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ABSTRACT

‘Hyper-redundant’ robots have a very large or infinite degree
of kinematic redundancy. This paper develops methods for
determining the ‘optimal’ configurations which satisfy task
constraints while minimizing a weighted measure of mech-
anism bending and extension. These methods are based on
a continuous ‘backbone curve’ which captures the robot’s
essential macroscopic geometric features. The Calculus of
Variations is used to develop differential equations, whose
solution is the optimal backbone curve shape. We also con-
sider the optimal distribution of frames along the backbone
curve.

1. Intoduction

‘Hyper-redundant’ manipulators have a very large rel-
ative degree of kinematic redundancy. In previous
work [3-8], the authors have developed methods for
kinematic analysis of these robots which are based on
a ‘backbone curve’ which captures a hyper-redundant
robot’s macroscopic geometric features. Inverse kine-
matics and trajectory planning reduces to the deter-
mination of the proper time-varying backbone curve
behavior. In [5,7], we considered the backbone curve
shapes which arose by restricting the physically mean-
ingful curve parameters to a modal form. This tech-
nique is used as the basis for hyper-redundant robot
obstacle avoidance [4], locomotion, and grasping [6]
analysis and algorithms. These papers summarize re-
lated work by other investigators.

The restriction to modal form is an arbitrary, though
quite useful, restriction as it leads to very efficient in-
verse kinematic solutions. However, these methods
are not optimal in a mathematical sense. This pa-
per presents methods for determining backbone curve
shapes which satisfy task constraints and minimize a
user-defined optimalit{ criterion. We focus on shapes
which minimize a weisg ted measure of mechanism bend-
ing and extension. Such shapes tend to avoid actua-
tor displacement limits. In addition, we also consider
two optimality problems which arises in discretely seg-
mented manipulator fitting procedures. An expanded
version of this work can be found in [7].

In the literature several similar problems have been
addressed. The optimal shape desiEn of thin elastic
rods which implement a desired robot wrist compli-
ance was considered in [1]. The analytic techniques
used in that work are similar to those used here. In
[2], an efficient technique for finding the globally opti-
mal redundant manipulator configurations was devel-
oped, though this method is most practical for a small
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number of redundant degrees of freedom. [11] consid-
ers an optimal shape synthesis problem for high de-
gree of freedom Variable Geometry Truss (VGT). The
solution in [11] is an approximate one, which can be
considered a subset of the modal approach presented
in [4], while the methed in this paper optimizes over
the set of all continuous curve functions.

2. Parameterization of Backbone Curves

We assume that regardless of mechanical implementa-
tion, the important macroscopic features of a hyper-
redundant robot can be captured by a backbone curve.
Inverse kinematics and trajectory planning tasks are
reduced to the determination of the proper time vary-
ing behavior of the backbone curve. A continuous
backbone curve solution can be used to directly deter-
mine the actuator displacements of a continuous mor-
phology robot. For discretely segmented morpholo-
gies, such as a VGT, the continuous curve so ution
can be used, via a ‘fitting’ process [5,7], to compute
the actuator displacements which cause the manipu-
lator to assume the nominal shape of the backbone
curve model. We review here techniques for physi-
cally meaningful parametrization of backbone curves.
A more detailed review can be found in [3].

The Cartesian location of points on a backbone curves
can be intrinsicly parametrized in the form:

E(a,t):[) (o, t)u(o, t)do (2.1)

where s € [0,1] is the parameter of the backbone curve
at time t. z(s,1) is a vector from the curve base to
the point s on the backbone curve. (s, t) is the unit
tangent vector to the curve at a: I(s,1) length of the
curve tangent and assumes the general form:

I(s,t) =1+¢(a,2) >0 (2.2)
where ¢(s,t) is the local eztensibility of the manipu-
lator. The extensibility provides a measure of how
the parameter s differs from dimensionless arclength.
€(s, ) > 0 indicates local extension, while ¢(s, t) < 0 1m-
plies local contraction. The parametrization of (2.1)
has the following interpretation. The backbone curve
is “grown” from the base by propagating the curve
forward along the tangent vector, which is varying di-
rection according to i%:, t) and varying it's magnitude
(or ‘growth-rate’) according to i(s, t). In the extensible



case, the length of the backbone curve between points
81 and s, is:

L(s2, 1) L(ay, 1) = / “loie.  (23)

n

L(s, t) is the classical arclength measure.

A backbone reference frame at s is a triad of right-handed
orthonormal vectors, {#;(s, t), #2(, t),#a(s, )}, with fra-
me origin coincident with point s in the curve. The
orientation of the references frames relative to a fixed
frame can be expressed in matrix form as:

Q(s,t) = (21(s, t) a(s, ) 3(s, t)) € SO(3).
Note, in the remainder of this paper we drop all refer-

ence to the time dependence of curve geometry. How-
ever, all results hold in the time-varying case.

(2.4)

Classicly, nonextensible arclength parametrized spa-
tial curves, i.e., L(s,t) = s, are described using the
Frenet-Serret Apparatus. In this system, the backbone
reference frame consists of three vectors, @, %, and J,
where % is as above, and:

= 1 _dus)
i(")_mj ds

bs)=zxm

(2.5)

7(s) and §(s) are respectively termed the normal, and
inormal vectors. x(s) is the curvature function de-
fined as:
n’ = d_ﬁ N d_.i
T ds ds
From the above definitions, the
can be derived:

(2.6)

following relationships

dn

du . S I
o = W= 7h — x7; —=—-1h  (2.7)
where (s) is the torsion function defined as :
=la.Gxs 2.8
r= 2 (ixd). (2.8)

A ‘"’ represents differentiation with respect to s. NS:)
can be physically interpreted as the bending of the
curve, at s, in the plane S£anned by @ and =, while r
measures bending out of this plane.

Let Qps(s) = (ﬂ WIT) denote the Frenet-Seret frames

for a given curve. From (2.7), it can be seen that the
rate of change of Qps(s) is:

d 0 K(’) 0
QFs(8)=Qrs(s) | ~x(s) 0" (s)| (2.9)
0 (s) O

—

Unfortunately, the Frenet-Serret apparatus is often not
well suited to practical numerica% computation, and
alternative schemes are required. Any spherical kine-
matic representation can be used to parametrize u(s) in
(2.1). For example, the position of points on a spatial
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backbone curve can be represented by the parametric
equations:

fo‘ I(o) sin K (o) cos T(o)do
fo' (o) cos K(o) cos T(o')dor
J; Uo)sin T(0)do

#(s) = (2-10)

K(s) and T(s) are angles which determine the direc-
tion of u(s) (fig. 1). When T(s) = 0 for all s, (2.10)
degenerates to planar kinematics, where we denote
0(5 = K(s). By convention, K(0) = T(0) = 0.

Figure 1: Physical Description of X, T

A frame can be assigned to every point on a space-
curve defined by K(s) and T(s), as was done in the
classical Frenet-Serret parameterization. This frame,
referred to as the induced reference frame is denoted by

cosK sinKcosT —sinKsinT
Qir(s)=| —sinK cosKcosT —cosKsinT
0 sin T cosT
Sz.l 1)
For consistency with previous work, the second column

of Qzr is the backbone curve tangent vector @ This
alternate parametrization can be related to the Frenet-
Serret parameters as follows:

K= S(T) + (K) cos 7] (2.12a)

7= 1[-KsinT + 5 (P& — R cos T — (1K sinT])
. 2.12b
However, for spatial backbone curves an addgtion
function, called the roll distribution, R(s), is also re-
guired to uniquely specify hyPer-redundant robot con-

guration. The backbone reference frame, Q, can be
derived by rotating the induced reference frame by an-
gle R(s) about the backbone curve tangent. Thus, in
this parametrization

Q(s) = ROT(@(s), R(2)]Qrr(s)

where ROT([7, a] represents a rotation about the unit
vector 7 by an angle a in accordance with the right
hand rule.

(2.13)

3. Review of Calculus of Variations




The optimal configuration problem developed in the
following sections will require the minimization of in-
tegrals having the form:

I= /” f(:,‘(s),?jl(s),- -, 7 (2))ds. (3.1)

7 € RY is a set of intrinsic parameters, while f(") is

a physically motivated function. * is shorthand for

= -:yg (3.1) will be subject to integral or isoperimet-
ric constraints (which arise from end-effector position
constraints (2.1)) of the form:

/ LK To T ) s =2, (32)

where 39 = 0, 81 = 1, § = l%, and 7 is the desired end-
effector location. (3.1) may also be subject to finite
constraints of the form:

W8, 3(2), 7 (8), . T () =0 (3.3)

The Calculus of Variations [8] provides a means for
finding a g(s) which yields extremal values of the (3.1)
with constraints (3.2) and/or (3.3). To solve such
problems, define a function (which we will call the La-

grangian): a

L=f+F. -F+By h (3.4)
where %, and 7, are respectively constant and vari-
able Lagrange multipliers. The g(s) which extremize
(3-1) with constraints (3.2) or (3.3) is a solution to the
Euler-Lagrange equations:

.
gdt foc) _
3ot (55) -

=0
With constraints (3.2) or (3.3) and boundary condi-
tions 7'(s0) = Tb and g'(s1) = i for i € [0,1,..,m],
(3.5) can be solved to find the extremizing functions,
7, and Lagrange multipliers %, and 7,(s). Existence of
solutions to (3.1) is discussed in [9], while numerical
solutions can be found in [10].

j=1,--,N.  (35)

4. Optimal Hyper-Redundant Manipulator Config-
urations

In an ‘optimal’ configuration, the set of backbone ref-
erence frames varies as little as possible from one value
of s to another on the backbone curve. E.g., we are
trying to find the shape which satisfies task constraints
and minimizes local %ackbone curve bending and ex-
tension/ contraction. This criterion is equivalent to
the minimization of the integral:

I= ; /o g (ﬁ(,)w.,(.)ﬁT(.)) & (41)

where H(s) is the homogeneous transform consisting of
rotation matrix Q(s), and position vector Z(s). Wy(s)
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a 4 x 4 symmetric positive definite weighting matrix
with inhomogeneous units. We first consider the case
of least bending for nonextensible manipulators.

4.1 Configurations of Least Bending

In this case, we seek to minimize the integral of the
weighted norm of Q(s) over the backbone curve length:

1

I=} /o g (Q(a)w,(.)QT(.)) s (42)

W3 (s) a 3x3 symmetric positive definite weighting ma-
trix. We make the reasonable assumption that there
is no preferred direction of bending, and thus Ws(a)
assumes the isotropic form Wiy(s) = a(s)Is.

At s = 0, the intrinsic frame must coincide with the
base frame. At s = 1, the intrinsic frame must corre-

spond with the desired end-effector orientation, Q..
hus we have the boundary conditions:

Q) =L Q(1)=Qee. (4.3)

Thus, the minimum bending problem can be stated as -
the minimization of (4.2) subject to constraint (2.1)
(z(1) = Z..) with boundary conditions (4.3). The as-
sociated Lagrangian is:

£(s) = Jalo)e (QOQT@) +7 W) (44)

where 7, is a vector of constant undetermined La-
grange multipliers arising from the isoperimetric end-
effector constraint (1) = Zee. Note that in the Frenet-
Serret parametrization,

L (Qsr()QEr() =)+ 7). (49)

4.2 Configurations of Least Bending, Roll, and Ex-
tension

Now consider the general case in which the optimalit
criteria includes contributions from bending, roll, an
elongation. A Lagrangian based on the constrained
minimization of (4.1) can be written in the form:

£s) = Satat (QOQT()) + FA)U) - )
+ l(')l_"c ‘ ﬂ(’)u

Q(s) assumes the form in (2.13) which includes roll,

and ofs) and S(s) weight the relative desirability of

bending and extension. In [3,7], we show for the pla-

nar case that if « = #? and g = 1, (4.6) measures the

gpmogeneous kinematic deformation of a tube of ra-
ius r.

(4.8)

5. A Planar Nonextensible Example

In the planar case, Ci(s is simply a rotation by an
angle 6(s) measured clockwise from the z3 coordinate
axis. It is easy to show that:

LH(Q)QT(0)) = 8(s). (51)



In the nonextensible case, 6 = x2, and thus we seek
to minimize:

1
I= ;—[J a(2)x%(2)ds (5.2)

The forward kinematic constraint for a nonextensible
planar manipulator is:

1 1
Zee = / sin 6(s)ds; Yee =/ cos §(s)ds, (5.3)
o °
which is a degenerate form of (2.10) with T(s) = 0,k (2)=
6(s), and i(s) = 1. Thus, the Euler-Lagrange equation
is:

(5.4)
The solution of this equation can be computed numer-
ically, subject to constraints (5.3), and the boundary
conditions 6(0) = 0 and (1) = ... Note that (5.4) is
similar to the classical elastica problem [12].

a5+dé—u1cosﬂ+#zsin0=0.

Configurations which are a solution to (5.3) for the
special case a(s) = 1 are shown in Figure 2. In this,
and all subsequent figures, a variable geometry truss
has been superimposed, or ‘fitted’, to the backbone
curve using the procedure in [3,5].

Optimal Planar Shapes for

Figure 2:
Uniformly Weight Curvature

In many ?ractical cases, a(s) may be defined as a de-
creasing function, so as to minimize bending at the
manipulator base. For instance, the manipulator iner-
tial properties can be approximately incorporated by
defining
1
a(s) = ap + a1/ p(o)do (5.5)

where p(s) is the normalised mass density of the ma-

nipulator per unit curve parameter. f‘ ! pdo is the weight
of the manipulator from the distal end to point s.

ag and a; weight the relative importance of uniform

versus inertially weighted bending. Examples of this

weighting are shown in Figure 3 for ag=02 a1 =1,

and p(s) = 1 (uniformly distributed mass).
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Figure 3: Optimal Planar Shapes
for Curvature with Decreasing
Weighting

6. A Nonextensible Spatial Example

In this example, we assume that points along the spa-
tial backbone curve are parametrized by K (8), T&),

and R(s). Using the parametrization in (2.13), it can
be shown that:

%:T(QQT) = K3(8)+1%(s)+ B*(s)— 2K Rsin T(s) (6.1)

Consequently, the constrained Euler-Lagrange equa-
tions are:

o

where:

PAREEN

) +8(T. K, T,R)+C(T,K)g=0 (8.2)

1 0 —sinT
G(-) = 0 1 0
—sinT 0 1

— .. . . . . T
S()=(-TRcosT KRcosT —KTcosT)

1 [~cosKcosT sinKcosT 0
C()= 3 sinKsinT cosKsinT —cosT
0 0 0

: (6.3)
(6.2) is solved with initial conditions K\ (0) = T(0) =
R(0) = 0. The final boundary conditions can be de-
termined by equating ?(l) to the desired end-effector
friex}ta.tion, Qee. One of the two solutions to this prob-
em is:

T(1) = sin ™ Y(q..,33)

K(]) — atan? ( Jee,12 Jee,22

cos T(1)’ cos T(l))

(6.4)

_ _ _ee,a1 Jee,33
R(1) = atan2 ( cos T(1)’ cosT(l))
where g, ij is the i-j element of Q... Optimal spatial
configurations which arise from the solution to (6.2)




are shown in Figure 4. Here again, a variable geom-
etry truss was ‘fitted’ to the optimal backbone curve
for clarity. Note that G(T) (which must be inverted
in numerical solutions of (5.11)) will become singular
when sin T = 1. [3] considers 4-parameter descriptions
of orientation which avoids these singularities.

Figure 4: Optimal Spatial Configurations
7. Optimal Backbone Curve Reparameterization

Consider the reparametrization of a given planar back-
bone curve to minimise the variation in the backbone
reference frames from one value of the curve parameter
to another. This reparametrization minimizes the rel-
ative amount of local extension and bending, thereby
avoiding actuator limits during the fitting process.

Let 7°(¢) be an existing planar curve with curve pa-
rameter ¢ € [0, po]. We wish to find an alternative pa-
rameterization, s, such that the curve 3(s) = 7" (4(2))
has the same shape as 7°(¢), but that the distribu-
tion of frames on the curve vary as little as possible
from one value of s to another. In other words, we
wish to find a new parametrization which minimizes
the planar version of (4.1) which is

1 1
= 8)as = "2‘2 3 8
1= [ ow= [ 4

for isotropic and uniform weighting of bending and
extension.

Reparametrization can be achie\,red as follows. The
angle which the tangent vector 7 (where a’ indicates
differentiation with respect to ¢) makes with the z2
coordinate axis is:

(1.1)

0"(4) = Aan2(si 55 )- (7.20)
Equate the parametrizations in ¢ and s:
0(s) = 0" (¢(s))- (7.2b)

Similarly, the local extensibility function in the new
parameter s must be:

Pa)= (7" (6(2))- 7 ($())4? (1.3)
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Thus we can write:

f0=3 (r’(%’,,l)’¢7’ + @ ($()- ff'(«»(a»)é’)

, (7.9)
which can be expressed in component form as

"ot

f(s)= %3 [(ui)’ +(@) +r* (1’;7’)':—;—(’:2%] = $4(¢)
(7.5)

wléere the superscript * has been temporarily suppres-
sed.

' n

The Euler-Lagrange equations are simply:

239(6()) + Pﬁ%’—) =0 (7.6)

Tt can be shown [3,7) that the solution to (7.6) leads
to the optimal reparameterization of a curve segment

of length Lo = [#° |d7* /dé|d¢:

_ ety

s(¢) =
@) f:°g%(u)du

(.7)

where s() = ¢7().

For example, consider an arclength parametrized pla-
nar curve, ¥ = 7(L). The optimal reparameterization
is:

L 2.2 1
_ Jo @ +r262(v))7dv

s(L)=
) foL"(l +r3x3(v)) ¥ dv

(1.8)

For example, assume a nonextensible backbone curve
shape which satisfies task constraints has been found
using a modal approach [3,5,7]. For fitting purposes,
the backbone curve can be ‘optimally’ reparametrized
by specifying:

I(s) = JEo(1 4+ PR}y
(1+72s2(L(a))F

(1.9)

This procedure is illustrated in Figure 5. A variable
gﬁometry truss is fitted to the backbone curve such
that the spacing between truss modules is defined by
(7.9). While the backbone curve is nonextensible, the
variable geometry truss is extensible, and thus the
truss modules can locally extend or contract. With
r = 0, the truss modules are uniformly spaced alon

the backbone curve. As r increases, the spacing o
the truss modules becomes increasingly nonuniform for
high curvature backbone curve segments.



S

r = 0.00 r=0.08 r=0.16

Figure 5: Optimal Reparameterization of
Bacgbone Curves

Now let’s determine the optimal roll distribution which
minimizes twisting per unit length about the spatial
backbone curve. sJi‘ﬁ'u; procedure is useful for deter-
mining roll distributions after a backbone curve shape

as been specified to perform a particular task. As.
sume that K(s) and T(s) have been specified. We seek
to determine R(s) which minimizes (4.1). The norm
used in (6.1) is used here, only now we have one free
variable: the roll distribution, R(s).

The Euler-Lagrange equation for this problem is triv-
ial:

2 (Bs) - K(s)sinT(s)) =o0. (7.10)
This equation has solution:
R(s) = R(0)s + / ’ K(0)sin T(0)do (7.11)
1]

Where R(0) is selected so that the constraint on R(1)
is satisfied.

8. Conclusions

This paper developed methods based on the Calculus
of Variations and a continuous backbone curve model
for determining ‘optimal’ hyper-redundant manipula-
tor configurations. The comPlexitr\lr of this problem
was significantly reduced by using physically meaning-
ful backbone curve parametrizations. We focused on
minimizing a weighted sum of backbone curve bend-
ing, twisting, and extension. Other optimality criteria
can be developed and treated in an analogous manner.
We also developed means to optimally reparametrize
backbone curve arclength measures and roll distribu-
tions. These problems arise when fitting discretely
segmented or modular hyper-redundant mechanisms
to continuous backbone curve solutions.

In previous work, the authors have developed alterna-
tive ‘modal’ approaches to the hyper-redundancy reso-
lution. Both approaches are compared and contrast in
[3]. In brief, the modal approach gives the user greater
control over manipulator shape through the choice of
intrinsic shape functions. The ‘optimal’ approach re-
quires intuition in defining an alppropriate cost func-
tion. The inverse kinematic solutions in both cases
are cyclic because manipulator configurations are de-
termined by a reduced set of intrinsic variables with
the same dimension as the workspace.
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