
Topological Aspects of DNA Function and Protein Folding 635

Framed curves and knotted DNA
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Abstract
The present mini-review covers the local and global geometry of framed curves and the computation of
twist and writhe in knotted DNA circles. Classical inequalities relating the total amount of bending of a
closed space curve and associated knot parameters are also explained.

Introduction
The physics of DNA can be modelled in a variety of ways
ranging from smaller to larger length scales including: (i) at
atomic resolution; (ii) as a collection of discrete bases; (iii)
as discrete basepairs; (iv) by averaging over short segments
(decamers/dodecamers); (v) as double continuum elastic
filaments (called bi-rods); and (vi) as semi-flexible polymers
(single continuum elastic filaments). For a recent comparison
of these methods in the context of a full literature review,
see [1], and for a wider discussion of DNA geometry and
topology, see [2–4].

The present article reviews the classical geometry
and framing of curves, the concepts of twist and writhe, and
inequalities relating the local geometry of curves and global
topological properties of knots. The motivating application
is knotted DNA mini circles.

Representing the DNA backbone as a space
curve
A curve in three-dimensional space can be described as the
set of points given by co-ordinates

x(s ) =

⎡
⎢⎣

x(s )
y(s )
z(s )

⎤
⎥⎦ = [x(s ), y(s ), z(s )]T,

where T denotes the transpose (which changes a row vector
into a column vector), and s is the curve parameter. In the
present context, s is the arc length (length measured along
the curve from a fixed starting point where s = 0). I discuss
only finite curve segments defined by arc length values in the
range 0<s<L, where L is the total length of the segment, and
take x(0) = 0 = [0,0,0]T.

Space curves and Frenet–Serret framing
Frenet–Serret apparatus (developed c.1849) extracts two
functions: curvature and torsion from a curve, and assigns
a unique reference frame to each point. Given x(s), then
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the curvature and torsion are respectively defined by the
equations

κ2(s ) = d2x
ds2

.
d2x
ds 2

and

τ (s ) = 1
κ2(s )

dx
ds

·
(

d2x
ds 2

× d3x
ds 3

)
.

Here, a centred dot is the dot product defined for any two
three-dimensional vectors as a·b = a1b1 + a2b2 + a3b3.

The Euclidean norm (or length) of a vector is

‖a‖ = √
a · a.

A Frenet–Serret reference frame specifying an orientation
at each value of s along the curve can be defined as

RFS(s ) �= [t(s ), n(s ), b(s )],

where the columns of this orthogonal matrix (which are
respectively called the tangent, normal and bi-normal) are

t(s ) = dx
ds

,

n(s ) = 1
κ

dt
ds

and

b(s ) = t(s ) × n(s ).

Here, the cross product produces a vector b that is
perpendicular to both t and n in accordance with the right-
hand rule.

It can be shown that [t,n,b] is, in fact, a rotation matrix,
and the orientation of the Frenet–Serret frame attached to
the point x(s) can be viewed as a rotation from the identity
reference frame to the orientation [t,n,b].

Global properties of closed curves
Some theorems relating the integrals of curvature and torsion
of ‘nice’ closed curves in three-dimensional space to global

Biochem. Soc. Trans. (2013) 41, 635–638; doi:10.1042/BST20120346 C©The Authors Journal compilation C©2013 Biochemical Society



636 Biochemical Society Transactions (2013) Volume 41, part 2

topological properties are reviewed in the present article
without proof. The closed curves are all assumed to be smooth
and self-avoiding. An integral with a superimposed circle is
standard notation for an integral over a closed curve where
s = 0 and s = L correspond to the same point in space.

Theorem 1 (Fenchel [5])
The following constraint bounds from below the total
curvature of a closed curve∮

κ(s )ds � 2π,

with equality holding only for some kinds of planar curves
(which are distinguished by the fact that they have zero
torsion).

On the other hand, when considering knotted curves that
have restrictions on their ability to bending (as would be
the case for an elastic filament), which is described by the
curvature at each point on the curve being less than a specific
constant curvature (denoted by κ0), then the following upper
bound results,

κ0 L �
∮

κ(s ) ds ,

where L is the length of the curve. For example, when double-
helical DNA is modelled as an elastic rod, there will be limits
on its ability to bend until to kinks.

Theorem 2 (Fary–Milnor [6,7])
For closed space curves forming a knot,∮

κ(s ) ds � 4π.

Many extensions of these theorems exist in which
quantities such as the bridging number can be included to
provide sharper bounds. See, for example, [8].

Frames with minimal twist
The Frenet–Serret apparatus reviewed above is not the only
way to frame a curve. Rather than starting with the curve and
attaching an orientation at each point, it is possible to start
with an orientation [or rotation matrix, R(s)] for 0<s<L, and
define a curve from it. Given R(s) and the tangent defined to
be in the local x direction, and then using the notation e1 =
[1,0,0]T, the formula

x(s ) =
∫ S

0
R(σ )e1dσ

defines an arc-length-parameterized curve that ‘grows’ along
the local x-axis, which is the tangent to the curve.

The body-fixed description of angular velocity (with
respect to s, since there is no time variable in this formulation)
can be related to the skew-symmetric matrix

⎛
⎜⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎟⎠ �= RT dR

ds

as

ω = [ω1, ω2, ω3]T �= �ν

(which serves to define the ‘vector operation’ that extracts
an angular velocity vector from the above skew-symmetric
matrix). Measuring the amount that the reference turns
around the x-axis gives

ρ(s ) =
∫ S

0
ω1(σ )dσ .

This local ‘twist’ will be called ‘roll’ so as not to confuse
it with torsion or any other words starting with the letter ‘t’.
The minimally twisting frame can be obtained directly from
the Frenet–Serret frame by observing that the roll associated
with that frame is

ρF S(s ) =
∫ S

0
τ (σ )dσ

Therefore the framing with minimal twist is

RB(s ) �= RF S(s )R1[−ρF S(s )],

where the subscript 1 denotes the rotation matrix describing
anticlockwise rotation around the local x-axis by the
angle − ρFS(s) inside the brackets. A curve x(s) with attached
frame defined by the orientation given in the above equation
is sometimes called the Bishop frame after [9].

Figure 1 depicts a three-dimensional framed curve and the
twisting/roll degree of freedom around the tangential (local
x) direction, which distinguishes Frenet–Serret and minimal-
twist frames. The concept of a minimally twisting frame for
a given curve is important in the context of DNA because it
provides a datum. Superimposed on this is the natural twist
of the double helix, from which under-twisting and over-
twisting can be measured.

Twist, writhe and linking number
Given two closed curves, x1(s) and x2(s), where xi(0) = xi(Li)
and ti(0) = ti(Li), then the Gauss integral is a functional
defined as

G(x1, x2) = 1
4π

∮
C1

ds1

∮
C2

ds2[ẋ1(s1) × ẋ2(s2)] ·

x1(s1) − x2(s2)
‖x1(s1) − x2(s2)‖2 ,

where an overdot is shorthand for the derivative d/ds.
Gauss showed that this integral is a topological invariant in

the sense that its value only depends on the degree to which
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Figure 1 A three-dimensional curve framed in two ways

the curves intertwine. In the context of DNA, it is called the
linking number of the two curves, and the notation LW =
G(x1,x2) is used.

Given a closed backbone curve of unit length, x(s), then a
ribbon (or strip) associated with this backbone curve is any
smoothly evolving set of line segments of fixed length 2r for
0<s<L, with centres at x(s), such that the line segments point
in a direction in the plane normal to the tangent. Then the tips
of the line segments trace out closed curves. The tips of the
ribbon can be described using the Frenet–Serret apparatus as
the two curves

x±(s ) = x(s ) ± rv(s ),

where

v(s ) = n(s ) cos θ (s ) + b(s ) sin θ (s )

and

θ (0) = θ (L).

When r is sufficiently small, it is useful to represent the
linking number as the sum of two quantities: the writhe (or
writhing number), denoted as Wr, and the twist (or twisting
number), denoted as Tw. That is, the linking number can be
decomposed as [10–13]:

Lw(x, x + rv) = Wr (x) + Tw(x, v),

which is often written more simply as Lw = Wr + Tw, where

Wr = 1
4π

∮
ds

∮
ds ′[ẋ(s ) × ẋ(s ′)] · x(s ) − x(s ′)

‖x(s ) − x(s ′)‖3

and

Tw = 1
2π

∮
ẋ(s ) · [v(s ) × v̇(s )]

‖ẋ(s )‖ ds .

When the angle θ is zero for all values of s and so v(s) = n(s),
then

Tw = 1
2π

∮
τ (s )ds.

For a simple (non-self-intersecting) closed curve in the
plane or on the surface of a sphere, it has been shown [14]
that Wr = 0.

For any fixed unit vector u not parallel to the tangent to the
curve x(s) for any value of s, the directional writhing number
[14] is defined as

Wr (x, u) = Lk(x, x + εu),

where for sufficiently small ε, the value of the directional
writhing number is independent of ε. The writhe can
be calculated from the directional writhing number by
integrating over all directions not parallel to the tangent of x.
This amounts to integration over the sphere (except at the set
of measure zero where the tangent traces out a curve on the
surface of the sphere) and so [14]

Wr (x) =
∫

S2
Wr (x, u) du.

Here the integral is normalized so that∫
S2

du = 1.

These relationships are reviewed in the present article
because they play an important role in the study of DNA
topology [2–4].

Conclusions
The differential geometry of space curves is an important
tool for describing knotted DNA circles. The present mini-
review covers some classical mathematical results that may
find new applications in this area. These results include the
definition of local geometric parameters such as curvature
and torsion, the Frenet–Serret framing of space curves and the
alternative minimal-roll framing. The relationships between
global properties such as writhe, twist and linking number,
and local properties such as the curvature and torsion are
explained.
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