Kinematics of a Metamorphic Robotic System

Gregory S. Chirikjian
Department of Mechanical Engineering
The Johns Hopkins University
Baltimore, MD 21218

Abstract

A metamorphic robotic system is a collection of
mechatronic modules, each of which has the ability
to connect, disconnect, and climb over adjacent mod-
ules. A change in the macroscopic morphology results
from the locomotion of each module over its neigh-
bors. That is, a metamorphic system can dynamically
self-reconfigure. Metamorphic systems can therefore
be viewed as a large swarm of physically connected
robotic modules which collectively act as a single en-
tity. What separates metamorphic systems from other
reconfigurable robots is that they possess all of the
following properties: (1) self-reconfigurability without
outside help (2) a large number of homogeneous mod-
ules (3) physical constraints ensure contact between
modules. In this paper, the kinematic constraints gov-
erning a particular metamorphic robot are addressed.

1 Introduction

A metamorphic robotic system is a collection of in-
dependently controlled mechatronic modules, each of
which has the ability to connect, disconnect, and climb
over adjacent modules. Each module allows power and
information to flow through itself and to its neighbors.
A change in the metamorphic manipulator morphol-
ogy (i.e., a change in the relative location of modules
within the collection) results from the locomotion of
each module over its neighbors. Thus a metamorphic
system has the ability to dynamically self-reconfigure.
Changes in configuration within a given morphology
are achieved by changing joint angles, as is the case for
standard (fixed-morphology) robotic manipulators.

Metamorphic systems can therefore be viewed as a
large swarm (or colony) of connected robots which col-
lectively act as a single entity. What separates meta-
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Figure 1: Applications of Metamorphic Robots

morphic systems from other reconfigurable robots is
that they possess all of the following properties: (1)
self-reconfigurability without outside help; (2) a large
number of modules (in the limiting case the config-
uration can be thought to approximate a continuous
‘blob’); (3) physical constraints ensure contact between
modules; (4) uniformity and completeness of module
function.

Potential applications of metamorphic systems in-
clude : (1) obstacle avoidance in highly constrained
and unstructured environments; (2) ‘growing’ struc-
tures composed of modules to form bridges, buttresses,
and other civil structures in times of emergency; (3) en-
velopment of objects, such as recovering satellites from
space. Some of these applications are shown in Figure
1. At the level of micro-machines, one could imagine
such robots being used to provide structural reinforce-



Figure 2: An Amoeba (Depicted in [Sch20])

ment in the organs of the human body, or to surround
and isolate tumors.

This paper addresses issues in the kinematics of a
particular metamorphic design. In Section 2, a brief
review of the related literature is presented. In Section
3, the kinematics of a planar three degree-of-freedom
module is explained. These modules are each kine-
matically sufficient, which allows them the freedom to
‘walk’ over each other. The kinematics of locomotion
associated with this design is also examined. Section
4 develops a coordinate system to describe the lat-
tice formed by multiple modules, and ennumerates its
properties. This section also develops local heuristic
rules which ensure that the system remains connected.

2 Literature Review

The idea of a metamorphic robotic systems differs from
related concepts presented in the literature. Three
types of modular reconfigurable robotics systems have
been proposed in the literature: (1) robots in which
modules are reconfigured using external intervention
[BeZL89, CoLDB92, KeK88, Sci85, W86]; (2) cellular
robotic systems in which a heterogeneous collection
of independent specialized modules are coordinated
[Be88, BeW91, FuN88, FuK90, FuKH91, HaW8sg]; (3)
swarm intelligence in which there are generally no
physical connections between modules [HaB92, HaB91,
AsOJMIE91]. The concept of a metamorphic system
differs from all of the above because modules are homo-
geneous in form and function, contact between mod-
ules must always occur, and self-reconfiguration is pos-
sible.
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Figure 3: A Slime Mold (Depicted in [Bo67))

As the number of modules in a metamorphic system
approaches infinity, the manipulator could be viewed
as a ‘mechatronic amoeba’ [Je73, Sch20, Bo67] (see
Figure 2 for a schematic of a real amoeba) because the
manipulator takes on a continuous appearance. Figure
3 shows how a slime mold can reconfigure itself. Thus,
the idea of metamorphic structures is not foreign to
the natural world.

The next section discusses issues in the mechani-
cal design and kinematics of a particular metamorphic
module,

3 Module Kinematics

This section addresses issues in the mechanical design
and kinematics of planar mechatronic modules used as
components of a metamorphic robot. The most in-
trinsic, or core, properties to the idea of metamorphic
robotic system are:

1. All modules should have the same physical struc-
ture, so that uniform treatment of modules in the
planning problem is possible.

. Symmetries in the mechanical structure of the
modules must be such that they can be easily
‘close-packed’ ,i.e., fill planar and spatial regions
without gaps. In this way, a lattice of modules is
formed for any task.

- The modules must each be kinematically sufficient
with respect to the task of locomotion, 1Le., they
must have enough degrees of freedom to be able
to ‘walk’ over adjacent modules.



Figure 4: An Individual Module

4. A means by which modules are made to adhere
to adjacent modules must be divized. In this way
the collection of modules becomes a single physical
object.

While an infinite variety of module designs satisfy
the above conditions, one particular class is discussed
here. These are planar closed-loop mechanisms.

In order to satisfy condition (1) above, regular
polygonal module designs were chosen, i.e., closed loop
mechanisms with uniform link lengths. In this way, the
modules are not only uniform, but also possess a mul-
tiplicity of rotational symmetries. Condition (2) then
reduced to finding what regular polygons close-pack
the plane. This became a choice between the triangle,
square, and hexagon, i.e., three, four, or six bar link-
ages. Since the triangle has zero mobility, condition
(3) could only be satisfied with a square or hex. The
hex was finally chosen (see Figure 4), because its three
degrees of mobility are superior for locomotion. Condi-
tion (4) is satisfied by specifying that alternating links
in the hex have opposite ‘polarity,’ i.e., male/female
connectors, magnetic fields of opposite signs, etc. It is
assumed that locomotion of the module is implemented
by a combined rigid body rotation and shape trans-
formation produced by changing module joint angles.
The resulting ‘rolling’ type of locomotion is shown in
Figure 5 along with the alternating polarity links. In
this way, as a given hexagonal module locomotes over a
collection of other modules, opposite signs will always
be in contact. Polarity matching is ensured since each
module has an even number of links and the boundary
of any collection of modules will also have alternating
polarities.
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Figure 5: The Reconfiguration Process

Because the six bar linkage design has three degrees
of mobility, three motors are required to specify the
module geometry completely. This is accomplished by
placing motors at alternating vertices. This also makes
for a design with nice symmetries.

In the general case, the kinematics of a six-bar link-
age can be derived using trigonometric arguments with
the constructions shown in Figure 4. Without explic-
itly stating the cumbersome equations, it suffices to say
that for given link lengths, L; and joint angles 6;, the
Law of Cosines will supply the lengths d;, and there-
fore a; as well. Then the Law of Sines will supply v;
and ;. Then all the interior angles of the linkage are
completely specified for the given the link lengths, L;,
and actuated joint angles, 6;.

The fact that the links of each module have finite
thickness must also be taken into account. Two ways
to do this are: (1) as a module moves over a ‘terrain’
composed of other modules, the terrain can flex so as to
ensure matching of module connectors; (2) the module
links can be designed to be extensible, i.e., they can
expand or contract relative to their nominal length, so
that they can conform to rigid hexes composing the
terrain.

For the sake of illustrating how joint angles are cho-
sen as a function of time, the idealized case in which
the link thicknesses are zero will be considered here.
In this way, the locomotion process can be exemplified
without examining the routine yet messy mathematics
resulting from the complications of extensible links or



flexing neighbor modules. While these problems must
be addressed for real implementation, they do not add
to the fundamental understanding of lattice kinemat-
ics discussed in the following section in which each hex
is given integer coordinates (%, j).

Therefore, consider the idealized problem: ‘How is
the rolling motion of a module from coordinates (i, 5)
to any of its neighbors to be described 7 Given that
there is a heuristic rule, or cost function, which will
determine which move is desirable, we still need to en-
code this basic kinematic information. That is, a mo-
tion planner will provide discrete information such as
‘move from (i, j) to (i+1, j+1).” The module kinemat-
ics problem then consists of two parts: (1) Determine
if the module is to roll clockwise or counterclockwise
to get to the new location; (2) Determine a useful time
evolution of joint trajectories.

In order to solve these problems, the concept of a
‘leading vertex’ is used. Basically, the leading vertex
is the vertex of the hex which is to move which is also
shared by the goal hex and the adjacent module. For
reasons discussed in the following section, there will
only be one module which is adjacent to both a loco-
moting module and a free space (See the discussion of
contiguous neighbors). Therefore, the leading vertex,
which would be the center of rotation if the locomoting
hex were rigidly rotated into the new space, is uniquely
determined. The interior angle of the leading vertex is
denoted by #,. The angles #; and 83 are defined as
the remaining alternating vertices. This numbering
depends on whether the module must rotate clockwise
or counterclockwise into its new space, Note that the
angles #; will not correspond to particular motors be-
cause joints will constantly be renumbered as the lead-
ing vertex changes. However, these angles are used to
determine what the joint angles at the motors must
be.

There are an infinite number of acceptable joint tra-
jectories 6;(t) which will solve the problem. Like-
wise, there are a large number of optimality crite-
ria which could be imposed to determine appropri-
ate joint trajectories. Due to space limitations, only
those constraints which are absolutely necessary are
included here with a peripheral discussion of trajec-
tories. Namely, at an initial time ¢, before the loco-
motion procedure has started, and at a time t,, af-
ter the locomotion is finished, it must be true that
6;(t1) = 6;(t2) = 27 /3. In the middle of the locomo-
tion procedure, 8,((t; +13)/2) = 47 /3 in order for the
module to connect to the new space. The particular
trajectory which links the initial, middle, and end val-
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ues of 8, are somewhat arbitrary, e.g. splines. The
angles 6> and 3 are typically defined to vary ‘as little
as possible’ while the leading vertex undergoes large
changes in angle.

4 Lattice Kinematics

This section addresses issues in the macroscopic kine-
matics of metamorphic robotic systems. In Subsec-
tion 4.1 a coordinate system for describing macroscopic
configuration is presented and its metric properties are
ennumerated. In Subsection 4.2, constraints on the
connectivity of modules are derived within this coor-
dinate system. Finally, in Subsection 4.3 the kinematic
constraints on the lattice are demonstrated in the con-
text of an envelopment task.

4.1 Defining Distance

The plane can be decomposed into hexagonal units.
These units are either filled by modules or obstacles
or remain empty. The whole plane is then viewed as
a lattice of hexagonal spaces which are either empty
or filled. In order to completely describe the position
of each module within this lattice, it is desirable to
coordinatize the lattice. One way to do this is to use
the Miller- Bravais framework used in materials science
and crystallography. In this framework, a redundant
set of coordinates (in this case, 3) are used to describe
the position of each point. An alternate framework is
used here. This is depicted in Figure 6. By denoting
the origin as the point (0,0), and using the numbering
convention illustrated in this figure, every point in the
plane is given a unique set of coordinates, as shown in
Figure 7.

In order for the kinematics of the lattice to be com-
plete, the most important geometric quantity of all
must be defined: distance. A proper distance (or met-
ric) function between points A and B will satisfy the
following properties:

d(A,B)>0 ifA#B d(A,A)=0

d(A, B) = d(B, A)
d(A,B) +d(B,C) > d(A,O).
The two most well known metrics in R2 are the Eu-
clidean metric, which defines the length of the straight

line segment connecting two points in the plane, and
the ‘Taxicab’ (also called the Manhattan) metric in



Figure 6: Numbering Convention

7

Y41

1,5~ 3,2
N )‘.} . .
(1, < %3
—dNu N/

Figure 7: The Resulting Coordinate Lattice

which case the absolute values of the difference be-
tween the x coordinates are added to that of the y
coordinates. The latter of these gets its name from
the distance which one must travel in an ideal city in
which every block is the same size and every street is
perpendicular to every other.

Within the coordinate system which is generated
from the patch shown in Figure 6, and demonstrated
in Figure 7, the Euclidean metric is

5p(Ad, Af) = (i) + (Aj)? - AiAj)?
where A = (i1,71), B = (%2,72), Ai = i1 — ia, and
Aj=j1—ja.

The extra term added to the usual ((A#)? + (Aj)?)
results from the fact that one of the coordinate axes is

i
2
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skewed so that there is not a ninety degree angle be-
tween the axes. The above formula for ég is calculated
easily from trigonometry. These axes are indicated by
the solid lines in Figure 7. Because of this fact, the
taxicab norm is exceedingly complicated in this co-
ordinate system. However, we would like to have an
analogous system which will measure the true distance
a module must travel within the regular lattice formed
by all other modules if it is to roll from one lattice
space to another.

This is achieved quite simply by taking the difference
between the coordinates of the two points and treating
the difference as a vector centered at the origin of Fig-
ure 7. Depending on which sextant this vector falls in,
a different distance function is used as stated below:

§(Ai,Aj)=|Ai] in 1,4
§(Ai, Aj) = |Aj| in 2,5
§(Ai, Aj) = |Ai|+|Aj| in 3,6

It is conceptually trivial to show that these satisfy
the definition of a metric given previously by direct
calculation for each case. Furthermore, it is easy to
see that this metric is bounded below by the Euclidean
metric as demonstrated for Sextant 1 (in which —A4 <
Aj — Ai < 0) below:

62 = |Ai + |AF]? — AiAj

= A + Aj(A] — Ad) < |Ad]? = 6%

Furthermore, if we compare the minimal value of the
Euclidean metric with the new one presented above for
fixed Az, we see that

062, o
'6—(—&7—)—2A]~—A1-—0,

indicating that

3
1

. 3 3

min(6%) Z(Ai)2 = Z(&)z, or 6% > =62
Thus, it is clear that for (A, Aj) in sextant 1, the new
metric is bounded below and above as follows:

sy

V3

Furthermore, it can be reasoned from symmetry that
this relationship holds always.

bp <6<
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Figure 8: Contiguous and Noncontiguous Neighbors

4.2 Motion Constraints
An example of a set of consistent (and intuitive) kine-
matic constraints are:

e Modules can only move into spaces which are not
already occupied by hubs or other modules.

¢ Every module must remain connected to at least
one other module or hub, and at least one of the
modules must stay connected to the hub from
which the collection of modules originated.

These rules can be enforced in any number of ways
including developing an evolving graph to capture the
changing topology of a metamorphic system. While
such an approach is attractive, it has the drawback of
requiring global information. Instead, the above con-
straints will be enforced by using a simple local rule: A
module is only allowed to move if it does not have, or
will not gain, noncontiguous neighbors. Figures 8(a)
and 8(b) respectively illustrate situations in which the
neighbors of the center module are contiguous and non-
contiguous. In fact, up to rotation and reflection, these
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Figure 9: Convergence to Object

are the only possible cases. Clearly, when neighbors
are contiguous to each other, the motion of a module
via ‘rolling’ will not isolate any module.

4.3 Applications to Motion Planning

In this section, the motion planning problem is ad-
dressed for the particular problem of using a meta-
morphic robotic system to envelop an object. This
is achieved by simply applying the hierarchy of kine-
matic rules which govern the motion of modules within
the lattice, in combination with an artificial potential
field. Each module feels an artificial force to move
which is inversely proportional to its distance from the
goal within the § metric. When the closest module
can no longer move without detaching, the the next
closest moves, etc., until the goal object is enveloped.
In this way, the goal is an attractor for modules, but
kinematic constraints keep the robot in one piece. Fig-
ure 9 shows the evolution of configurations generated
using this approach. Local heuristic algorithms for the
motion planning problem (which incorporate the kine-
matic information developed here) are developed and



compared in the tech report [SMC94].

5 Conclusions

The concept and kinematics of a metamorphic robotic
system was developed in this paper. Potential appli-
cations, design problems, and algorithms for task im-
plementation were presented. It was shown how sim-
ple rules can be used to enforce rather complex (and
useful) behavior. Currently, a prototype metamorphic
robotic manipulator is under development.
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