2(Sp), with the inner product defined as

(ϕ1,ϕ2) =
Z π

λp=0

Z 2π

νp=0
ϕ1(p)ϕ2(p) sinλp dλp dνp , (9)

where p = (p sinλp cos νp, p sinλp sin νp, p cosλp), and p > 0, 0 ≤ λp ≤ π, 0 ≤ νp ≤
2π.
The inner product (ϕ1,ϕ2) is invariant with respect to transformations

ϕ(p)→ eiα ϕ(A−1 p) , (10)

where A ∈ SO(3) and 0 ≤ α ≤ 2π.
The parameter α in (10) may, in general, depend on p and group element A ∈

SO(3). In this case, different functions αs(p,A) (where s enumerates the irreducible
representations of SO(2)), which are nonlinear functions of group element A, corre-
spond to different irreducible representations of the motion group. Functions ϕ(p),
thus, may have different internal properties with respect to rotations.
With the help of functions αs(p, A) we may construct the representations of G =

SE(3) ' T̂ /ϕ SO(3) from representations of its subgroup G0 = T̂ /ϕ SO(2) using
the method of induced representations. In our case (we disregard for the moment the
translation group T̂ ), G = SO(3), H = SO(2) and σ = p ∈ Sp ' SO(3)/SO(2).
To construct the representations of the motion group explicitly, we choose a par-

ticular vector p̂ = (0, 0, p) on each orbit Sp. The vector p̂ is invariant with respect to
rotations from the SO(2) subgroup of SO(3)

Λ p̂ = p̂; Λ ∈ Hp̂ = SO(2), (11)
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where Hp̂ is a little group of p̂. For each p ∈ Sp we may find Rp ∈ SO(3)/SO(2),
such that

Rp p̂ = p.

Then for any A ∈ SO(3), one may check that

(R−1p ARA−1p) p̂ = p̂.

Therefore, Q(p, A) = (R−1p ARA−1p) ∈ Hp̂. The representations of Hp̂ may be taken
to be of the form

∆s : φ → eisφ , 0 ≤ φ ≤ 2π
for s = 0, ±1, ±2, ....
Thus, we may construct the induced representation (T̂ /ϕ ∆s(Hp̂)) ↑ SE(3) of

the motion group from the representations of its subgroup T̂ /ϕ Hp̂.

Definition. [6] The unitary representations U s(a, A) of SE(3), which act on the
space of functions ϕ(p) with the inner product (9), are defined by

(U s(a, A)ϕ)(p) = e−ip·a∆s(R−1p ARA−1p)ϕ(A
−1p) , (12)

where A ∈ SO(3), ∆s are representations of Hp̂ and s = 0, ±1, ±2, ...
Each representation characterized by p = kpk and s is irreducible (they, however,

become reducible if we restrict SE(3) to SO(3), i.e. when a = kak = 0). They are
unitary because (U s(a, A)ϕ1, U

s(a, A)ϕ2) = (ϕ1,ϕ2).
Representations (12), which we denote below by U s(g, p), satisfy the homomor-

phism properties
U s(g1 ◦ g2, p) = U s(g1, p) · U s(g2, p) ,

where ◦ is the group operation. The corresponding multiplication law for the Q(p, A)
factors is [23]

Q(p, A)Q(A−1p, A−1B) = Q(p, B). (13)

4 Matrix elements

To obtain the matrix elements of the unitary representations, we use the group prop-
erty

U s(a, A) = U s(a, 1I) · Us(0,A) (14)

The basis eigenfunctions of the irreducible representations (12) of SE(3) may be
enumerated by the integer numbers l,m (for each s and p). We note that the values
l(l+1),m, ps and−p2 correspond to the eigenvalues of the generators J2, J3,P · J,P ·P
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(where J i, P i, i = 1, 2, 3 are generators of rotation and translation) of the Lie al-
gebra se(3) (see [6, 16]) of the motion group SE(3), which may be diagonalized
simultaneously (i.e. they commute). The restrictions for the l,m, s numbers are
l ≥| s |; l ≥| m | .
The basis functions may be expressed in the form [16]

hlm s(Θ,Φ) = Qls,m(cos Θ) e
i(m+s)Φ (15)

where

Ql−s,m(cos Θ) = (−1)l−s
s
2l + 1

4π
P lsm(cos Θ) , (16)

and generalized Legendre polynomials P lms(cos Θ) are given as in Vilenkin [22].
It may be shown that the basis functions hlms are transformed under the rotations

hlms(p) → ∆s(Q(p, A))h
l
m s(A

−1p) as (see [6] Chapter 9 for the proof):

(U s(0, A)hlms)(p) =
lX

n=−l
Ũ lnm(A)h

l
n s(p) , (17)

where the matrix elements Ũ lnm(A) are are defined in the previous section. We note
that the rotation matrix elements do not depend on s.
The translation matrix elements are given by the integral [16]

(hl
0
m0 s, U

s(a, 1I)hlm s) = [l0,m0 | p, s | l,m](a) =

(4π)1/2
l0+lX

k=| l0−l |
ik

vuut(2l0 + 1)(2k + 1)
(2l + 1)

jk(p a)C(k, 0; l
0, s | l, s)

·C(k,m−m0; l0,m0 | l,m)Y m−m0
k (Θ,Φ) , (18)

where Θ,Φ are polar and azimuthal angles of a, C(k,m−m0; l0,m0 | l,m) are Clebsch-
Gordan coefficients (see, for example, [6, 21]).
Finally, using the group property (14), the matrix elements of the unitary repre-

sentation Us(g, p) (12) (for s = 0,±1,±2, ...) are expressed as

Usl0,m0;l,m(a, A; p) =
lX

j=−l
[l0,m0 | p, s | l, j](a) Ũ lj m(A) (19)

Because (18) contains only half-integer Bessel functions, all matrix elements may
be expressed in terms of elementary functions. Below we have shown the first matrix
elements in explicit form (using the notation a = kak and p = kpk):

U00,0;0,0(a, A; p) =
sin(a p)

a p
.
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5 The Fourier Transform for SE(3)

Here we define the Fourier transform of functions f(a, A) ∈ L2(SE(3)). The inner
product of two such functions is given by

(f1, f2) =
Z
IR3

Z
SO(3)

f1(a, A) f2(a, A) dAd
3a . (20)

To define the Fourier transform for functions on SE(3), we have to use a complete
orthogonal basis for functions on this group. The completeness of matrix elements
(19) depends in part on the completeness of the rotation matrix elements Ũ lmn(A) on
SO(3) [16]. Using the unitary representations U(g, p) (12) (for s = 0,±1,±2...), we
can define the Fourier transform of functions on the motion group.

Definition. [6] For any absolutely- and square-integrable complex-valued function
f(a, A) on SE(3) we define the Fourier transform as

F(f) = f̂(p) =
Z
SE(3)

f(g)U(g−1, p) d(g)

where g = (a, A) ∈ SE(3) and d(g) = dAd3a.
The matrix elements of the transform are given in terms of matrix elements (19)

as
f̂ sl0,m0;l,m(p) =

Z
SE(3)

f(a, A)U sl,m;l0,m0(a, A; p) dAd3a (21)

where we have used the unitarity property.
The inverse Fourier transform is defined by

f(g) = F−1(f̂) = 1

2π2

Z
SE(3)

trace(f̂(p)U(g, p)) p2 dp . (22)

Explicitly

f(a, A) =
1

2π2

∞X
s=−∞

∞X
l0=|s|

∞X
l=|s|

l0X
m0=−l0

lX
m=−l

Z ∞

0
p2 dp f̂sl,m;l0,m0(p)Usl0,m0;l,m(a, A; p) .

(23)
We note that we may use any unitary equivalent representation T † U(g, p)T

(where T is a unitary transformation, which does not depend on g) to define the
Fourier transform.

Convolution of functions. Recall that the convolution integral of functions
f1, f2 ∈ L2(SE(3)) may be defined as

(f1 ∗ f2)(g) =
Z
SE(3)

f1(h) f2(h
−1 ◦ g) d(h). (24)
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One of the most powerful properties of the Fourier transform of functions on IRN

is that the Fourier transform of the convolution of two functions is the product of the
Fourier transform of the functions. This property persists also for the convolution of
functions on the group, namely

F(f1 ∗ f2) = F(f2)F(f1) (25)

or, in the matrix form

(F(f1 ∗ f2))sl0,m0;l,m(p) =
∞X
j=|s|

jX
k=−j

(f̂2)
s
l0,m0;j,k(p) (f̂1)

s
j,k;l,m(p) . (26)

Parseval/Plancherel equality. This form of Parseval equality is validZ
SE(3)

| f(a, A) |2 dAd3a =

1

2π2

∞X
s=−∞

∞X
l0=|s|

∞X
l=|s|

l0X
m0=−l0

lX
m=−l

Z ∞

0
| f̂ sl0,m0;l,m(p) |2 p2 dp =

=
1

2π2

Z ∞

0
|| f̂(p) ||22 p2 dp , (27)

where the Hilbert-Schmidt norm of f̂(p) is given by

|| f̂(p) ||22=
∞X

s=−∞

∞X
l0=|s|

∞X
l=|s|

l0X
m0=−l0

lX
m=−l

| f̂ sl0,m0;l,m(p) |2 .

A similar relation holds for the inner productZ
SE(3)

(f(a, A), g(a, A)) dAd3a =

1

2π2

∞X
s=−∞

∞X
l0=|s|

∞X
l=|s|

l0X
m0=−l0

lX
m=−l

Z ∞

0
f̂sl0,m0;l,m(p)ĝ

s
l0,m0;l,m(p) p

2 dp =

=
1

2π2

Z ∞

0
trace(f̂ †(p)ĝ(p))p2 dp , (28)

where f̂ †l,m;l0,m0 = f̂l0,m0;l,m is the Hermitian conjugate.

10



6 An Overview of Applications

The Fourier transform for functions on SE(3) is a computational and analytical tool
that can be used in many application areas. These areas are described in detail in
[6]. Here we give a brief overview.
In robotics, the author and coworkers have shown in a series of papers that the

workspaces of manipulators can be generated using convolution on SE(N) [7]. Previ-
ously the Fourier transform for SE(2) was used in the inverse problem of manipulator
design [13]. Analogous problems in the three-dimensional case can be solved given
the definition of Fourier transform presented here [8].
The quantification of error propagation in serial linkages can also be described as

a convolution on SE(3) (see e.g. [6].
In polymer science, a quantity of interest is the probability density function (pdf)

that describes the relative position and orientation of one end of a chain molecule
with respect to the other. Partial differential equations that describe the evolution
of this pdf on SE(3) have been known for some time. In analogy with the way in
which the classical Fourier transform is used to convert partial differential equations
into a simpler form in Fourier space where they can be solved and converted back to
the spatial domain, the Fourier transform for SE(3) plays a similar role. See [9, 10].
In the study of liquid crystal mechanics, a large number of essentially rigid molecules

change orientation in solution depending on an applied external field. The description
of the positional and orientational density of molecules in the solution is a function
on SE(3), and the Fourier transform for SE(3) serves as a tool for the decomposition
of this function [6].
In image analysis (particularly template matching) the optimal correlation under

rigid-body motions is sought. Each correlation may be calculated using the SE(2)
Fourier transform [14]. In three dimensions, a similar template matching problem is
that of chemical binding in drug design. This may be an application of the SE(3)
Fourier transform in the future.

7 Conclusions

It is shown how the irreducible unitary representations of the group of rigid-body
motions in three-dimensional space can be written in terms of the screw parameters
of the motion. The Fourier transform of functions of motion (which is based on IURs)
is a useful tool in applications. Most engineers are unfamiliar with this tool, and this
paper provides an introduction to the topic.
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