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Abstract

Traditionally, kinematics and motion planning
paradigms have addressed robots with continuous
range-of-motion actuators (e.g. motors, hydraulic
cylinders, etc.). Unlike motors, binary actuators have
only two discrete states, both of which are stable. As
a result, binary manipulators (i.e, those which are ac-
tuated with binary actuators) have a finite number of
states. Major benefits of binary actuation are that ex-
tensive feedback control is not required, task repeata-
bility can be very high, and two-state actuators are
generally very inexpensive (e.g., solenoids, pneumatic
cylinders, etc.), thus resulting in low cost robots. This
paper presents a new paradigm in robotics based on
binary actuation, and develops algorithms for the op-
timal design of binary manipulators for pick-and-place
tasks.

1 Introduction

Standard continuous range-of-motion robotic manip-
ulators have not been embraced by many industries
because of their relatively high cost, low accuracy, and
low payload capability as compared to dedicated ma-
chine tools. Thus, there is a need for a new paradigm
in robotics which will lead to lower cost and higher
reliability.

In principle, an analogy can be made between con-
tinuous vs. binary manipulators and analog vs. dig-
ital circuits. In the history of electronics and com-
puting, digital devices replaced many of their analog
counterparts because of higher reliability and lower
cost - exactly the same reasons for developing a binary
paradigm for robotics.

Discretely actuated robots have a finite number of
states. Binary manipulators are a particular kind of
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Figure 1: Configurations of a 3-bit Manipulator
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discrete device in which actuators have two stable
states. Major benefits of binary manipulators are that
they can be operated without extensive feedback con-
trol, task repeatability is very high, and two-state ac-
tuators are generally very inexpensive (e.g., solenoids,
pneumatic cylinders, etc.), thus resulting in low cost
robots. While it is true that stepper motors are a com-
monly used form of discrete actuation, they are prone
to losing/slipping steps - a problem not encountered
with binary actuation.

Figure 1 illustrates all possible configurations of a
‘3 bit’ planar binary platform manipulator. A finite
number of points are reachable by the manipulator’s
gripper. In this case, 23 possible configurations re-
sult because there are three actuators. Note that for
this design the location of points reachable by the end-
effector are a function of the retracted cylinder length,
extended cylinder length, and width of the platform.
In the general case these kinematic parameters will
be divided into joint stop and structural parameters,



Figure 2: Configuration 110001110001110

which for this case are denoted ¢™", ¢™%% and w
respectively. In Figure 1, ¢™" = |, w = 1.2 and
¢™*® = 1.5. Thus, when an an actuator is in state
‘I’ it is one and a half times its length in state ‘0’.
Section 3 will formalize and generalize notation for the
binary manipulator paradigm, but first more insight
will be given with another particular example.

A schematic of a highly actuated prototype is shown
in Figures 2 and 3 for two of its almost thirty three
thousand (2'%) configurations. This particular design
is a variable geometry truss manipulator. As cur-
rently configured, this manipulator consists of 15 iden-
tical prismatic actuators, each with two stable states
(completely retracted (0) or completely extended (1)).
In these figures each cylinder has ¢™" = 3/20 and
g™ = 5/20, with the width of each platform w = 1/5.

Actuators are numbered from left to right in each
‘bay’ of the truss, and from base to tip. Writing these
I’s and 0’s from left to right, the most significant bit
corresponds to the actuator on the left side of the base,
and the least significant bit corresponds to the actuator
at the right side of the distal end of the manipulator. It
is interesting to note that the configurations shown in
Figures 2 and 3 are the 1’s compliment of each other.

The remainder of this paper is organized as follows:
Section 2 reviews the literature. Section 3 formal-
izes and generalizes the concept of a binary manipula-
tor. Section 4 introduces and solves the optimal design
problem for binary manipulators performing pick-and-
place tasks. Section 5 illustrates this method with an
example.
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Figure 3: Configuration 001110001110001

2 Related Literature

Due to the high cost/performance ratio of sophisti-
cated robotic systems, a recent trend in ‘minimalist’
robotics has begun to gain momentum. For instance,
there are current efforts to develop new paradigms
in robotics which parallel the development of reduced
instruction set computers (RISC) [CaG]. Related ef-
forts include the investigation of sensorless robots
[Go92,Ma]. In these efforts the mechanics of con-
tact and pushing are used to formulate planning algo-
rithms which are guaranteed to work provided partic-
ular physical constraints are observed. Thus, objects
can be manipulated in a precise manner without the
need for force feedback.

This trend runs counter to ideas that robots
equipped with sophisticated tactile feedback systems
provide the solution to all industrial robotics problems.
However, the minimalist approach has not included a
paradigm for robotic manipulators completely devoid
of joint level feedback (including position and velocity)
until now.

Nonetheless, if one reviews the literature, spo-
radic efforts in binary actuation can be found, e.g.,
[AnH67,RoRS73]. Such efforts resulted when comput-
ers were first available to control robotic manipula-
tors. However, despite the seemingly natural parallel
between discretely actuated mechanical systems and
the development of the computer, these efforts were
abandoned for lack of a framework in which to design
and plan well-behaved motions of such systems.



Of course, a natural question that one might raise
is how different binary manipulators are from current
systems which use stepper motors, or pick-and-place
machines used in circuit board fabrication, or even
flexible automation systems in which technicians set
joint stops. The answer is that, just as in electron-
ics, the true benefit of binary mechanisms is not so
much a function of their discrete nature as it is the
fault tolerance of having only two states. Moreover,
simple robots with only a few binary actuators cannot
perform complicated tasks such as obstacle avoidance.
Therefore, the true benefit of a binary paradigm for
robotics can only be exploited if a large number of ac-
tuated degrees of freedom are considered. In this way,
the current work combines the trend towards minimal-
ist (or sensorless) robots with the author’s past and
present interest in high-degree-of-freedom manipula-
tors, e.g., [ChB92].

3 Formalizing the Paradigm

The forward kinematics of a robotic manipulator com-
pletely characterizes the relationship between general-
ized joint displacements and the position and orienta-
tion of the end-effector in space. If § = [q1, .-, gn]” €
R® denotes a vector whose elements are the joint an-
gles of a robotic manipulator, then the forward kine-
matic function g(-) € RN maps these joint angles to
end-effector coordinates. This is written as:

Z.. = §(¢,d). (1)
Z.e € RN represents the position and/or orientation
of the end-effector with respect to a given reference
frame in space. The vector @ contains condensed infor-
mation on the kinematic structure of the manipulator.
Typically, @ € R31 for serial manipulators because
each link has three structural variables given by the
Denavit-Hartenberg framework, e.g., link length, off-
set, and twist. This is usually different for parallel and
hybrid parallel-serial manipulators. In essence, it is
the choice of @ which distinguishes one member of a
class of manipulators from another, while it is the part
of the structure of (-) which is independant of @ which
distinguishes among different classes.

For standard motor-driven robotic manipulators,
each joint angle (or generalized displacement) can be
controlled to achieve any desired value within a speci-
fied interval. That is,

min

% € [g™",¢"*°] €R, (2)
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where the notation z € [y, z] is equivalenttoy < z < 2.
In order for a motor to achieve a desired angle, complex
(and expensive) feedback control systems are usually
required.

The kinematics of binary manipulators is also de-

scribed by Equation (1). The difference is that for
binary manipulators,

g € {g™", %} 3)

where {y, z} denotes the set of two real numbers y and
2. Another way to write this is for each i € [1,..,n}:
min

g =g +bi_y (g —g™") for b€B  (4)

where B = {0, 1} is the set of one-bit binary numbers,
or Boolean variables. A binary manipulator configu-
ration is thus described by the n-bit binary number
bn_1bn_2...b1bo € B™.

The above can be written in matrix form as:
7=+ B -

by defining the diagonal matrix B in such a way that
each of its diagonal elements are a bit of the binary
number with the most significant bit written in the 1,1
place in the matrix, and least significant bit written in
the n,n place.

)

If the manipulator is to be used for pick-and-
place tasks with multiple intermediate points defin-
ing a discrete trajectory, one possible design criteria
could be to set the manipulator kinematic parame-
ters (™", §™°*, &) so that the end-effector can exactly
reach a finite number of points in the workspace. With
a priori knowledge of a finite number of points which
the end-effector must traverse, an algorithm can be de-
signed so that the kinematic parameters of a binary
manipulator guarantee that the end-effector reaches
the designated points. In order to solve this problem,
it is first necessary to formalize the scenario.

Suppose there are m distinct points which the ma-
nipulator’s end-effector is to reach, corresponding to m
different binary states. Then for each of these different
configurations, we can write the expressions:

<

q =q'"i"+Bi(q'"“’_

-vm'n)

q
and ) .
zZ,, = §(¢',a).

These can all be written together as on big equation:

z. 77, d)
Z?it = g‘(‘?’ a)
. g(q™, a)



Figure 4: Workspace for (¢™", ¢™%) = (3/20,5/20)

Let us assume that the only kinematic parameters
which are variable are joint stops. Then, we can
rewrite the above as:

where .
qmm

£=f(7') e RON
~nar

- 2n
= R4®.
m= () €

Thus, the problem of kinematic synthesis for binary
manipulators performing pick-and-place tasks can be
stated as an inverse kinematics problem as long as
mN < 2n. In the case of strict inequality, it is de-
sirable to minimize a cost function in order to resolve
the redundancy. This is addressed in the next section.

In this mode of operation, a binary manipulator is a
semi-dedicated machine, i.e., it is designed to do a very
specific pick-and-place task. However, the kinematic
parameters determined by the design process can be
changed as new tasks are presented to the design algo-
rithm. In practice, these physical parameters would be
set by making adjustments to the manipulator struc-
ture via changing the joint stops. This in turn specifies
the geometry associated with each binary state of the
manipulator. Figures 4 and 5 are the workspaces of the
same binary manipulator with different joint stops.

Joint Limits can be altered by putting stoppers of
different lengths to limit the stroke in a desired way.
This idea can be generalized to include programmable
stops which allow the stroke to be controlled. The ben-
efit of programmable stops is that they could operate
at very low bandwidths. They would be fixed while
a task is being performed, and adjust themselves over
a much larger timescale than the duration of a task,
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Figure 5: Workspace for (¢™", ¢™%) = (4/25,6/25)

thus adding flexibility of function and form without an
explosive increase in cost.

4 Design Optimization

In this section, standard methods for kinematic redun-
dancy resolution are reformulated to derive equations
governing the optimal design of binary manipulators.
The criteria used here are intuitive: given an initial, or
baseline, design and a number of points which the ma-
nipulator is expected to reach, alter the original design
as little as possible in order to reach the points.

Thus, the vector £, which is the concatenation of
end-effector positions corresponding to each of the m
initial configurations, will be made to follow a trajec-
tory to the desired end-effector positions. This trajec-
tory will be parametrized by ‘artificial time’ (i.e., we
are not interested in following a trajectory, but rather
the resulting end points, and this calculation is done
off line and not in real time). Likewise, the variation of
the kinematic parameters (joint stops) in artificial time
must not only follow end-effector constraints, but also
satisfy optimality criteria which are path independent
(since we are only interested in terminal values).

Suppose instead of the usual joint rate norm or ki-
netic energy cost functions used in kinematic redun-
dancy resolution [KIH83], we seek to minimize:

| P L
3~ @) W(7~ @) (5)
subject to the constraints:
= f9). (6)



where f(-) is the concatenation of forward kinematic
functions corresponding to different binary states of
the manipulator, W € R21%2R s a4 symmetric posi-
tive definite matrix which is independent of configura-
tion, and ¢ € R20 represents the initial joint angle
limits, from which we desire to change as little as pos-
sible. Note that the superscript * has been dropped
from ¢* because it is cumbersome. This problem is
solved as follows.

First, a function is defined as:
1. . I T (7 -
F=3- @) W@- &)+ (fn-2), O

where [ is a vector of Lagrange multipliers.

The constrained optimization problem then becomes
one of solving the following simultaneous equations:

OF _ G oF

o§ — of

which together represent a system of 2n + mN scalar

equations. These equations are written as (6) together

with: -
W({@-q@)+I =0, (9
where J € RMNx2D jg the Jacobian matrix 8f/947.

Both of these equations can be written in rate form
by taking the derivative with respect to artificial time,
in which case we get:

0, (8)

w Ty (1) _ (1
(7 %) (@)=(%) (10)

where W = WT is a matrix such that
Wi=Wi+ITi+Wi-q). (1)

It is well known (e.g. [AdD74]) that this system of
equations in {10) is inverted symbolically as:

(H-G0

A=w-1 [1 - JT(JW-le)—lJW—I] ’

(12)

where

B = OW-13T)-13%-1

and )
Cc=-@Ww-13T)-1.

Therefore, we can solve the following simultane-
ously:

§=wW-13Taw-13T)-1; (13)
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and . . .
j=-@wW-13T)-1z (14)

Due to numerical inaccuracy, this method can be
augmented so that the right hand of (10) is replaced

by:
E ’

where for this particular case, &% is the left side of (9).
In general, 0 < o < 1 is a scalar ‘gain.” Thus, if the
solution is accurate, this term will vanish because (9)
holds, but if numerical errors are present, this term will
provide corrective feedback to converge to the solution.
This result is known in the optimization literature as
the Lagrange-Newton method.

(15)

5 An Example of the Optimal
Design Problem

In this section, the optimal design scheme outlined in
the previous section is demonstrated with a variable
geometry truss manipulator (VGTM). In order to solve
this problem, the forward kinematics for this device
must first be derived. This is performed in Subsec-
tion 5.1. Section 5.2 applies the general formulation
of Sections 3 and 4 to the particular problem of the
VGTM.

5.1 Variable Geometry Truss Forward
Kinematics

As has been documented in numerous works, the for-
ward kinematics problem for parallel manipulators is
generally much more difficult than the inverse kine-
matics problem. This is the reverse of the serial ma-
nipulator case in which the inverse kinematics is more
complicated than the forward kinematics. For manip-
ulators such as the variable geometry truss, which is
a cascade of parallel modules, the complexity of the
forward kinematics problem is a hybrid of the parallel
and serial cases.

Figure 6 shows one module of a variable geome-
try truss manipulator. The forward kinematics prob-
lem for each module is the determination of the func-
tion H;_l(qgi,q3;+1,q3,-+2), which maps the truss leg
lengths to the position and orientation of the end-
effector relative to the base frame. This can be calcu-
lated using trigonometric and/or geometric construc-
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Figure 6: Numbering Convention for a VGT Module

tions. Here, a simple graphical method will be used
for the case when the truss width is the same for each
module, i.e., w; = w.

Consider the legs with lengths ¢; for j € [3i,3{ +
1,3i + 2] in Figure 6. Qur goal is to find the positions
of ‘vertex 1’ and ‘vertex 2’ as a function of leg lengths.
The relative position of these vertices with respect to
a frame fixed to the left corner of the base of the it
module are denoted (z)4,y1,4) and (22, ¥2,;) respec-
tively. Finding the position and orientation of the top
plate with respect to the bottom follow trivially once
we have this information.

The following constraints apply:
i+ ¥ =i (T2 —w)i+ ¥3i = @3isa- (16)
it vii=ad (21— 22:)7 + (014 — 12)? = w
(17)

These equations are solved simultaneously to yield

2 2 2
93i42 —93i41 — W

T2 = 2w
2 2 2y 2\ 3
voi= | gdir, — 93i42 ~ 93i41 — W
2,1 3i+1 2w
and
—b — (b2 — 4ac)?
Tii = ——20—— Yii = (qgi - -’”%,ﬂ)%

where

a=4zy; +4y3; b=4(wra; — dizai — ghip1224)

c= q;i+1+q§i+2‘1:§i‘1§.‘+1—2‘I§iw2—2‘1§.‘+1 w2+w4—4y§,a‘¢1§i

which is written symbolically as

Tji = £5,i(93i,93i+1, 93i42) Y5 = £1,i(q3i, 93i41, 93i42)

forj=1,2andi=1,..,n.

The forward kinematics of the whole truss structure
is then expressed in terms of a sum of contributions
from each truss module. The angle of inclination of
the i** face with respect to the i — 1*! face is given by

cos(Ad;) = zz_‘;.f& sin(Af;) = y"_;yl_' (18)

and so:

Af; = Atan2(yz i — y14, 220 — 21,0)- (19)

In order to represent the absolute position of each
vertex of the truss in base frame coordinates, the ab-
solute angular displacement of the i** plate is defined

as : ;
0= A6
3=0

where by definition Af = 0 for the base. The absolute
position of each vertex with respect to the center of
the base of the truss is then written as:

(20)

i
Xi =3 ROT(é3,6:_1] 5k.j+(1+(_l)j)%€l :

k=1
(21)
In the above, € for i = 1,2,3 are the natural basis
vectors for R3, and ROT[é3, a] is the rotation matrix
which rotates vectors counterclockwise about the &
axis by an amount a.

With this kinematic information, the manipulator
Jacobian matrix is defined by simply taking the ap-
propriate partial derivatives:

10 (20 on
ID =55 (% + X,) . (22)

5.2 Example of the Method

Let us suppose that our goal is to move a single point
of the initial workspace to a desired point in a new
workspace without regard to any other points. Apply-
ing the algorithm from Section 4 (with W = 1) start-
ing with the configuration in Figure 2 as the baseline,
and altering kinematic parameters so that the end-
effector reaches the point Z.. = (0, 0.8) while retaining
the same binary values, the resulting configuration is
that shown in Figure 7. The new joint stops are:

—min _ { 0.150,0.150,0.129,0.154,0.151, 0.150, 0.150, 0.150,
¥ =\ 0.132,0.148,0.149,0.150,0.150, 0.150, 0.137
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Figure 7: Altered Configuration

and

Figure 8: Altered Workspace

Machine. Intelligence Program. Thanks go to Joshua
Houck for his development of binary machanical hard-

o = (0.253, 0.258,0.250, 0.250, 0.250, 0.231, 0.248, 0.260,) ware, and Derek Seabury for developing a parallel port

0.250, 0.250, 0.250, 0.238, 0.244, 0.258, 0.250

Note that for each element of the above vectors, if the
ith element has been changed in one, it is not changed
in the other.

By changing the joint stops, the workspace in Figure
4is now altered. The new workspace is shown in Figure
8.

6 Conclusions

This paper has presented a binary paradigm in robotics
and has developed one method for solving the prob-
lem of optimal design for pick-and-place tasks. The
method is based on looking at the kinematic parame-
ters of a manipulator as the variables in the problem,
and using methods of constrained optimization to yield
a solution. While this method works for relatively low
degree-of-freedom manipulators, there is a ‘cross over’
point beyond which the problem becomes overdeter-
mined, and an exact solution cannot be guaranteed.
This occurs when the number of desired points to be
reached multiplied by the dimension of the task space
exceeds the number of kinematic parameters which can
be varied.
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