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mechanical properties of
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This paper presents a methodology for directly determining macro-

molecular stiffness parameters from ensemble measurements of inter-

atomic distances. These stiffness parameters can be used to derive

empirical statistical potentials which, by definition, have the effects of

solvent built in. A Gaussian network model is used together with methods

from equilibrium statistical mechanics to formulate the problem.

Ensemble distance measurements could come from a number of experi-

mental modalities including FRET or NMR. The computational method

presented here relies on the existence of a complete baseline structure

(e.g., from crystallography), but no a-priori assumption of interatomic

potentials is required.
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1. Introduction

The shape £uctuations and conforma-
tional transitions exhibited by biological
macromolecules provide insight into the
relationship between structure and func-
tion. Having the ability to predict motion
reliably from structure would therefore
assist in our understanding of the
machinery of life.

One approach to gaining insight into
the structure-motion-function relation-
ship is molecular dynamics (MD) simu-
lation [1^3]. This is a method where
Newtonian mechanics is used together
with classical potentials to formulate a
very large system of non-linear, second
order, ordinary di¡erential equations
that describe the motion of the system. In
principle, if the position and velocity of all
atoms within the macromolecule and the

surrounding solvent are known at an
initial time, then these equations can be
integrated to ¢nd a trajectory of the
motion of all atoms within the system
(provided quantum mechanical e¡ects
can be considered negligible). While the
results of MD are promising, one well-
recognized limitation is the high compu-
tational cost.

Incomplete information about the
unstructured solvent environment and
the sensitivity of these methods to the
form and values of potential functions
has led some to investigate coarse-
grained models of macromolecular
motion. In that school of thought, princi-
ples of equilibrium statistical mechanics
and chemical physics are used to extract
e¡ective potentials from large numbers of
crystal structures [4]. The basic idea is
that given a su⁄ciently large collection of
non-homologous structures in the Pro-
tein Data Bank (PDB) [5], one can obtain
useful statistical potentials.

The goal of this paper is to introduce a
new methodology for extracting sti¡ness
parameters directly from ensemble
motion data of biological macromolecules
in solution rather than from crystal struc-
tures. These parameters de¢ne Gaussian
contact potentials for macromolecules
that £uctuate around an equilibrium in
solution.

A Gaussian network model built from a
baseline crystal structure is used together
with methods from equilibrium statistical
mechanics to formulate the problem. This
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model can be made to include atomic detail (in which
case, the sti¡ness matrix for the molecule is exactly the
form of the Hessian matrix that would be obtained from
Amber or Charmm), or it can be constructed using
coarse-grained models as in [6^12]. Ensemble distance
measurements serve as the input to this model. Such
measurements could come from a number of experi-
mental modalities including FRET or NMR.

2. Principles and models from mechanics

This section describes a discrete mechanical model for
small conformational £uctuations in macromolecules
(in particular, proteins) about an equilibrium con-
formation.

Consider a protein in which the mass of the ith residue
is labeled as mi, and the interaction between residues i
and j is modeled with a linear spring having sti¡ness ki,j.
Given the full set of masses, sti¡nesses and C� positions,
one can derive the global mass matrix and the global
sti¡ness matrix. Our goal is to illustrate how unknown
parameters in the sti¡ness matrix can be estimated from
experimental measurements of motion.

3. Classical equilibrium statistical mechanics

In classical statistical mechanics, the partition function
is de¢ned as

Z ¼

ð

q

ð

p

exp ��H p;qð Þð Þ dpdq ð1Þ

where � ¼ 1=kBT, pi=p . ei is the momentum conjugate
to the ith generalized coordinate qi=q . ei, H is the
Hamiltonian for the system, and dpdq=dp1 � � � dpNdq1 � � �
dqN for a system withN degrees of freedom. The range of
integration is over all possible states of the system.

For any classical mechanical system the Hamiltonian
is of the form

H p;qð Þ ¼
1

2
pT M�1 qð Þ

� �

pþ V qð Þ

where V(q) is the potential energy and M(q) is the mass
matrix.

For a macromolecule £uctuating about one con-
formation that globally minimizes its potential energy,
the potential energy function can be expressed as [13]

V qð Þ � V0 þ
1

2
qTKq ð2Þ

where the elements of K are

kij ¼
@2V

@qi@qj
jq¼0

and q=0 is de¢ned to be the value for which V(0)=V0 is
the minimum attainable potential energy. By approp-
riate choice of datum, one can take V0=0. Since q(t)
never strays far from 0, it follows that M(q) is approxi-
mated well as the constant matrixM=M(0).

Therefore,

Z �

ð

q

ð

p

exp ��
1

2
pTM�1pþ

1

2
qTKq

� �� �

dpdq

¼
2�=kBTð ÞN

det M�1
2KM�1

2

� �

�

�

�

�

�

�

1
2

ð3Þ

where M and K are constant matrices. Equation 3 holds
for systems with one global minimum that is deeper than,
and well separated from, any local energy minima. This
equation holds regardless of whether Cartesian or inter-
nal coordinatesareused todescribe themotion.

The following subsection presents an intuitive geo-
metric method for constructing K, in which one or more
sti¡ness parameters are left free. In a subsequent sec-
tion, it is shown how these parameters can be ¢xed
based on experimental measurements of molecular
motion.

4. Elastic network model

Given a set of C� crystal structure coordinates for a pro-
tein, {xi(0)}, the Cartesian displacement of the ith �-car-
bon at time t can be written without loss of generality as

xi tð Þ ¼ xi 0ð Þ þ �i tð Þ ð4Þ

We de¢ne �i(t) to be a vector of small displacements.
The total kinetic energy in a network of n residues

(each of which is treated as a point mass) then has the
form

T ¼
1

2

X

n

i¼1

mi x
:
i tð Þ













2
¼

1

2
�
:T
M�

:
ð5Þ

where the constant matrix M is the global mass matrix
for the whole network and

� ¼ �
T
1; � � � ; �

T
n

� �T
2 R

3n ð6Þ

In the current context,M is diagonal.
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The total potential energy in a network of connected
springs has the form

V ¼
1

2

X

n�1

i¼1

X

n

j¼iþ1

ki;j xi tð Þ � xj tð Þ










� xi 0ð Þ � xj 0ð Þ










þ �i;j
� �2

ð7Þ

and

ki;j ¼ 	 i½ �; j½ �cij ð8Þ

�i,j is a measure of the residual strain in the contact
between residues i and j in the equilibrium conforma-
tion. ci,j is the (i, j) element of an n 
 n matrix called the
linking or contactmatrix. ci,j is equal to 1 if residues i and
j are in contact, and zero otherwise. In coarse-grained
models, one often sets 	 i½ �; j½ � ¼ �, a single parameter.
However, it is possible to partition the interactions in
the macromolecule into several di¡erent types of inter-
actions (e.g., covalent backbone interactions, disul¢de
bonds, hydrophobic contacts, and solvent-mediated
surface interactions). That is, if contacting residue pairs
(i, j) and (i0, j0) are in the same class, then 	 i½ �; j½ � ¼ 	 i0½ �; j0½ �.

The sti¡nesses in each of these cases can be left as
variables to be determined directly from experimental
measurements, or some of them can be set using a-priori
knowledge of contact potentials.

Equation 7 is a non-quadratic function of the defor-
mations even though the springs are linear. However,
when we assume that the deformations are small, V
becomes a classical quadratic potential energy func-
tion. In particular, using the Taylor series approxima-
tion

xi þ �ik k � xik k þ
xi � �i

xik k
; ð9Þ

then for small de£ections, the total potential energy (7)
can be written in the form

V ¼ V0

þ
1

2

X

n�1

i¼1

X

n

j¼iþ1

ki;j �i tð Þ � �j tð Þ
� �T

Gi;j �i tð Þ � �j tð Þ
� �

:
ð10Þ

where Gi;j 2 R
3
3 is de¢ned as

Gi;j ¼
xi 0ð Þ � xj 0ð Þ
� �

xi 0ð Þ � xj 0ð Þ
� �T

xi 0ð Þ � xj 0ð Þ












2 ð11Þ

Note that the e¡ects of residual strain do not appear
in (10) in any material way (they do however appear in

V0). Therefore, any residual strain e¡ects are com-
pletely removed by setting a datum such that V0=0.

The sti¡ness matrix for the whole network is then the
matrix K such that

V ¼
1

2
�
TK�; ð12Þ

where � is de¢ned in Equation (6). In the elastic net-
work model, which is purely mechanical, Equation 12
replaces the Hessian matrix in (2) and � replaces q as
the generalized coordinate. For more details regarding
these models see [11,12].

5. Solving the inverse problem

Given an elastic network model, which determines a
speci¢c form for the sti¡ness matrix K=K({	[i],[j]}), one
can then determine the unknown parameters {	[i],[j]}
from ensemble measurements of inter-residue dis-
tances, assuming that (3) holds. The following subsec-
tions respectively formulate and solve the problem of
determining these sti¡ness parameters from ensemble
motion measurements.

5.1. Problem formulation

Suppose a pair of FRET probes are attached to residues i
and j, and a probability distribution (histogram) of
inter-residue distances, r ¼ xi � xj











, is recorded. Let us
assume one of the following: (1) the inter-residue dis-
tances recorded by the probes are exact, and that £uc-
tuations in the position of a probe itself relative to its
attachment point are negligible; or, (2) the elastic net-
work model of the original macromolecule is modi¢ed
to include the probes, and the mechanical properties of
the probes are known in advance. In other words, let us
either assume that 
ij(r) is either a true measure of the
ensemble of inter-residue distances or, if it is not, we
have enough information to deconvolve errors in the
experimental data due to probe £exibility.

This measurement can be matched to the network
model as follows. First, de¢ne the probability density

f �1; . . . ; �nð Þ ¼

exp
��

TK�

2kBT

� �

Zc
ð13Þ

where

Zc ¼
kBT=2�ð Þ

3n
2

detKj j
1
2

is the conformational partition function.
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Next, integrate f (�1, . . ., �n) over all displacements
except for �i and �j. Then the resulting probability dis-
tribution f (�i,�j) should be related in some way to the
observed 
ij xi � xj














 �

. In particular, if we compute the
variance of 
ij, this can be matched to the mechanical
model as follows:

�2

ij ¼

ð

�i

ð

�j

�

xi 0ð Þ þ �i � xj 0ð Þ � �j













� xi 0ð Þ � xj 0ð Þ












�2

f �i; �j

 �

d�jd�i:

ð14Þ

Under the assumption that f (�i and �j) vanish rapidly
as �ik k, �j











 deviate from zero, the right-hand side of
this equation can be computed as a closed-form expres-
sion that depends on the sti¡ness parameter(s) 	 i½ �; j½ �

� �

.
If there is only one such parameter, one experimentally
measured �2


ij is su⁄cient to ¢x this parameter. If multi-
ple di¡erent sti¡ness parameters are to be determined,
then a system of simultaneous equations of the form in
(14) must be solved.

5.2. Solutionmethod

The integral of (13) over all displacements except �i and
�j can be computed in closed form since it is a Gaussian
probability density [14,15]. This follows from the fact
that if we partition any symmetric matrix A as

A ¼
A11 A12

AT12 A22

� �

then

1

2
yTAy ¼

1

2
yT1A11y1 þ yT1A12y2 þ

1

2
yT2A22y2

where y ¼ yT1; y
T
2

� �T
. Hence, for A=�K,

ð

�1

� � �

ð

�i�1

ð

�iþ1

� � �

ð

�j�1

ð

�jþ1

� � �

ð

�n

f �1; . . . ; �nð Þd�1 � � � d�i�1d�iþ1 � � � d�j�1d�jþ1 � � � �n

¼
1

Zc

ð

y2

exp �
1

2
yTAy

� �

dy2

¼
2�ð Þ

n2
2

Zc detA22j j
1
2

exp �
1

2
yT1A

0
11y1

� �

where n2 is the dimension of the vector y2 and

A0
11 ¼ A11 � A12A

�1
22A

T
12 ð15Þ

In thecurrent context,y1 ¼
�

�
T
i ; �

T
j

�T
2 R

6;y2 2 R
3n�6,

andA is partitionedaccordingly. Performing the integra-
tion yields f (�i,�j). We may now approximate (14) in
closed form by observing that when y1 is of dimension
six,

ð

y1

yT1Gy1exp �
1

2
yT1A

0
11y1

� �

dy1 ¼
2�ð Þ3tr GA0�1

11


 �

detA0
11

�

�

�

�

1
2

By comparing (7) when �i,j=0 with (10), we observe
that, for the above expression to approximate (14), it
must be the case that

G ¼
Gij �Gij
�Gij Gij

� �

2 R
6
6

Combining the results of this section, we see that

�2

ij

kBT
¼

2�=kBTð Þ
3n�6

2

Zc detK22j j
1
2

kBTð Þ3tr GK 0�1
11


 �

2�ð Þ3 detK 0
11

�

�

�

�

1
2

¼
2�=kBTð Þ

3n
2

Zc detKj j
1
2

tr GK0�1
11


 �

¼ tr GK 0�1
11


 �

ð16Þ

(The factor of kBT in the denominator on the left-hand
side of the equation comes from the fact that
A0

11 ¼ �K 0
11).

If one assumes that a single sti¡ness parameter
describes all pair-wise contacts, 	[i],[j]=�, then we can
solve for the best estimate of � in terms of the single
experimentally measured quantity �2


ij by substituting
into (16) to ¢nd

� ¼
kBT

�2

ij

tr GK 00�1
11


 �

ð17Þ

where K00
11 ¼ K0

11=� is what the sti¡ness matrix would
be if all contacts had unit sti¡ness.

Of course, if multiple experimental measurements are
taken with di¡erent values of i and j, a more robust esti-
mate of � would be obtained. In the case when multiple
sti¡ness parameters are present in the model, multiple
equations can be solved simultaneously to ¢nd the
values that best match the ensemble motion measure-
ments captured in �2


ij. In such a case, multiple values of
i and j would have to be chosen, each pair potentially
corresponding to a di¡erent experiment. Numerical
methods for solving simultaneous non-linear equations
can be employed to obtain optimal estimates of sti¡ness
parameters for any such experimental data set. The
number of contact classes to use can be determined
rationally by starting with a single class and increasing
the number until it is no longer feasible to do more
experiments, or if there is diminishing returns in the
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reduction of model error as the number of classes
increases for a ¢xed set of experimental data.

6. Conclusions

A methodology has been presented in which ensemble
measurements of distances between labeled points
within a macromolecule can be used to determine sti¡-
ness parameters. These sti¡ness parameters describe
the mechanical characteristics of the macromolecule,
and are closely related to contact potentials. Knowing
such parameters would be useful when de¢ning coarse-
grained mechanical models of large biomolecular struc-
tures, and provide a way to associate frequencies of
motion with the shapes of normal modes.
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ERRATUM: A Methodology for Determining Mechanical

Properties of Macromolecules from Ensemble Motion Data
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Due to minor typesetting errors, in several places in the text, 2¼=k � T should be 2¼k � T . In

particular:

Eq. 3 should be:

Z =
(2¼k � T )

�

|det{M �
�
� KM �

�
� }|

�
�

The equation at the bottom of p 551 should be:

Z � =
(2¼k � T )

���
�

|detK |
�
�

and Eq. 16 should read:

¾
	

���


k � T
=

(2¼k � T )
�������
�

Z � | det K 	�	 |
�
�

(2¼k � T )
�
tr(GK

�
��� �

�
)

| det K
�
��� |

�
�

=
(2¼k � T )

���
�

Z � | det K |
�
�

tr(GK
�
��� �

�
) = tr(GK

�
��� �

�
):

1


