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Abstract

Many tasks which manipulators must perform occur in the
presence of obstacles. While a variety of algorithms for non-
redundant and mildly redundant manipulators ezxist, little an-
alysis has been performed for a class of robots with the most
to offer in the area of obstacle avoidance: hyper-redundant
manipulators. The term “hyper-redundant” refers to redun-
dant manipulators with a very large, possibly infinite, number
of degrees of freedom. These manipulators are analogous in
morphology and operation to “snakes,” “elephant trunks,”
and “tentacles.” This paper presents novel kinematic algo-
rithms for implementing planar hyper-redundant manipula-
tor obstacle avoidance. Unlike artificial potential field meth-
ods, the method outlined in this paper is strictly geometric.
‘Tunnels’ are defined in a workspace in which obstacles are
present. Methods of differential geometry are then used to
formulate equations which guarantee that sections of the ma-
nipulator are confined to the tunnels, and therefore avoid the
obstacles. A general formulation is given with ezamples to
illustrate this approach.

1. Introduction

Several methods for dealing with the problem of robot obsta-
cle avoidance in a time-independent workspace environment
have been developed by other investigators [1,4,12, and refer-
ences therein). One popular method is the artificial potential
field {12]. In this method, an artificial repulsive potential
field is assumed between the manipulator and obstacles in
the workspace. Similarly, in other methods a measure of dis-
tance from obstacles to the manipulator can be defined, and
optimized to yield configurations in which the manipulator
does not touch obstacles [1]. These methods have poten-
tial drawbacks. In the artificial potential field approach, the
robot can ‘get stuck’ in a potential well, although some meth-
ods to circumvent this problem have been investigated [13].
The drawback of many optimization methods is computa-
tional complexity, since many of these methods are based on
the computation of a pseudo-inverse Jacobian matrix, which
is expensive when the number of degrees of freedom becomes
large.

This paper presents a novel approach, termed “tunneling,”
to the obstacle avoidance problem which is applied to planar
hyper-redundant manipulators. A hyper-redundant manip-
ulator is a redundant manipulator in which the number of
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redundant degrees of freedom is large or infinite. These ma-
nipulators are analogous in morphology to snakes or ten-
tacles. A number of recent works have been devoted to
the design and systems aspects of snake-like manipulators
[9,10,11,16,17], although less work has been done in the kine-
matic analysis of these manipulators. In [5] general methods
for analyzing the kinematics of planar and spatial hyper-
redundant manipulators are presented, and relevant details
are summarized below.

1.1. Kinematics of Planar Hyper-redundant Manip-
ulators

Hyper-redundant manipulators with constant base to end
effector length are referred to throughout this paper as tensor
manipulators. A planar hyper-redundant tensor manipulator
may be comprised of many rigid links, as in Figure 1(a), or
the physical construction of the device may be truly flexible—
such as a pneumatic or tendon based structure, as in Figure

1(b).
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Figure 1: Discrete and Continuous Hyper-Redundant
Manipulators

In the case of a truly flexible structure, a “backbone curve”
of constant length can be defined which exactly captures
the manipulator shape. In the case of many discrete links,
the essential macroscopic featiires of the manipulator can be
captured by a backbone curve of the same length as the sum
of the link lengths. For analysis purposes, the discrete ma-
nipulator is modeled as a continuous curve, and kinematic
and obstacle avoidance computations are performed using




the continuous backbone curve. The actual physical manipu-
lator is then fitted to the idealized backbone curve solutions
to complete analysis of the kinematics. Consequently, the
complete analysis of planar hyper-redundant tensor manip-
ulators can be reduced to the study of the differential ge-
ometry of planar curves, with an additional “fitting” process
required for manipulators consisting of a finite number of
discrete links. We assume that in the discrete structure case
the number of links is large so that the manipulator profile
does not substantially deviate from a backbone curve with
bounded curvature.

1.2 Continuous Hyper-redundant Manipulator Kine-
matics

Figure (1a) shows one possible discrete hyper-redundant ma-
nipulator. Figure (1b) is the ‘backbone’ curve of a tensor
manipulator, which is the locus of all points in the z1-z3
plane which have position defined by (s), where s is the arc
length measured from the origin. It is assumed that s is in
the range 0 < s < 1, meaning all lengths in the plane are
scaled to units of the manipulator length. 8 (sy) is the angle
which the tangent to the curve at the point s = sy makes
with the tangent at the point s = 0, i.e., the angle it makes
with the z; axis measured in a clockwise sense.

A curve with arbitrary position and orientation in the plane
can be described by the equation:

7(s) = Qa(s) +7 8
where T is a 2x 1 vector, and Q is a 2 x 2 rotation matrix. Q
and € do not define the shape of the curve, only its location in
the plane. Z(s) is a vector of the form Z(s) = [z1(s) za(s)]T.
Each component of Z(s) must satisfy the following equation:

(22" -0 1 ()]

where x(s) is the curvature function, which is the magnitude
of the rate of change of the unit tangent vector at a point
s along the curve: x(s) = |d®%/ds?|. Solutions to (2) are of
the form:

)

a@=fﬁwmw

s 3)
za(s) =/0 cos(f(u))dp

where: .
0(s) =]0 k(o)do. (4)

These solutions assume that the base frame of the curve is
defined by the unit vectors & such that F(0) = 0 and that
the tangent to the curve at its base point is 7 (0) = &2, where
a ' represents differentiation with respect to s. The rotation
matrix, Q, and translation vector, Z, follow from whatever
initial conditions are imposed on the governing differential
equation. Consequently, for given boundary conditions, the
curvature function uniquely specifies the entire shape of the
planar curve. Q and € can be functions of time if the base is
rotating and translating respectively. This might occur if the
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manipulator is mounted on a moving base or if the hyper-
redundant mechanism is used for snake-like locomotion [8].

Similarly, the curvature function need not be a function of
arc length alone, and could depend upon time as well. The
forward kinematics of planar tensor mechanisms is given by
(3) and (4), and the inverse kinematics and trajectory plan-
ning can be reduced to determining the spatial and temporal
behavior of the curvature function, x = £(s,t). That is, the
function «(s,t) will determine the bending of the mechanism
as a function of time, and is selected to achieve desired objec-
tives, which depend upon the nature of the hyper-redundant
manipulator application.

One method to make the kinematics problem tractable is to
restrict the curvature function to a modal form:

N

K(s,1) = 2 ai(t)di(s)

1=1

(5)

where the {¢i(s)} are mode functions, the {a;(t)} are modal
participation factors, and N is the number of chosen modes.
Necessary conditions on the independence of the mode func-
tions are detailed in [5]. In essence, this form of the cur-
vature function restricts the effective degrees of freedom of
the manipulator to the number needed to accomplish a task.
Substituting (5) into (3) and (4), one sees that inverse kine-
matics and path planning of these complicated manipulators
reduces to the search for the proper modal participation fac-
tors and their time varying behavior. A specific example is
considered below. For additional details and examples of the
modal approach to both planar and spatial hyper-redundant
manipulator kinematics see [5,7].

1.3 A Closed Form Modal Solution
Consider the following choice of modes for N = 2,

#1(s) = 2w cos2ms;  o(s) = 2 sin 2. (6)
Substituting these two modes into (3), (4), and (5), it can be
shown using orthogonality properties and identities that the
end-effector position (s = 1).is described by the following
‘closed form’ solution:

Zee = 21(1) = sin(ag)Jo [(a? + a2)?]
: )
Yee = o2(1) = cos(az)Jp (a3 + a})?]

where Jy(z) is the Bessel function of zero order. The inverse
kinematics of this ‘2-participation factor’ tensor manipulator
can be computed with the following equations:

a3 = Atan2 (zec, Yee) (8.a)

and

a ==+ ( [']0_1 [(‘IZC + yeze)%“2 - [AtanZ (xeev ycc)]2) i
)



The ‘restricted inverse Bessel function of zero order’, J;° Lig
defined as the inverse of the function Jy(z) for 0 < z < p
where p = 3.832 is the first local minimum of Jy, which is
the first zero of J;. In this way, the function is monotonically
decreasing over the interval for which it is defined, and there
is no problem in defining a unique inverse. If the inverse
Bessel function were not restricted to this monotonic range,
multiple solutions would be possible. The higher order solu-
tions would physically correspond to configurations in which
the manipulator self-intersected, and these solutions are ne-
glected on the basis of practical considerations.

X

—

]
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Figure 2: Two-Mode Inverse Kinematic Examples

Figures 2(a) and 2(b) show two examples of the inverse
kinematic solutions provided by (8). In Figure 2(a), the
manipulator end-effector is commanded to move to location
(Tee, Yee) = (0.3433,0.2733). From (8), the modal participa-
tion factor solutions are a; = 1.3588 and a; = 0.8984. Figure
2(b) is another example with (Zee, Yee) = (—0.2933,0.6133),
which results in modal participation factors of a; = —1.0957,
ay = —0.4461.

Alternatives to closed form inverse kinematic solutions are
resolved rate and “pseudo-dynamics” algorithms (7], which
take the participation factors as generalized coordinates.

1.4. Overview of the Obstacle Avoidance Scheme

The method presented here deals with time-independent work-
space environments. Furthermore, it is assumed that the lay-
out of these obstacles in the workspace is well known, such as
in an industrial setting, or assuming a sufficiently accurate
vision sensing system. With these assumptions the problem
of performing a task in a field of obstacles is equated to defin-
ing a path around obstacles to which the manipulator must
adhere. Such a path, as illustrated in Figure (3), provides
a trajectory or ‘tunnel’ in which the tensor-manipulator can
‘slither’ to circumvent the obstacles.

In practice, an automatic means for selecting one or more fea-
sible tunnels which successfully negotiate the obstacle field
could be generated using previously published methods. Free-
space methods [3] based on generalized cones could be used
to identify free path segments, and the centerlines of these
segments could be assembled together to form the centerlines
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of the “tunnels” required by this method. Similarly, cellular
decomposition and contraction algorithms could be used to
construct tunnel segments which avoid obstacles.

Once the end-effector has passed through the obstacle field,
the portion of the manipulator in the region of the obsta-
cles can be made to remain stationary. The unconstrainted
portion of the manipulator can perform useful work. The
modal approach to the kinematics of unconstrained tensor-
manipulators can be used for the section of the manipulator
outside the obstacle field. Essentially two problems must be
overcome. First is how to determine the proper geometri-
cal constraints on the manipulator to statically conform to
the tunnel constraints. Second is how to account for the
time rate of change of the manipulator curvature so that the
moving manipulator obeys the geometric constraints of the
tunnels as it moves through them. In this paper we do not
assume or preclude any particular actuation scheme. How-
ever, we do assume that both the position and rate infor-
mation are sufficient to drive the servo control algorithms of
the mechanism actuators, which in turn controls the actual
manipulator shape.

The next section presents the background mathematics and
solutions to both the position and velocity kinematics prob-
lems.

2. Tunnel Constraints

In the position, or “shape” problem, we determine the cur-
vature function of sections of the manipulator confined to
tunnels. In addition, compatibility equations are developed
for the free sections of the manipulator. In the velocity prob-
lem, the constraints are expressed in terms of allowable time
behavior of the manipulator backbone curvature function.
In this way the manipulator can slither through the tunnels
from its starting configuration to its final configuration while
obeying all of the geometric constraints.

2.1 Manipulator Shape with Tunnel Constraints

/s=52n
")
A

8 = S2n—-1

s:s)\

Tensor Manipulator Constrained to a
System of Tunnels

s=0
Figure 3:

For convenience, Equation (3) is written in complex notation



throughout this section. In other words, the position to every
point on the manipulator is expressed as :

2(s,t) = z1(8,t) + iza(s,t) = i f e~ ¥e0g.  (9)
0

The orientation of every point is given by Equation (4).

Figure (3) shows a hyper-redundant manipulator in which
certain segments of its length are constrained to pass through
tunnel segments in order to avoid obstacles. Let the seg-
ments which are constrained to fit inside a tunnel be termed
interior segments, while those segments which need not be
constrained are termed ezterior segments. Let us number
the segments sequentially starting from the base of the ma-
nipulator. We will assume that the first segment is always
an exterior segment, and therefore interior and exterior seg-
ments will respectively have even and odd indices.

For a tensor manipulator with some sections constrained to
move in tunnels as shown in Figure (3), a curvature function
which will satisfy the section by section constraints has the

form:
n

k(s,t) = 3 ki(s, )W (s, si—1, 8i)-

=1

(10)

where sy = 0 and s; = s;(t) for ¢ > 0, and 7 is an integer
indexing a manipulator segment. The window functions, W,
are defined as follows:

W(s,si—1,8i) = H(s —si) — H(s — 5i—1)

where H is the Heaviside step function. In other words, the
curvature function is defined as a piecewise continuous func-
tion, where each segment of the manipulator is assigned a dif-
ferent local curvature function to satisfy its local constraints.
For interior segments the curvature function, termed an in-
terior curvature function, takes the form of a traveling wave:

Koy = '€2i(3 - 32i—1(t))

whereas the curvature function describing exterior segments
(an ezterior curvature function) can have the more general
form:

K241 = K2ig1 (8,).
However, the exterior segments have kinematic restrictions
on the position and orientation of the manipulator at the
entrance and exit of interior segments:

82i41 .
K2i+1ds = 0%:"'1 = const;

(11)

82
and

[ 3241 s .
z/ exp —z/ Koiprdo| ds = z%}“
2i

32¢

= consty. (12)

0%::“ and z%é’“ are the orientation and position of the frame
at the entrance of the i+1st tunnel with respect to the frame
at the exit of the ith tunnel.

In this way, the manipulator backbone curve is at least a once
continuously differentiable curve along its whole length.
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2.2 Manipulator Velocities with Tunnel Constraints

This subsection addresses the computationally more diffi-
cult problem of what the instantaneous velocities are at ev-
ery point along the tensor manipulator. Abstractly, all that
needs to be done is to take the time derivative of position
to get the velocities. However, some mathematical manip-
ulation can be performed so that both physical insight and
simplification of the computational algorithm needed to im-
plement these equations can be achieved.

The velocity constraints on the free sections of the manipu-
lator are found by simply taking the time derivative of the
position constraints represented by (11) and (12) to yield:
. d [+
02:7“ = —/ Koi41ds =0 (13)
dt gy,
and

=i d
T
Knowing that s; = s (t), Liebnitz’s rule can be used to
write the velocity constraints (13) and (14) explicitly as:

/

$2i

321+1

241 s
5 exp [—i/ n2g+1do-] ds=0. (14)
82 824

i1

82i+1 aK,Z 1 s
T’:—ds + K2i41 (52i4+1, t) 52i41 (s)
— K241 (82i,8) 820 =0
and
$2i41 . . .
- / ' aole"”"ds + 6_'025(32"+1’t)..52,'+1 - ..32,‘ =0. (16)
520 ot

where

O2i(s,t) = /" «(o,t)do.
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Note that for the parts of the manipulator which fully occupy
a tunnel, 8241 — 82i = const, which can also be written

2i41 = 32i-
The velocity of every point along the manipulator is of the
form:

_ O ey, [0 e
v(s,t) = lat/o e do _A T do. (17)

Using the properties of generalized distributions, ie, window,
step, and delta functions, it can be shown that

a0 w % Ok; .
E(s,t) = '{:1 [/s.-_. —aT(a,t)do + 57 (si,t) H (s — s,')]
(18)

where s
7 (sit) =K (s,-',t) — Kit1 (s;",t)

is the ‘jump’ in the curvature between adjacent sections.

Substituting (18) into (17) provides an expression which can
be evaluated numerically, to find the velocity of every point
of the manipulator at any instant in time. The next section
uses the methods developed here in examples to illustrate
how position and velocity of all points on the backbone curve



confined to a system of tunnels can be defined using the
above formulation.

2.3. A Specific Example

Figures (4) and (5) illustrate a specific example of the gen-
eral formulation of the previous subsection. The hyper-
redundant manipulator must pass through a single maze-like
tunnel and reach a goal on the other side. In the first un-
constrained exterior section, i.e:, 0 < s < s;, the curvature
function will be assumed to have the form

27s
s1(t)

so that a point, Z(s1), on the moving (or “slithering”) ma-
nipulator is always coincident with the tunnel entrance.

£1(8,t) = a(t) cos

Integrating the forward kinematics equations (3), or (9), we
get

5
. .2
z1(s1) = ‘/o sm(%i;- sin Slls)ds =0 (19)
and
z2(81) _/Sl cos(asl sin 2_1rs)d Ji (asl) 20
= — S = — .
! 0 2 1 0 2r 1 ( )

Let A > 0 be the distance from the base of the manipulator to
the entrance of the tunnel. k is a constant and the following
must hold:

as;
h=Jy| — .
0 ( 21r) 51 (21)
For h to be positive, it is necessary that:
asy
0< —
5y <M (22)

where p1 ~ 2.405 is the first zero of Jy.

This being defined, the condition for stationarity of T(s;) at
the entrance of the tunnel, while s; changes, is

2r h

o= 2 () ()
and so
=2 g h) o 21
a0 = oot (G o iy @

The obstacle environment is illustrated in Figure 4. With
Z(s1) = [0,h]T fixed, we can now determine an appropriate
k2(s,t) which is the curvature of the section of manipulator
confined to the tunnel. For this particular obstacle field x2
can be defined as follows:

Ka(s,t) = —% [(W(s,s1,81+ L) — W(s,s1+ L,s1 +2L)

+W(s,s1 +2L,s1 +3L)].
(25)

The composite curvature function for this example is then

k(s,t) = k1(s,8)W(s,0,31) + k2(s,t)W(s,s1,1) (26)
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Figure 4: Dimensions of the Obstacle Field

The given choice of k2 corresponds to three consecutive semi-
circular arcs. The magnitude of the curvature over each of
the three sections, each with arc length L, is /L, corre-
sponding to semicircles of radius r = L/x. The curvature
function of circular arcs is always the reciprocal of the ra-
dius of the circle to which the arcs belong. The window
functions take the value of unity over each of the semicir-
cles, and the sign indicates the sense in which the arc turns.
A positive sign indicates clockwise bending, and a negative
sign indicates counterclockwise bending of the manipulator.

Integrating Equation (26) in the variable s, as in Equation

(4), we find that
_ h) . (27rs)
- 1 = S27) (g —
0(s,t) = Jy (51 sin o L(.s s1)W(s,s1,81 + L)
+ [%(3 — 81— L) — n]W(s,s1 + L, s1 +2L)
- %(s — sy — 2L)W(s, sy + 2L, s + 3L)
— W (s,s1 +3L,1).

s

(27)

A time history of this tunneling obstacle avoidance maneuver
is shown in Figure 5, corresponding to the obstacle of Figure
4. The configurations shown correspond to h = 0.4 and
s1 = 1.00,0.94,0.83,0.68,0.54,0.44. The dimensions of the
obstacle field are shown in Figure 4, where in the numerical
example presented, L = 0.2.

These results can be used to assemble obstacle avoidance
curvature functions for arbitrary obstacle fields. If a feasible
obstacle avoidance path of finite width exists in an obstacle
field, one can always define a tunnel of suitable accuracy for
avoiding obstacles as a sequence of straight lines and circu-
lar arcs segments which are differentiable at their junction.
Consequently, the results above and in [5] can be used with
a free space algorithm to develop a general planar obstacle
avoidance scheme for this class of manipulators.
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Figure 5: Continuous Hyper-Redundant Manipulator
in an Obstacle Field

3. Fitting the Continuous Solution to a Discrete Ma-
nipulator

While the modal method has been developed under the as-
sumption that the backbone curve of the tensor manipula-
tor is continuous and can conform to any given shape, a
discrete-linked manipulator is much more restricted in its
physical capabilities. This section considers the adaptation
of the current analysis to the case of an n-link planar revo-
lute manipulator, and is a summary of results in [5]. In this
shape fitting method, the discrete manipulator geometry is
selected so that the nominal shape of the discrete manip-
ulator coincides as closely as possible with the continuous
backbone curve solution.

Figure 1(a) shows a planar manipulator comprised of n rigid
links with n revolute joints. All links are assumed to be of
the same length, and the total length of the manipulator is
normalized to 1. The forward kinematics for this manipula-
tor is:

(28)
=1 =
1 ()
ccz-z Cos 0_1‘ 29
TREE) )
0¢e=zn0,~ (30)
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where Zee, Yee, and O, denote the position and orientation
of the end effector.

The discrete manipulator shape and end-effector location are
fitted to the continuous curve model by minimizing the sum
of squared dlstance between points on both manipulators

"located at s = £ for ¢ = 1,..., n. In this method, the following
is assumed:
2j+1 (2;' - 1) ‘
0j+1 =6 ( n ) -6 o + ¢€;. (31)

where 8(a) = 0 for all a < 0. In other words, we take the
angles of the discrete case to be approximately the change in
angle over a corresponding section of length in the continuous
case. Note that there are n free ‘fitting’ parameters, ¢;, This
extra freedom can be used to make the discrete link model
conform even further to the continuous case. Below is an
expression of the squared distance from the joint points on
the discrete manipulator to the corresponding points on the
continuous manipulator, i.e, the points s = £. The function
to be minimized is the sum of the contnbutlons from all such
points.

2
G=

(/ sin @ds — —2 SIDE 91)

k l—l =1

n (32)

( 0d—-— cos 0\I
+\/0 cos Ods Z E }J

Linearizing the above expression while assuming ¢; are small
in (31), and using the definitions:

k

xk=/o%sin0ds yk=/0;cosads
(o(222))
(o(52))

the explicit form of the m* component of the linearized op-
timization of least squares distance is:

n
2 {(sr-ns-
p=m
14
- (yp —cpt+ E qsi,p) 3m,p] =0

=1

k

Z sin

=r

1 k
Crk = ;Z cos
i=r

2t+1
2n

1

T, -
n
2t +
2n

)4
2 fici,p) Cm,p

=1 (33)

providing n linear equations to specify the n variable ¢;’s.

If the {¢;} are calculated, and they are small, then the as-
sumptions allowing linearization are justified. If however,
the values of €; are not sufficiently small for the assumptions
to be valid, then the linear approximation fitting procedure
can be iterated, or a much less efficient nonlinear solution
procedure must be implemented. This will generally only be



the case when there are points on the backbone curve with
large curvature and/or the discrete manipulator has a small
number of links. Figure 6 shows an example of a 10 link
manipulator which has been ‘fitted’ to the configurations in
Figure (5), demonstrating a case where this method works

quite well.

IIP
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Figure 6:

Discrete Hyper-Redundant Manipulator
Obstacle Avoidance

4. Conclusions

This report presented a novel obstacle avoidance concept,
based on “tunneling,” for hyper-redundant manipulators of
constant length. A general formulation was given which al-
lows a manipulator to maneuver through a complicated se-
quence of interior and exterior segments. Computer simula-
tions were presented for a particular example. In principle,
connecting circular arcs and line segments as in the presented
example can be used to construct a system of tunnels for ma-
neuvering in arbitrarily complex obstacle fields. The benefit
of this method over existing potential field and optimal meth-
ods for application to hyper-redundant manipulators is that
a comparatively efficient set of kinematic equations based on
differential geometry need be computed, thus allowing much
faster solutions. The method was demonstrated for both con-
tinuous and discrete hyper-redundant manipulators. While
the applicability of the present model diminishes with dimin-
ishing degree of redundancy, it works quit well in situations
such as the continuous manipulator case, where conventional
methods of analysis do not apply.
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