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In this paper, two kinds of biologically inspired robots under investigation at Johns
Hopkins University are reviewed. While these designs are reminiscent of designs
in nature, they are, however, not anthropomorphic. Rather, they are zoomorphic in
macroscopic structure. These two kinds of robots are snakelike “hyper-redundant”
manipulators, and amoeboid “metamorphic” robots. In addition to issues in the design
of the robots, issues in the dynamics and motion planning of these devices are reviewed.
© 2001 John Wiley & Sons, Inc.

1. INTRODUCTION

Most serial robotic manipulator arms are reminiscent
in structure of the human arm. For example, one refers
to the shoulder, elbow, and wrist of the arm. In con-
trast, closed-loop kinematic structures, which have
become popular in the kinematics literature in the
past few years (see, for example, ref. 38) do not al-
ways have such clear analogs in nature. In this pa-
per, we examine neither of these cases. Instead, the
much less commonly studied example of very high-
degree-of-freedom (dof) architectures developed by
the author and others in previous work is reviewed,
alongwith the correspondingmathematicalmodeling
techniques.

In particular, two kinds of robots are reviewed:
(1) snakelike “hyper-redundant” manipulators, and

(2) amoeboid “metamorphic” robots. These two con-
cepts are illustrated in Figure 1. In practice, themanip-
ulator in Figure 1(a) (which is binary-actuated) would
be equipped with an end effector, and fixtures in the
workspace onto which the end effector could lock.
The metamorphic robot in Figure 1(b) would consist
of many more than two units, and hence be able to
“flow” through small openings and reconfigure itself
as task requirements demand.

If one divides robotics problems roughly into two
categories—the first being problems arising in well-
structured environments, and the second being those
arising in unstructured environments—the two kinds
of robots reviewed here represent potential solutions
to problems in the second domain. That is, manipu-
lators and mobile robots with the ability to radically
change geometry, either by bending and writhing, or
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(b)

Figure 1. (a) A 36-dof discretely-actuated hyper-redundant manipulator; (b) two metamorphic robot modules.

by changing topology, provide the opportunity for
the device to conform to an environment that may
change in geometry in unforeseen ways. Of course,
this flexibility in function and form must be weighed
against the financial cost and increased possibility
of actuator failure in such complex devices. For in-
stance, it probably does notmake sense to design such
robots for use as fixed automation, but 20–50 years
in the future, these kinds of devices may be optimal

for operations such as search and rescue in collapsed
buildings, adaptive self-healing space platforms, and
microprosthetic or surgical devices that enter a patient
through a small incision, self-locomote, and change
shape to perform their function with minimal tissue
damage.

Throughout this paper the progress that has been
made to date on these kinds of systems is reviewed,
and potential stumbling blocks are enumerated. The
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format of the remainder of the paper is as follows:
In Section 2, issues in the design, implementation,
and analysis of snake-like robots are examined. In
Section 3, the corresponding issues are addressed for
metamorphic robots. Throughout the paper, current
work by other research groups is examined in these
research areas. Predictions regarding future directions
are presented in Section 4, which summarizes the
paper.

2. HYPER-REDUNDANT MANIPULATORS

hyper-redundant manipulators have a very large
number of actuatable degrees of freedom. Appli-
cations of snakelike hyper-redundant manipulators
include inspection in highly constrained environ-
ments, tentacle-like grasping of objects, and whole-
arm manipulation. These are illustrated in Figure 2.

Computationally efficient modeling of the sys-
tem kinematics and dynamics is necessary for hyper-
redundantmanipulators to be used effectively. In past
work the author, together with Prof. J. Burdick, de-
veloped an efficient framework for the kinematics
and motion planning of hyper-redundant manipu-
lators and mobile robots.5,9,10,11,12 More recently, the
author extended this approach to include manipula-
tor dynamics and control,7 as well as to manipulators
with discrete states.8 A continuous curve (or “contin-
uum”) approximation that captures themanipulator’s
macroscopic geometric features is useful in these con-
texts. Subsections 2.2 and 2.3 review this framework,
and also provides some new insights. But first, issues
in the design of hyper-redundant manipulators are
discussed in the following subsection.

2.1. Design Issues

By definition, a hyper-redundant manipulator is one
that has a very large number of degrees of freedom.
Hence, problems of wiring, mechanical error prop-
agation, actuator/sensor failure, and weight must all
be addressed.With standardmultiplexing techniques,
wiring problems are reduced. Mechanical error prop-
agation and payload are not major problems when
the design consists of a cascade of parallel platforms.
And hyperredundancy actually can provide better
fault tolerancewith respect to actuator failure, because
the manipulator can still function well even if several
actuators fail and are locked in position.

The author has previously studied two very dif-
ferent kinds of hyper-redundant manipulators: those
with continuousmotion actuators, and binarymanip-

(a)

(b)

Figure 2. Some applications of hyper-redundant manipu-
lator arms: (a) Obstacle avoidance; (b) Wavelike grasping
and whole-arm manipulation.

ulators. Other interesting research in snakelike robot
design and planning in the context of actuators with
continuous motion includes the pioneering work
of Anderson and Horn,1 Hirose,26,27 and Morecki,39

as well as the more recent works of Lumelsky,49

Lenarčič,37 Kobayashi,31 Choset,25 Ostrowski,45 and
Mochiyama.41 Particularly, interest in variable-
geometry-truss (VGT) structures have been studied
extensively by Hughes,44 Hamlin and Sanderson,24

SalernoandReinholtz,52 Tavakkoli andDhande,54 and
Etemadi-Zanganeh and Angeles.18 Studies on elas-
tic tubelike structures used for manipulation include
the works of Wilson57 and Suzumori, Iikura, and
Tanaka.53
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Work in the area of discretely-actuatedmanipula-
tors goes back to the 1960s at Stanford with the work
of Roth, Rastegar, and Scheinman,50 and Pieper.48

Other work in this area includes that of Koliskor.33

Most recently, an interest in active control of the pneu-
matic cylinders used in discretely actuated manip-
ulators has also developed. Namely, Waldron56 and
Bobrow2 have investigated theuseofpneumatic cylin-
ders as force elements in robots.

In the context of discrete actuation, an arm with
no feedback control is only intended for use in dis-
crete tasks such as pick-and-place and spot welding.
In this scenario, a discretely-actuated arm will gen-
erally not be able to reach a specified point exactly,
and the best configuration of the arm is defined as the
one that minimizes a measure of distance, or a met-
ric, between thedesired andactual end-effector frame.
Such metrics are examined in refs. 15, 19, 20, 30, 40,
and 47.

One criticism of the use of binary actuation comes
from the perception that two-state actuation is nec-
essarily jerky. In this subsection, it is shown that by
appropriate mechanical design, this need not be the
case.

Consider the simplest and most inexpensive pos-
sible binary actuator. It consists of a pneumatic cylin-
der with an internal plunger. Air inlet and outlet are
present at opposite ends of the tube. This flow is chan-
neled in a binary way with a solenoid valve. It is
assumed that the seal between the plunger and cylin-
der may leak, although only at a very slow rate com-
pared to the rate at which air enters or exits the tube
through the portals.

If the hollow cylinder is fixed in position and
orientation, and the mass of the plunger is m, then
in the absence of gravity the equation of motion for
the cylinder is simply:

m
d2x
dt2

= F − c
dx
dt

(1)

where F = PA is the force, P is the pressure in the
tube, A is the area of the plunger head, c is a viscous
friction coefficient, and x is the amount the plunger
is displaced from a datum. (In our designs, a viscous
dashpot is placed in parallel with one or more pneu-
matic cylinders to provide a very large damping.)

Much can be learned from this simple model. For
instance, if the datum is chosen such that x(0) = 0,
and the viscosity is very high relative to the mass,
then m/c → 0 and we get

x(t) ≈ F
c
t (2)

An elementary analysis of the more complicated
case of a whole manipulator composed of highly
damped pneumatic actuators yields essentially the
same result.8

Since pneumatic cylinders have a very high force-
to-weight ratio, and damping can be made as high as
is required by appropriate choice of dashpot fluid,
viewing m/c as small is not unreasonable. Though
energy dissipated due to damping might be consid-
ered wasteful, it is not necessarily more wasteful than
energy dissipated due to resistive heating in motor
coils and the power electronics used for control of
continuous motion actuators.

The steady-state speed is adjusted by either
changing the viscosity (changing the lubrication in the
cylinder and/or the restrictiveness of the airflow) or
changing the pressure P .

Currently, in our designs there is no active control
of pressure ( except regulation to the set pressure), and
there is no active change being made to the viscos-
ity (as can be the case when using electrorheological
fluids). However, these are opportunities for future
research.

In order to avoid wear and tear and prevent high
frequency transients, one can insert short springs (or
rubber bumpers) in the cylinder at both ends. This
helps to ramp the speed up to steady state when the
actuator is starting from rest, and allows for gradual
deceleration at the other end. These effects operate
over a small portion of the total stroke.

Figure 1 illustrates a binarymanipulator designed
in the author’s laboratory.17 In this design, parallel
(platform)mechanisms are cascaded to form amacro-
scopically serial structure (i.e., one that appears serial
when viewed from a distance). If one considers that
muscle tissue is composed of binary force elements
(muscle fibers) arranged in massively parallel arrays,
then this binary-actuation concept can be viewed as
biologically inspired.56

The kinematic design problem for such a ma-
nipulator reduces to the question of how kinematic
parameters should be chosen so that the distribu-
tion of frames reachable by the end of the arm
meets some desired task requirements. For instance,
if great accuracy is needed in a particular region of
the workspace, then greater density of frames may
be needed. In a series of papers, the author and his
students have explored computational methods to
rapidly generate the density distribution of frames,13

as well as solving the mathematical inverse prob-
lems arising in the kinematic design of manipu-
lators for desired density.36 This requires the use
of group-theoretical methods,36 which have natural
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extensions to fields of study outside of the robotics
area.35

2.2. Inverse Kinematics and Motion Planning

When considering continuously-actuated hyper-
redundantmanipulators, the issue of coordinating the
degrees of freedom to perform a specified task natu-
rally arises. The continuumapproach to the resolution
of this hyperredundancy is based on a two-step mod-
eling and computation procedure.

In the first step, we assume that, regardless of
the mechanical implementation (e.g., serial-revolute,
VGT, rubber-actuator, etc.), thehyper-redundant robot
can be modeled by a continuous backbone curve that
captures the robot’s macroscopic geometric features
(Figure 3). A backbone curve parameterization and an
associated set of reference frames that evolve along
the curve are collectively referred to as the backbone
reference set. In this paradigm, hyperredundancy res-
olution is reduced to the determination of the proper
time-varying behavior of the backbone reference set.

Points, x(s, t), on a spatial backbone curve can be
parameterized as follows:

x(s, t) =
∫ s

0
l(σ, t)u1(σ, t) dσ (3)

where s parameterizes the backbone curve, and t is
time. u(s, t) is the unit vector tangent to the curve at s.
We may write

l(s, t) = 1+ ε(s, t) > 0

where ε(s, t) is the local extensibility of the curve (and
hence the manipulator) at point s and time t. ε < 0

{Fi}

{Fi�1}

{FR(   , t)}i
n

{FR(      , t)}i�1
n

Figure 3. The backbone curve model.

indicates a local contraction, whereas ε > 0 corre-
sponds to a local expansion. The backbone curve arc-
length between the backbone curve base (s = 0) and
any point along its length is:

L(s, t) =
∫ s

0
l(σ, t) dσ (4)

Any parameterization of the unit sphere can be
used to parameterize u1(s, t). In the planar case we
have

u1(s, t) =
(
cos θ(s, t)
sin θ(s, t)

)

where

θ(s, t) =
∫ s

0
κ(σ, t)l(σ, t) dσ

is the counterclockwise measured angle that the tan-
gent vector makes with the x1 axis, and κ is the cur-
vature function for the curve (with counterclockwise
bending measured as positive).

A backbone reference frame at s has right-handed
orthonormal basis vectors, {u1, u2, u3}, and its origin
coincideswith point x. The set of backbone frames can
be parameterized as:

Q = (u1 u2 u3) ∈ SO(3) (5)

where Q(0, t) = 1.
The backbone reference set can also be expressed

as a parameterized set of homogeneous transforma-
tion matrices:

H =
(

Q(s, t) x(s, t)

0T 1

)
(6)

where x(·) and Q(·) are as defined in Eqs. (3) and (5).
Consider the ith of n modules (platforms) in a

hyper-redundant arm. Attach a frame, {Fi−1}, to the
“input,” or base, of the module, and a frame, {Fi }, to
the “output,” or top, of themodule. For themanipula-
tor configuration to conform to the continuous curve
geometry, the frames {Fi−1} and {Fi } are chosen to co-
incide with the backbone reference frames at a set of
n+ 1 “fitting”points: {si }.We typically choose si = i/n
for i = 0, . . . , n . Recall that equal partitioning of the
curve parameter need not imply equal physical spac-
ing along the curve, because L(·) can be chosen from
a broad class of functions.
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The 4×4 homogeneous transform relating {Fi } to
{Fi−1} is denoted by Hi

i−1. This consists of the relative
translation, rii−1, and rotation,R

i
i−1, of {Fi }with respect

to {Fi−1}, as measured in {Fi−1}.
qMi ∈ R

6 is the vector of joint displacements that
determine the geometry of the ith module. It is as-
sumed that the inverse kinematics of the module,
which relates {Fi } to {Fi−1}, can be solved in a closed
or numerically efficient form.

The manipulator configuration will exactly con-
form to the backbone reference set at points {si } if

Hi
i−1

(
qMi (t)

) = H−1(si−1, t)H(si , t) (7)

whereH(s, t) is as defined in Eq. (6). That is, the right-
hand side of (7) expresses the relative displacement of
the backbone curve reference frame at si with respect
to the backbone curve reference frame at si−1, whereas
the left-hand side describes the relative displacement
of the ith module output frame with respect to its in-
put frame.When the twoare equated, themanipulator
aligns exactly with the continuous backbone curve at
the n fitting points. We typically choose one of the
fitting points to be the end-effector frame, so that po-
sition and orientation of the distal ends of both the
continuous backbone curve and the manipulator are
in exact alignment.Anexampleof thismethod isgiven
in ref. 11.

The computational burden of the fitting proce-
dure may be distributed over n processors to result
inO(1), or constant, time. This is generally not true for
other kinds of redundancy resolution techniques.

2.2.1. Quantifying Backbone Curve Optimality

Deformation of the backbone curve (and the result-
ing change in hyper-redundant manipulator config-
uration) results from mechanism bending, twisting,
rolling, and extension/contraction at each s. Hence, it
makes sense to consider backbone curves that change
as little as possible relative to a home (reference) state.
A dimensionally consistent cost function that, when
minimized, achieves these effects is

I = 1
2

∫ 1

0
[tr(Q̇WQ̇T ) + β(L̇ − 1)2] ds (8)

where tr(A) denotes the trace of matrix A and the su-
perior dot represents differentiation with respect to s.
The cost functionandconstraints are functionsof time,
but since we are extremizing from point to point in
time, the calculus of variations formulated for a single
dependent variable is directly applicable. tr(Q̇WQ̇T )

is a measure of mechanism bending and twisting.
W is a 3×3 symmetric positive semidefiniteweighting
matrix.Wemake the reasonable assumption that there
is no preferred direction of bending, and hereafter W
is restricted to the isotropic form W = α1, where 1 is
the 3× 3 identity matrix. Similarly, (L̇ − 1)2 is a mea-
sure of amechanism’s extension and contraction from
its nominal length. Thus, α > 0 weights the relative
cost of bending, twisting, and rolling, whereas β > 0
weights extension/contraction.

At s = 0, the backbone reference frame must
coincide with the base frame. At s = 1, the back-
bone reference frame must correspond to the de-
siredend-effectororientation,QD. Thus, theboundary
conditions:

Q(0, t) = 1; Q(1, t) = QD(t) (9)

are imposed on the Euler-Lagrange equations. The
minimum bending problem can be stated as the min-
imization of Eq. (8) subject to these boundary condi-
tions and the end-effector position constraint x(1, t) =
xD(t). See refs. 5 and 11 for explicit examples.

2.2.2. Using Waves in Obstacle Avoidance,
Locomotion, and Grasping

In the context of locomotion and grasping, the contin-
uum model provides a natural way to describe and
implement the kind of peristaltic motion that is so
common in nature. In particular, the curvature and ex-
tensibilityof thebackbonecurve thatdefines the shape
of a hyper-redundant arm undergoing such waves is
of the form of a traveling wave:

κ(s, t) = φ1(s − a(t))

ε(s, t) = φ2(s − a(t))

An example of a situation in which this is useful is
illustrated in Figure 2(b). Here a circular object is be-
ing reoriented by a sequence of pure bending waves,
(ε(s, t) = 0). First, a wave forms by having part of the
manipulator contract in a section that is not in con-
tact with the object. Simultaneously with this, part of
the arm in contact with the object straightens, pro-
viding some slack, so that the position of the ob-
ject remains constant. In the second sequence in Fig-
ure 2(b), the wave travels along the length of the
arm, resulting in an extended grasp over the object.
The process repeats, with the amount of straighten-
ing of a segment of the arm balancing the amount of
coverage gained by the locomotion wave. The arm
thus undergoes a cyclic change in shape, while the
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object being grasped is rotated in finite increments.
The benefit of this formulation is that the grasp is stat-
ically stable and very robust while the object is being
manipulated.

It is not difficult to see that thiswas inspiredby the
locomotion gaits of caterpillars and snakes.12 What is
perhaps less obvious is that the samekindof curvature
waves may be used to describe the path of a hyper-
redundant arm to circumvent obstacles in a known
environment.9 This is illustrated in Figure 2(a).

2.3. Continuum Dynamics

In addition to use as a tool in kinematics and motion
planning, the backbone curve model can be used to
capture the inertial properties of a hyper-redundant
arm. Hence, the static and dynamic loads on actua-
tors due to the inertia of the manipulator can be ap-
proximated by observing the loads due to an imag-
inary backbone curve with mass density, ρ(s). The
benefit of this approach is that the inverse dynam-
ics problem (i.e., the problem of finding actuator
torques and forces that produce a desired motion)
is achieved in O(n) computations that can be evenly
distributed over n parallel computers. Hence, the in-
verse dynamics of a hyper-redundant manipulator
can be calculated in O(1) time. This is in compari-
son to the now-standardmethod of iterative Newton-
Euler dynamics, which is by nature an O(n) serial
computation.16

The momentum balance equations provided by
continuummechanics take on a particular formwhen
combined with the backbone model. Namely:

d
dt

∫ 1

σ

ρ(s)
∂x
∂t

(s, t) ds = F(σ, t) +
∫ 1

σ

(t + ρb) ds (10)

Equation (10) corresponds to a force balance in a
free-body diagram resulting from an imaginary cut
made normal to the backbone curve at the point at
which s = σ . This is just Newton’s laws for a con-
tinuous filament. The vector F(σ, t) is the internal
force transmitted to the distal end of the manipula-
tor (s ∈ [σ, 1]) by the lower end of the manipulator
(s ∈ [0, σ ]). The left-hand side of the equation repre-
sents inertial forces due to the motion of the curve, F
is the reaction force at the imaginary cut, t represents
surface tractions such as friction, and ρb are body
forces such as gravity.

The angular-momentum balance equations pro-
vided by continuum mechanics also have a special
form for the case of hyper-redundant manipulator

backbone curves:

d
dt

∫ 1

σ

x(s, t) × ρ(s)
∂x
∂t

(s, t) ds

= M(σ, t) + x(σ, t) × F(σ, t)

+
∫ 1

σ

x(s, t) × (t + ρb) ds (11)

Again referring to the imaginary cut made normal to
the backbone curve at the point at which s = σ , the
vector M(σ, t) is the internal moment transmitted to
the distal end of the manipulator.

Equations (10) and (11) furnishall the toolsneeded
to compute hyper-redundant manipulator dynamics.

In order to make use of the continuum model,
there must be a way to transfer the dynamical infor-
mation from the continuummodel to the actual physi-
cal manipulator under consideration. In broad terms,
“projecting” the dynamics of the continuum model
onto the actual manipulator is achieved by again
making an imaginary cut in the continuum model.
Now, however, the forces and moments at the cut
will be matched with those in the actual hyper-
redundant structure at corresponding locations along
the length of the manipulator. Inertial forces, body
forces, and surface tractions accumulated from the
distal end of the manipulator to the cross-section un-
der investigation are approximated using the back-
bone curve model. The resulting reaction forces are
calculated in the physical structure at the imaginary
cutting plane. For example, the rules of structural
analysis are used when considering the forces on
a variable-geometry truss. For manipulators with a
macroscopic serial structure, the imaginary cutting
planes are located at the interface between links or
modules. Therefore,

d
dt

∫ 1

i
n

ρ(s)
∂x
∂t

(s, t) ds −
∫ 1

i
n

(t + ρb) ds = Fi (12)

and

d
dt

∫ 1

i
n

x(s, t) × ρ(s)
∂x
∂t

(s, t) ds −
∫ 1

i
n

x(s, t)×(t + ρb) ds

− x(i/n, t) × Fi = Mi (13)

where Fi and Mi are the continuum approximation
of the force and moment exerted by the ith module
(or link) on the i + 1st module of a hyper-redundant
manipulator.
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Each of the preceding integrals can be evaluated
separately for i ∈ [0, . . . , n − 1], and so the dynam-
ics problem can be evenly distributed over n proces-
sors. Thekey to this approach is the continuummodel,
and the assumption that the actual manipulator does
not stray from the curve. Without these assumptions,
serial computationswouldhave tobeperformedanda
Newton-Euler style algorithm would result. With the
continuum model, closed-form solutions or quadra-
ture approximations to the integrals can be computed
in many cases, and so there is no need for iteration.

Assuming that the inertial forces, body forces,
and surface tractions computed from the continuum
model are representative of the actual manipula-
tor, the reactions present in the manipulator structure
at the ith module are equated to the preceding quan-
tities. It is then simply a matter of matching forces
in the actual structure to those generated from the con-
tinuummodel in Eqs. (12) and (13). This is called pro-
jecting the dynamics of the continuummodel onto the
physical structure.

In general, the resulting forces in the actuators are
found separately for each module by solving a matrix
equation of the form

Kiτi = $i

where Ki is a matrix that depends on the kinemat-
ics of module i, τi is a vector of generalized actuator
forces in module i , and $i is the wrench (Fi , Mi ) that
the continuum model estimates is the applied load
on the ith module. See ref. 7 for an implementation
of this idea for the particular example of a variable-
geometry truss, and a numerical comparison of the
continuum model with a Lagrangian lumped-mass
model of manipulator dynamics.

3. METAMORPHIC ROBOTS

A metamorphic robotic system6 is a collection of inde-
pendently controlled units, ormodules, each ofwhich
has the ability to connect, disconnect, and climb over
adjacent modules. Each module allows power and
information to flow through itself and to its neigh-
bors. A change in the metamorphic robot topology
(i.e., a change in the relative way modules within the
collection are connected) results from the locomotion
of each module over its neighbors.

Metamorphic systems can be viewed as a large
swarm (or colony) of connected robots that collec-
tively act as a single entity. The difference between
metamorphic systemsandother reconfigurable robots

found in the literature is that they possess all of the
following properties:

1. All modules have the same physical structure,
including the same hardware for computation
and communication.

2. The mechanical structure of the modules pos-
sesses symmetries that ensure that they fill pla-
nar and spatial regions with minimal gaps and
form a lattice.

3. The modules must each be kinematically suffi-
cientwith respect to the taskof locomotion; that
is, theymust have sufficientdegrees of freedom
to be able to “walk” over adjacent modules, so
that they can reconfigurewithout outside help.

4. Modules must adhere to adjacent modules, for
example, there must be electromechanical or
electromagnetic connectors between modules,
which can carry load. This causes the collection
of modules to act as a single physical object.

The idea of a metamorphic robotic system dif-
fers from related concepts presented in the literature.
Three types of modular reconfigurable robotic sys-
temshave beenproposed in the literature: (1) robots in
which modules are reconfigured using external inter-
vention (see, for example, refs. 3 and 31); (2) cellular
robotic systems in which a heterogeneous collection
of independent specialized modules are coordinated
(see, for example, the pioneering work of Fukuda21);
(3) swarm intelligence in which there are generally no
physical connections between modules.22,23

Recently, several other types ofmodular reconfig-
urable robotic systems have been considered. Yim58

considered modular robots composed of a few basic
elements that can be composed into complex systems,
and used for various modes of locomotion. Yim’s
recent work59 is an extension of the metamorphic
robot concept to three dimensions. Kokaji,32 Murata,
Kurokawa, and Kokaji,42 and Tomita et al.55 consid-
ered a “fractal” system composed of modules with
zero kinematicmobility, butwhich canwalk over each
other in discrete quanta due to changes in the polarity
of magnetic fields. Recently they and their coworkers
have developed a three-dimensional design with me-
chanical rather than electromagnetic couplings.43,60

Rus and coworkers have also been developing three-
dimensionalmetamorphic robotunits.34,51 Asamaand
coworkers have recently developed interesting meta-
morphic robots as well.28

As the number of modules in a metamorphic
system approaches infinity, the manipulator can be
viewed as a “mechatronic amoeba” because the
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(a)

(b)

Figure 4. (a) An amoeba; (b) A metamorphic robot recon-
figuring.

manipulator takes on a continuous appearance. Fig-
ure 4(a) illustrates a real amoeba; Figure 4(b) shows
a metamorphic robot reconfiguring. Thus, the idea of
metamorphic structures is not foreign to the natural
world.

3.1. Design Issues

In this subsection, twometamorphic robot designs de-
veloped by students in the author’s laboratory (as re-
ported in refs. 4 and 46, and references therein) are de-
scribed. Regardless of the particular design, a number
of basic principlesmust be observed if ametamorphic

robot is to function reliably. These include:

• Connections between modules must be toler-
ant of small errors in relative position and
orientation.

• Communication and coordination between
modules must be robust with respect to vari-
ations in environment.

• Load-carrying capability of a configuration of
units must satisfy task requirements, and the
mechanical design of the modules must ensure
that they can carry a load.

The recent design of Murata et al.43 is an excellent
example that satisfies these constraints. In the follow-
ing, we review the author’s previous designs in this
area.

Regular Hexagonal Linkages One of the designs that
satisfies the defining properties of a metamorphic
robot in the planar case involves the use of hexago-
nal modules. Each module, as shown in Figure 1(b),
consists of six links of equal length, forming a six-bar
linkage. Because of the hexagonal shape, the modules
completely fill the plane without any gaps. In this de-
sign, eachmodule possesses three degrees of freedom
that are controlled by placing actuators at alternate
joints. This enables each module to move around an-
other while remaining connected at all times during
this motion. The modules are provided with male-
female coupling mechanisms actuated by DCmotors.
Because of the symmetry of themodule, male connec-
tors always meet female connectors and vice versa.
In this particular implementation, each male connec-
tor (passive T-shaped protrusion) is spring-loaded to
allow for alignment errors and to provide passive
compliance during the reconfiguration sequence. The
female connector is active, and consists of amotor that
drives dual cams to envelop the male.

Rigid Sliding Squares A second planar design de-
veloped in the author’s laboratory consists of square
unitswith the ability to slide,without deforming, over
eachother. This locomotion is achievedvia a rack-and-
pinion drive that moves a slider that locks the units
together.As oneunit ismoved to the corner of another,
a second slider locks into the moving unit transver-
sally. Then the slider responsible for the motion re-
leases the moving module. Details of this design can
be found in ref. 4, and references therein.

In both designs, each module must also contain
a microprocessor that controls the link actuators and
the connector motors, making the module computa-
tionally self-contained.
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3.2. Kinematic Modeling and Motion Planning

Potential applications of metamorphic systems
composed of a large number of modules include:
(1) obstacle avoidance in highly constrained and un-
structured environments; (2) “growing” structures
composed ofmodules to formbridges, buttresses, and
other civil structures in times of emergency; (3) envel-
opment of objects, such as recovering satellites from
space; and (4) performing inspections in constrained
environments such as nuclear reactors. Ilustrations of
some of these applications are shown in Figure 5.

Use of metamorphic robots in these application
areas requires an understanding of both how config-
urations are described, and how reconfiguration se-
quences are automatically generated. One technique
for the automatic self-reconfiguration of a metamor-
phic robot is to define a measure of distance between
the current and desired position, and to seek module
motions at each instance that minimize the distance
between the current shape and the desired one.

In order to define distance between configura-
tions, we will first need a concept of distance between

Figure 5. Potential application of metamorphic robots.

modules. The regular Euclidean metric is an accept-
able choice, but one that more accurately reflects the
least number of moves required by a module to move
between two points is defined as follows: First, we
construct a lattice connectivity graph, that is, a graph
with vertices at lattice points, and edges that are
straight lines connecting all neighboring vertices. The
distancemeasured along shortest paths connecting two
lattice points in this graph is what we will refer to
as the distance between two lattice points/modules.
For example, if a metamorphic robot is composed of
square or cubic modules, distance between modules
would be given by the Manhattan/Taxicab metric in
R
N (see ref. 14 for an explanation and other exam-

ples). We call this measure of distance a lattice metric,
and denote it simply as d(a, b), where a and b are lat-
tice points. By definition, the lattice metric yields the
minimal distance between lattice points, while defin-
ing a path connecting all intermediate lattice points.
We may “induce” a metric (measure of distance) in
the set of all configurations of nmodules by using the
lattice distance in the following way.

Let {a1, a2, . . . , an} denote the modules in A and
{b1, b2, . . . , bn} denote the modules in B,where A and
B represent two configurations. An assignment from
A to B is a bijective function from the members of A
to the members of B. It can be represented by permu-
tation on the indices {1, 2, . . . , n} of A to the indices
{1, 2, . . . , n} of B, as

π =
(

1 2 · · · n
π(1) π(2) · · · π(n)

)

For n modules there exist exactly n! different permu-
tations, that is, n! differentways to rearrange the num-
bers in the set {1, 2, . . . , n}. The set of all permutations
of n elements, denoted�n, is a group under the oper-
ation of composition.

We are interested in the sum of the distances of
the matched module pairs,

fπ (A, B) =
n∑

i=1
d
(
ai , bπ(i)

)
From all possible permutations, we take the one

that gives us theminimal value (optimal assignment),

δC(A, B) = min
π∈�n

fπ (A, B) = min
π∈�n

(
n∑

i=1
d
(
ai , bπ(i)

))

δC(., .) is a metric on the set of all possible con-
figurations; that is, (1) it is positive definite, (2) it is
symmetric, and (3) the triangle inequality holds (see
ref. 46 forproof). Thismetric canbe calculated inO(n3)
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operations. Furthermore, it provides a lower bound
on the minimal number of moves required to recon-
figure from A to B (or B to A)14. This is easy to see,
because if onewere able to track the number ofmoves
that each module makes during an optimal reconfig-
uration sequence, it would be clear that each module
travels at least the lattice distance between its initial
and final configuration. Hence, minimizing over all
possible sums of lattice distances cannot give a value
greater than the total number of single-modulemoves
in a reconfiguration sequence.

For an illustration of the computation of this met-
ric using the Hungarian algorithm, and the fact that
the metric gives a lower bound on the number of
moves required to reconfigure, consider the follow-
ing example from ref. 46. Figure 6 shows an optimal
reconfiguration sequence under the constraints that
the unmarked hex is a fixed base, all modules move
only themselves (without carrying other modules),
and each moves at most one lattice space at a time.

The matrix D in Eq. (14) is formed by consider-
ing all the distances between various modules with
the initial and final configurations overlaid.More pre-
cisely, the entry in the ith row and j th column is
d(ai , b j ):

1′ 2′ 3′ 4′

D =
1
2
3
4



4 3 2 1
3 2 1 1
2 1 1 2
1 1 2 3


 (14)

Figure 6. An optimal reconfiguration sequence.

Performing column operations (subtracting the
minimum element of each column from each column
respectively),we get thematrix in Eq. (15). In this case,
we find an independent set of zeros (boxed entries) at
this step in the procedure. If this had not happened,
we would continue by subtracting the minimal ele-
ment from each row of the matrix in (15) to get the
reduced matrix (which is again Eq. (15) in this case).

D′ =



3 2 1 0
2 1 0 0
1 0 0 1
0 0 1 2


 (15)

If an independent set of zeros still had not been
found, the next step would be to modify the reduced
matrix by covering all the zeros with lines. Then we
would subtract the value of the smallest element not
covered by the lines from all the uncovered elements
and add it to each twice-covered element (i.e., the
element lyingat the intersectionof twocovering lines).
Doing this we get the modified matrix D̂. This matrix
generally will contain several combinations of inde-
pendent 0s, any ofwhich solves theproblemandgives
the value of δC(A, B).

The value of δC(A, B) is given by summing the
values in the original matrix (14) in the positions of
the independent zeros. In this example, it corresponds
to the boxed elements in Eq. (15):

δC(A, B) = d14′ + d23′ + d32′ + d41′ = 1+ 1+ 1+ 1 = 4

In contrast, the optimal reconfiguration sequence
illustrated in Figure 6 required 10 moves. Hence, we
observe for this example the general result that

δC(A, B ≤ min(Moves (A, B))

In fact, it can be shown14,46 that this lower bound is
worst (in the sense of tightness) in caseswhere the ini-
tial and final configurations are long serial structures
in close proximity to each other. In most other cases it
is very tight. Upper bounds on min(Moves(A, B)) are
found in ref. 14 as well.

4. SUMMARY AND CONCLUSIONS

In this paper, two kinds of biologically inspired robots
investigated in the author’s previous work were
reviewed: snakelike hyper-redundant manipulators
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and amoeboid metamorphic robots. A survey of re-
search in these areas being performed in other groups
throughout the world was also provided. Applica-
tions of both kinds of robots were examined, and
issues in the design, dynamics, and motion planning
of these devices were reviewed.

As the cost and size of computational and elec-
tronic hardware continues to decrease, the realization
of highly complex robotic systems in real-world appli-
cations becomesmore likely. In just the past five years,
the number of research groups worldwide pursuing
work in the area of metamorphic robots has dramat-
ically increased. Meanwhile, investigations into the
use of snakelike robots in industrial inspection and
nuclear waste remediation indicate that this area of
study is in the process of transition between basic
research and application-specific development.
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