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This paper addresses the issue of obtaining the optimal rotation to match two functions
on the sphere by minimizing the squared error norm and the Kullback—Leibler infor-
mation criteria. In addition, the accuracy in terms of the band-limited approximations
in both cases are also discussed. Algorithms for fast and accurate rotational matching
play a significant role in many fields ranging from computational biology to spacecraft
attitude estimation. In electron microscopy, peaks in the so-called “rotation function”
determine correlations in orientation between density maps of macromolecular struc-
tures when the correspondence between the coordinates of the structures is not known.
In X-ray crystallography, the rotational matching of Patterson functions in Fourier space
is an important step in the determination of protein structures. In spacecraft attitude
estimation, a star tracker compares observed patterns of stars with rotated versions of a
template that is stored in its memory. Many algorithms for computing and sampling the
rotation function have been proposed over the years. These methods usually expand the
rotation function in a bandlimited Fourier series on the rotation group. In some contexts
the highest peak of this function is interpreted as the optimal rotation of one structure
into the other, and in other contexts multiple peaks describe symmetries in the functions
being compared. Prior works on rotational matching seek to maximize the correlation
between two functions on the sphere. We also consider the use of the Kullback-Leibler
information criteria. A gradient descent algorithm is proposed for obtaining the optimal
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rotation, and a measure is defined to compare the convergence of this procedure applied
to the maximal correlation and Kullback-Leibler information criteria.

Keywords: Correlations; FFT; Fourier analysis; gradient descent; Kullback-Leibler;
rotations; sphere.

1. Introduction

Given two square-integrable functions f; (z) and fo(z) on z € X C R3, the general
matching problem is usually defined as that of finding maxima of the function

(g) = / _ @ a)de. (1)

Here g is an element of some transformation group, G, which acts on X C RS.
Such problems arise in fields such as computer vision, image processing, robotics,
and crystallography (among others). The particular G depends on the applica-
tion. For example, in computer vision, the affine group plays a significant role. In
the context of molecular structure determination, the group of rigid-body motions
plays a significant role.®??2 And while methods for computing matches under the
full motion group are available®19:20 and a number of recent software algorithms
perform full six-dimensional rigid-body matches,43010:31,23 it is often sufficient to
perform a real-space match under rigid-body motions by first matching the centers
of mass of two density functions, thereby restricting the problem to a search over
rotations only.

The fast and accurate solution to the rotational matching problem is important
in several areas of structural bioinformatics and biophysics.”-21:22,3:34,2,9,39,29,36 [
example, the structure of a large biological macromolecule of known sequence is
often only determined experimentally as a three-dimensional density map. Then
methods for altering a baseline structure!®5 can be used to morph the structure
to conform with the experimental data. Fitting an appropriate three-dimensional
molecular structure model with full atomic detail to the experimentally-measured
density requires fast and accurate rotational matching. Another example where
rotational matching is important is in the statistical determination of binding
pocket motifs and drug design.

In contrast, in X-ray crystallography, the electron density, f(z), of a protein is
not directly measured. Rather, if

F(k) = F(f(z)) = o flz)e ™= da

is the Fourier transform of f(z), then the experimentally measured quantity is the
Patterson function P(k) = [F(k)|?. Given a rigid-body motion g = (A,a) where A
is a rotation matrix and a € R®, one observes that

IF(Flg™ a))[? = |F(A%)[%,
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where superscript ¢ denotes transpose. In other words, the Patterson function does
not depend on translation of the density f (z). In X-ray crystallography, the match-
ing of two Patterson functions under a pure rotation is an important tool as a step
in structure determination.

While Fourier expansions on the rotation group have many important and use-
ful properties, they do have drawbacks: bandlimited Fourier approximations of
nonnegative functions need not be nonnegative everywhere; bandlimited Fourier
expansions are not closed under multiplication or division. In a series of papers,
Lo and Eshleman defined exponential Fourier densities on the sphere and rotation
group.24726 These densities are defined as the exponential of bandlimited Fourier
expansions on the sphere and rotation group. The motivation for studying these
densities was that in the estimation of rotational processes such as spacecraft atti-
tude estimation the use of operations such as conditioning is required. The closure
of exponential Fourier densities under division makes them ideal for this use, though
it is at the expense of closure under convolution. In this paper we expand on the use
of exponential Fourier densities which naturally leads to using the Kullback—Leibler
information divergence.

A summary of this paper goes as follows. In Sec. 2, we present the technical
preliminaries followed by stating the rotational matching and informational rota-
tional matching problems. In Sec. 3, we quantify the accuracy of the rotational
matching schemes, and in Sec. 4, a discussion of the computational considerations
is presented. All mathematical proofs are collected in Sec. 5.

2. Expanding Functions on the Sphere and Rotation Group
and the Rotational Matching Problems

In this section we will provide a brief overview of Fourier analysis on the group
of 3 x 3 rotation matrices, SO(3), and on the unit 2-sphere, 52, see Refs. 11, 37,
14, 13, 6, 17 for details. As well, we will explicitly state the rotational matching

problem.
Let
cos¢p -sing O cosf 0 sind
uw(@)=|sing cos¢ 0}, a(f)= 0 1 0
0 0 1 —sin® 0 cosé

The well known Euler angle decomposition says, any g € S O(3) can almost surely be
uniquely represented by g(@,8,v) = u(¢)a(0)u(y), where the three angles (¢,0,)
are known collectively as the Euler angles, with ¢ € [0,27), 6 € [0,m), ¥ € [0, 27).
Consider the function,

DSI g (9:0,9) = e"iqld’dgm (cos§)e92¥,
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where, dgl g for £ <q1,q2 <4, £=0,1,... are related to the Jacobi polynomials.
Define the (2/+ 1) x (2¢ + 1) matrix by

Dg) = [D4,,(9)], 2)

where —¢ < g1,q2 < £, £ > 0 and g € SO(3), these constitute the collection of
inequivalent irreducible representations of SO(3).

Any point on S?, can be represented by w = (cos ¢sin, sin ¢sin 6, cos@)?, where
6 €[0,7), ¢ € [0,27) and superscript ¢ denotes transpose. Let '

204 1)(¢ - q)! ;
: 4;:@)-&- q)!q“") Fy (cosB)e®?,
where 6 € [0,7), ¢ € [0,27), ¢ < ¢ < ¢, ¢ = 0,1,... and Pqe(-) are the Leg-
endre functions. We can think of Yf as the vector entries to the 2¢ + 1 vector
Yé(w) = [YE(w)], € > 0. In this situation {Y% |¢| < £,6=0,1,...} form a complete
orthonormal basis over the space of square integrable functions on the 2-sphere,
L?(8%) and is sometimes referred to as the spherical harmonics.

In terms of the Fourier basis, the relation between SO(3) and S? can be
described in terms of the Euler angles. Furthermore, the following relation will
be used

Y (w) = (-1)?

q

Yilgw) = D Yi(w)Djy(ag7), (3)
ljl<e
for w € §? and g € SO(3).
Let f € L?(S?). We define the spherical Fourier transform on S2 by

fi= [ f)T s, @

where dw is the spherical measure on S% and overbar denotes complex conjugation.
Again we think of (4) as the vector entries of the (2 + 1) vector f¢ = | £8, -2 <
q</{,£=0,1,.... Now for each ¢ > 0, define the (24 4+ 1)-dimensional vector space
&¢ as the span of {qu : lg| < £} and equip it with the usual inner product thus
making & a (2¢ + 1)-dimensional inner product space with inner product (-, Ve
The spherical inversion can be obtained by,

Fw) = (FL 74 w)e, (5)
£20

for w € 52,
We would like to present our main results in terms of Sobolev spaces. Indeed, on
the space C*°(S5?) of infinitely continuous differentiable functions on S2, consider

the so-called Sobolev norm || - ||z, of order s defined in the following way. For any
function h = 3" ,(h*, Y¢), let
IaliE, =D (ee + 1)) 7, (6)

£>0
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where || - ||¢ is the induced norm from the inner product. One can verify that (6) is
indeed a norm. Denote by H,(S?) the (vector-space) completion of C*°(S?) with
respect to (6), the Sobolev norm of order s > 1. For some fixed constant @ >0,
let H,(S2,Q) denote the smoothness class of functions h € H,(S?) which satisfy
lhlla, < Q, the Sobolev ball of radius Q.

As stated in the introduction, the rotational correlation function can be defined
for two functions f,h: S?2 — R, on SO(3) by

plg) = . Fw)h(g™ w)dw, (7

for g € SO(3). Define the left regular representation Ag: L?(5%) — L*(5?) by

Ag(F)w) = Flg™ w), (8)

for f € L?(S?), where the latter denotes the space of square-integrable functions
on S2.

The maximization of (7) is really equivalent to the minimization of the L?(S?)-
norm and will be referred to as the rotational matching problem. In particular, our
problem would be

i — Agh|?, 9
(in N =g I (9)
where || - || denotes the L?(5?)-norm.
An informational measure of deviation can also be used. Consider fi, fo: S — R
and define the Kullback-Leibler information divergence by

- f_l_(w_))
D(lla) = [, (o) tog 2 ) s (10)
Thus in the context of (9), with respect to (10), we would have

uin DFAgh), (11)

which we will refer to as the informational rotational matching problem.

In practice, we cannot simply minimize (11) just as we cannot minimize (9) but
instead would minimize bandlimited version of (7). Therefore, some truncation has
to be invoked for the minimization of (9). This will be pursued in the following two
sections.

As far as minimization of the objective functions are concerned, the minimiza-
tion of (9) would differ from the minimization of (10) in as much as the former
would be an L2-approximation, so that the approximating function can take nega-
tive values, while the latter would be minimization with a positivity constraint on
the function in question. Some discussions related to this matter can be found in
the statistical literature.!
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2.1. Rotational matching
For f,h: §%2 — R, consider the left regular representation (8). Then using (3), we

have

3 Jq
lil<e

A(h =Y KDL (g7

Making note of the fact that D¥(g)t = D¥(g™1) for all g € SO(3), the matrix from
of the above is

Ro(h) = Di(g)R,

where ¢ is the vector of Fourier transforms of h € L%(S?), for £ > 0. By the
Plancherel formula, (7) the rotational correlation function can be re-expressed as,

p(g) = > (f*, Di(g)R").. (12)
£>0

The rotational correlation function (12) is an infinite series and so from a prac-
tical point of view, one has to cut-off the series at some finite point. Therefore,
define the truncated rotational correlation function to be

m
pm(g) = S (F, DXg)RY),, (13)
=0
for some m > 0.

In terms of applications, we should mention that the above technique has rel-
evance to the docking of atomic structures into electron-microscopy maps and the
molecular-replacement problem in X-ray crystallography.'® Further analyses related
to this work will be mentioned below after we quantify the magnitude of accuracy.

2.2. Informational rotational matching

Let S, be the collection of all functions of the following form

m

sw;B) =3 (B V(@) e, (14)

£=0

where 3¢ € R%*! and let F;, be the collection of all functions of the following form

fm(w; B) = exp {Z(ﬁﬂ%’)‘en - ‘I’(ﬂ)} : (15)
=1
where = (64)72; and ¥(B) = log ([ exp{ 327~ (B, V¥(w ))e} dw). By definition,
log fm(8) € Sm.

In certain cases when the context is clear, we will write f,(8) = fin(w; §).
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The information projection of f onto S, will be denoted by f, having the
property

D(fIIfr) < D(fll fm(8)), (16)
for all f,(8) € Sim. This is characterized by finding the unique f;;, € Sy, satisfying
/ (W) V¥ (w)dw = / (W)Y (w)dw, (17)

g2 52

for{=1,...,m.
Thus in the context of information projection, the practical side to the mini-
mization problem (11) would be

j *I|Aght). 1
(Soin P (fmllAghr) (18)

3. Accuracy of Rotational Matching

Our concern then is to determine the accuracy of the bandlimited approximations
to (9) and (11). Below we quantify the approximations.

3.1. Accuracy of bandlimited rotational matching

With respect to the rotational correlation function, one would like to estimate the
degree of accuracy of the truncated rotational correlation function. In order to
quantify such measures we will assume that f,h € Hs(S?, Q). Thus we have the
following which is proved in Sec. 5.

Theorem 3.1. Suppose f,h € Hs(S% Q). Then

|p(g) = pm(9)] < Qm™*
where s > 2, for all g € SO(3).
Since @ > 0 is fixed, the Sobolev ball is fixed. We can however, vary the @ by

making it go to infinity at a rate that would only marginally change the order of
magnitude. Indeed, we have the following.

Corollary 3.1. Let 0 < e < 2 and suppose f,h € Hy(S%,m?¢). Then

|pm(9) — p(g)] < M7
where s > 2, for all g € SO(3).

One can see from Corollary 3.1 that by setting s = 2 and ¢ = 1 that the margin
of error is going to be m~2. Thus, for example, as relevant to the applications
in Ref. 18, if we want a margin of error of 0.01, we would have to calculate to
10 eigenspaces which involves 121 Fourier coefficients. If we demand even more
precision of say 0.001, we would need to calculate to 30 eigenspaces which involves
961 Fourier coefficients.
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3.2. Accuracy of informational rotational matching

With respect to the Kullback-Leibler information criteria (10), one would like to
estimate the degree of accuracy of minimizing the information projection. In order
to quantify such measures we will assume that log f,logh € H,(S% Q). Thus we
have the following.

Theorem 3.2. Suppose log f,logh € Hy(S?,Q). Then, as m — 00,
ID(fllAgh) — D(fmlAghi) < Cm™*
where s > 1, and some C > 0 for all g € SO(3).

4. Computational and Numerical Issues in Rotational Matching

In this section we describe numerical methods for rotation matching. In Subsec. 4.1,
Fourier methods based on bandlimited expansions are reviewed which would be
applicable to L?-minimizing. In Subsec. 4.2, a gradient descent algorithm is pro-
posed which would be applicable to the minimizing of the Kullback-Leibler infor-
mation criterion.

4.1. Fast rotational matching

If S? is sampled at O(B?) points and SO(3) is sampled at O(B3) points, then
the numerical evaluation of rotational correlation function in (7) would require
O(B5) computations when performed using brute force sampling and a numeri-
cal quadrature rule in place of the integral. If N denotes the number of points
sampled in SO(3), this represents an O(N 5/ 3) computation. However, methods
from computational noncommutative harmonic analysis can be used to reduce this
burden.

Sampling theorems and fast Fourier (FFT) transform techniques for the rota-
tion group have been developed.?’'?® Essentially, the double coset decomposition
of SO(3) corresponding to z — z — z Euler angles yields matrix elements of the
irreducible unitary representation matrices, (2), which in principle lend themselves
to fast transforms in each coordinate (Euler angle) when exact arithmetic is used.
We briefly review this and other approaches for fast computation of bandlimited
Fourier series on SO(3).

The whole spectrum of a bandlimited function on SO(3) [such as p(g) from (7)]
can be calculated fast in principle by using the classical FFT over ¢ and v and
fast functional transforms over 6. By using a quadrature rule, the spherical Fourier
transform can be sampled in each coordinate at O(B) values to exactly compute
the integral in (12), where B denotes the bandlimit. The whole of SO(3) is then
sampled at N = O(B?) points. Explicitly, one first calculates

2

5 (6,) = / o(,0, )% dg

0
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for all g1 € {—B,...,B} and all sample values of § and . This requires O(B? -
Blog B) operations. Then one calculates

—~ 2” .
Frion(0) = /0 Por (0,9)c %% dip

in O(B? - Blog B) operations (O(BlogB) for each value of n and ). Finally,
all the SO(3)-Fourier coefficients are calculated in O(B? - B(log B)?) operations
(O(B(log B)?) for each value of q; and go).

Since the limiting calculation is the O(B(log B)?) required for the fast functional
transform in the variable 6, the whole procedure is in principle O(N (log N)?) for all
values of g1, ¢2, £ up to the band-limit B. The reconstruction of the original function
from its bandlimited spectrum,

B~—1 £ Z
plg) = _(20+1) > > pt,.Di o (9), (19)
£==0

me=—{f n=-—4f

requires the same O(N(log N)?) computation as was required to obtain the spec-
trum (since these problems are dual). But in practice, numerical instabilities asso-
ciated with the computation of fast functional transforms required in the 8 variable
limit the applicability of this approach.

One approach which is numerically stable is to expand the Wigner D-functions,
(2), in bandlimited Fourier series and use the FFT not only on ¢ and %, but in all
three rotational dimensions after a change of coordinates. Such an approach was
originally introduced in Ref. 33 and adopted by Ref. 18. While this approach does
make use of a three-dimensional FF'T, and appears to be of computational value,
it still scales as O(B*) = O(N*/3) because of the cost of transforming to and from
the new coordinates in which the FFT is computed.

In contrast to both of the above recent approaches, if the rotation function
is computed directly in the ¢ dimension as proposed by Ref. 7 (i.e. by storing
the dgl 2 (cos 0) values in advance and using O(B?) operations instead of using an
O(B(log B)?) fast functional transform), then the SO(3) Fourier transforms for all
41,92, ¢ up to the band-limit can still be performed in O(B*) = O(N*/3) arithmetic
operations. Hence, the original method for fast rotation function evaluation scales as
well as the more recent approach. And while it does not scale as well as approaches
based on fast functional transforms, it does not suffer from numerical instabilities
either.

4.2. Gradient descent procedures

If two functions on S? are evaluated at O(B?) points and stored, then the com-
putation of the integral for either the rotational correlation function (7) or the
informational measure (10) requires O(B?) evaluations/interpolations for each ori-
entation g € SO(3). Therefore, instead of computing the value of the functions in
(7) or (10) at each point in a fine grid in SO(3), we consider sampling at a very
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sparse grid, and driving the value of these integrals to their minimal values using
a gradient descent algorithm. Similar methods have been used elsewhere in the
context of satellite attitude estimation3? and problems in robotics.%:12:35

Given a function f(g) which we seek to minimize, the gradient descent procedure
is to seek a direction which reduces the value. Infinitesimal rotational motions are
captured by the basis elements of the Lie algebra of SO(3).

Let {X;} denote the set of basis elements of the Lie algebra so(3):

0 0 0 0 01 0 -1 0
X1 = 0 0 -1 ; Xz = 0 0 0 ) X3 = 1 00
01 0 -1 0 0 0 06 0

One can define derivatives of the form

XF(g) = L (f(g o exp(tXo))limo

The collection of these directional derivatives is in effect a gradient vector pointing
in the direction of steepest ascent. This may be used to update the current group
element as

3
g — goexp (“EZXZ‘ [Xff(g)]> ,
i=1
where € is a small step size which is chosen. Iterating this process will lead to the
convergence to the nearest local minimum of the function.

A potential benefit of this approach is that it does not require the evaluation
of the integral or function at all values of g in a fine grid on SO(3). Even if the
path meanders, or if the gradient descent method must be restarted from several
different initial values of g, it is very plausible that it would converge in fewer than
the O(B?) steps required to make it as expensive as most of the methods described
in the previous section.

However, having said this, the quality of the function on SO(3) being minimized
has a large influence over this behavior. A function with many deep local minima
which divert the gradient descent path away from the global minimum is not as
desirable as one with few minima. This inspires us to define a “goodness criterion”
for cost functions. Let go denote the global minimum of f(g). If all of the gradient
vectors point directly toward this global minimum, the gradient descent procedure
will converge without being diverted. The geodesic in SO(3) connecting g and go
is defined by the path

9p(t) = gexp(tlog(g™" g0))-

The tangent vector to this path at t = 0 can be compared with the direction
Zf;l X:[X£f(g)] used in the gradient descent procedure. The inner product of
the normalized versions of these two vectors in the tangent to SO(3) at g can
be computed for each value of g € SO(3). Integrating this inner product over all
of SO(3) gives a “badness measure” which is zero for a function with a single
minimum.
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In future work we will perform numerical tests to compare the relative good-
ness/badness of the rotational correlation function and Kullback-Leibler informa-
tion criteria for SO(3).

5. Proofs

This section provides proofs of our early mathematical statements.

5.1. Proof of Theorem 3.1
The proof of Theorem 3.1 goes as follows. By (12) and (13), we have

0(9) — pm(9)] < Y [(F4, D¥(g)R),]

&>m
< ZZ 17Nl
= g £(E+1))7°(B(L + 1))/ fl el + 1))/ R4 e
e 1/2 1/2
<m™% {Z( (£+1))° Ilfeliz} {Z(K(Hl))sﬂﬁ“’ll?}
) anzs,bm £>m

where the first line is by the triangle inequality, the second is by the Cauchy-Schwarz
inequality and the fact that D’ is a unitary operator, the third is definition, the
fourth is another application of the Cauchy-Schwarz inequality and the last line is
due to the fact that f,h € H,(S?, Q). O

2. Proof of Theorem 3.2
Let
72(f) = inf fllogf—sl2 and 7eo(f) = inf |logf - sl
be the L? and L error approximations for a density function f by some s € Sp,.
Define A by
Islloe < Allslla for all s € Spy.

Let ||8]| denote the Euclidean norm of a vector 8. Set T = {({,k): k = —£,. .,E, >
0}, T = {(L,k): k= —£,... 6,0 = 0,...,m} and I%, = {(&,k): k = —¢,... ¢,
£>m}.

Lemma 5.1. Suppose that Aya = o(1) and Yoo < c0. If CT1 < f < Cy then for n
sufficiently large

D(fl77) < Daren
Proof. For g = log f, let

sm(g) = Zﬁkylf~

Im



412 G. S. Chirikjian et al.

Set 0* = ([ fY*f) and 0 = ( [ Y{f(5)), where § = (gf). The entries in the vector
¢* - @ are seen to be coefficients in the L2(S2) orthonormal projection of f — f(4)
onto S,,,. By Bessel’s inequality, the boundedness of f, we have

16* — 6|17 < |If — f(O)|3
2
cor [ UL
< C¥lg — s(9)Zexp {2llg — sm(9)lloo — 2{30 + T (6)}}
< Cio‘e47°°'y§.

For the last inequality we have used the fact that |¥(8) + §3] < |g— sm(9)]loo, since
U(8) + g3 = log { [ exp(sm(g) — 9)f}. From this same fact we have

llog f/f(6)lloo < 2019 ~ $m(9)lloc = 2700
and together with CT 1< f < C1, we obtain
|| log £(8) ]l < log C1 + 27co.

Now, if C1e27yy < 1/(4ebA), that is, if Ays = o(1), then it follows from Lemma 5
that the solution 8* to the equation ([ Y{f(8)) = 6* exists and that

log fru/f(6)llo < €
where € = 4C% exp(4Yoo + 1)A~y2. So by the triangle inequality, we obtain

| log £/ filloo < 2700 + €,

and
[l log frlleo < log Cr+ 2700 + €. (20)

Therefore, it follows from the boundedness of f and Lemma 1,' we have

D(flf3) < DUIFG) < 56l @=Cylg ~ (o)} < 5Cie™n3. O

D) s

Lemma 5.2. Iflog f € H,(S?,Q), then there exists a constant Cy such that
Cilsf<C

Proof. Write g = log f = 3 7 §£Y}{. Observe that

lg(w)® < (Z(W—P 1))°19x 2) (Z(f(f+ 1))_5|Yzf|2>
I

s
<@ i(f(ﬁ +1))7°(20 + 1).
£=0

Since s > 1, the series Y ,o(¢(£ 4+ 1))~%(2¢ + 1) converges thus giving us a bound.
0
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Lemma 5.3.

A<Cm (21)
Y2(f) < Cm™*° (22)
Yoo (f) < Cm~oF, (23)

where C' is a generic constant independent of m.

Proof. To determine A, choose any element 5 = sz ﬁ,‘éY,f in 8,. By the Cauchy-
Schwarz and Parseval’s inequality, we have that, uniformly in w € S2,

1/2 1/2
()] < (Z|Y,f<w>|2> (Z |ﬂf;12>
. <

1/2
<ZIY€ )l) lIsl2
Im
C
C

which proves (21).
Since

m(m + 1)) Z} 7 <D e+ < Q,
A

we have the bound on s as fOIIOWS'

< Z| m(m+1))~* < Cm™?

It follows from the Cauchy—Schwarz inequality and the addition formula for spher-
ical harmonics that the error 42, is bounded by

(Zm (e +1)” )(Z( (€+1)°lg |2>

Iec

m

~

<QZ L+1)75(20 + 1)

l=m-+1
< Om™+2, (24)
]
Lemma 5.4.
D(flfr) < Cm™>. (25)

Proof. As m — oo, we have that v, < Cm™+! = o(1), 7o < Cm™* and Ay <
Cm~**t! = o(1). Consequently, from Lemma 5.1, we obtain the bound (25). O
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Lemma 5.5. For any fm € Fm, we have a Pythagorean-like identity
D(f||fm) = D(f|f7) + D(frll fm)-
Proof. Observe that
D(flfm) = [ 108

=D(fifp)+ [ flog%

= D(f155) + [ £aog {;T—:-

= D(f|fm) + DUl fm)-
The third equality follows from the relation (17). 0
Now we prove Theorem 3.2. Since the proof is for some fixed g € SO(3), without

loss of generality, we will assume g = 1, the unit element so that Ak = h. Let hr,
be the information projection of A onto Fp,. From Lemma 5.5, we have

D(fllhin) = D(fIfm) + D(fmllhim),

which implies that

D(flIR) = D(fmllhi) = D(fIR) = D(fllh7) + D(Fl fm)- (26)
Since logh € H,(S?%, Q) with s > 1, we have that
lloghlleo < C and |loghy | < C. (27)

Observe that

ID(fllh) = D(flIh7)

2

? \ [, stostiz, - togh
g2

<7/, <l°g h};;)Q

h 2
<C h (lo ——->
52 & Ry,
< Cexp(|| log h - log by lleo) DIl B,)
< CD(h||h},). (28)

The second inequality comes from the Cauchy-Schwarz inequality, and the third
from Lemma 1.! It follows from (26) and (28) that

D(flI) ~ D(f k)| < [DUFIR) = DU I1i)| + DU )

< Cim™® + sz‘%. o
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