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Actuators™

Bingry actuators have only two discrete states {denoted 0" and *'1'"), both of
which are stable without feedback. As a result, binary mechanisms and manipulaiors
have a finite number of states. Major benefits of binary actuarion are that extensive
feedback control is not required, task repeatability can be very high, and two-state
actuators are generally very inexpensive ( e.g., solenoids, pneumatic cylinders, eic.),
thus resulting in low cost robotic mechanisms. This paper develops algorithms for
the optimal synthesis of binary manipulators and mechanisms for discrete tasks such
as pick-and-place operations.

1 Introduction

Traditional kinematic synthesis deals with the design of
mechanisms to yield a desired set of motions or motion charac-
teristics. It is generally assumed that mechanisms are actuated
with continuous-range-of-motion actuators such as motors.
However, there are many applications of mechanisms and ro-
botic manipulators which only require discrete motion. For these
tasks, continuous-range-of-motion machines are overkill. This
indicates the need for new methods in kinematic synthesis based
on discrete (binary) actuation. This paper is a first step in the
development of methods which parallel those used for mecha-
nisms and manipelators with continuous actuation (e.g., see
Erdman. 1993; Mabie and Reinholtz, 1987; and references
therein ).

One motivation for this work is that standard robotic manipu-
lators { which are often used for pick-and-place tasks) have not
been embraced by many industries because of their relatively
high cost, low accuracy, and low payload capability as com-
pared to dedicated machine tools. Similarly, many mechanism
design problems do not require continuous range-of-motion ac-
tuation, but since that is what waditional methods address, those
are the only kinds of designs considered.

The synthesis methods developed in this paper represent a
step in the formulation of a binary paradigm for mechanisms
and robots. It is hoped that binary mechanism synthesis will
lead to mechanisms and manipulators with lower cost, higher
reliability, and easier connectivity to computers.

The methods presented in this paper are equally applicable
to robotic manipulators and actuated mechanisms. Therefore,
these terms will be used interchangeably. Likewise, the term
“‘gnd-effector”” will refer to any part of a mechanism or manipu-
lator that is to be placed at desired positions.

In principle, an analogy can be made between continuous vs.
binary mechanisms and analog vs. digital circuits. In the history
of electronics and computing, digital devices replaced many of
their analog counterparts because of higher reliability and lower
cost—exactly the same reasons for developing a binary para-
digm for kinematics.
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A schematic of a highly actuated prototype is shown in Fig.
1 for two of its almost thirty three thousand (2 ') configurations.
This particular design is a variable geometry truss manipulator.
As currently configured, this manipulator consists of 13 ident-
cal prismatic actuators, each with two stable states (completely
retracted, 0, or completely extended, 1). In this figure each
cylinder has minimal and maximal lengths 4™ =
2 and g™ = 2. and the width of each platform is w;, = 1, for

i=1,..., 15.

Actuators are numbered from left to right in each “‘bay”™" of
the truss, and from base to tip. Writing these 1's and ('s from
left to right, the most significant bit corresponds to the actuator
on the left side of the base, and the least significant bit corre-
sponds to the actuator at the right side of the distal end of the
manipulator. Using this numbering system, the configurations
shown in Fig. 1 are the *“1's compliment’” of each other (a term
used in digital logic/Boolean algebra 1o denote the switching of
all ones and zeros in an n-bit number so that the compliments
add to 2° — 1.

If one reviews the literature, sporadic efforts in binary actua-
tion can be found, e.g., {Anderson and Horn, 1967; Pieper,
1968; Roth et al. 1973). Such efforts resulted when computers
were first becoming widely available to control robotic manipu-
lators. However, despite the seemingly narural parallel betwesn
discretely actuated mechanical sysiems and the development of
the computer, these efforts were abandoned for lack of a frame-
work in which to design and plan well-behaved motions of such
syslems.

Of course, a natural question that one might raise is how
different binary manipulators are from current systems which
use stepper motors, or pick-and-place machines used in circuit
board fabrication, or even flexible automation systems in which
technicians set joint stops. The answer is that, just as in electron-
ics, the true benefit of binary mechanisms is not so much a
function of their discrete nature as it is the reliability of having
only two states. Moreover, simple robots with only a few binary
actuators cannot perform complicated tasks such as obstacle
avoidance. Therefore, the true benefit of a binary paradigm for
robotics can only be exploited if a large number of actuated
degrees of freedom are considered.

The remainder of this paper is organized as follows: Section 2
formalizes and generalizes the concept of a binary manipulator.
Section 3 introduces and solves the optimal design problem
for binary manipulators with more kinematic parameters than
desired end-effector positions. Section 4. introduces and solves
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Fig. 1 Two configuration of a 15-Bit manipulator: (2] 110001110001110
{b) 0011100011 10001

the least squares design problem for binary manipulators with
fewer kinematic parameters than desired end-effector positions.
Section 5 illustrates these methods with examples.

2 Formalizing the Paradigm

The forward kinematics of a robotic manipulator expresses
the relationship between generalized joint displacements and
the position and orientation of the end-effector in space. If g =
(41 .. .. g.]7 € B" denotes a vector whose elements are the
joint angles of a robotic manipulator, then the forward kinematic
function g{-) € B" maps these joint angles to end-effector
coordinates. This is written as:

X. = glq, a). (1
x.. € R" represents the position and/or orientation of the end-
effector with respect to a given reference frame in space. For
position in the plane, ¥ = 2, and in space, N = 3. The vector
a contains condensed information about the kinematic structure
of the manipulator. Typically, & € R*" for spatial serial manipu-
lators because each link has three structural variables given by
the Denavit-Hartenberg framework, i.e., link length, offset, and
twist. This is usually different for parallel and hybrid parallel-
serial manipulators. In essence, it is the choice of e which
distinguishes one member of a class of manipulators from an-
other, while it is the parnt of the structure of g(-) which is
independent of e which distinguishes among different classes.

For standard motor-driven robotic manipulators, each joint
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angle (or generalized displacement) can be controlled to

achieve any desired value within a specified interval. That is,

g € [g™, g™ ] € R, (2)

where the notation x € [y, z] is equivalent to y = x = z. In

order for a motor to achieve a desired angle, complex (and
expensive ) feedback control systems are usually required.

The kinematics of binary manipulators is also described by

Eg. {1). The difference is that for binary manipulators,

4 € {g™, q™) (3)

where [y, z} denotes the set of two real numbers v and z.

Another way to write this is foreach i € [1, ..., n]:

(4)

where B = {0, 1} is the set of one-bit binary numbers, or

Boolean variables. A binary manipulator configuration is thus

described by the n-bit binary number b._ 6.z . .. &by € B,

The most significant bit, .-, corresponds to the first joint

angle, and the least significant bit corresponds to the distal end.
Equation (4) can be written in mairix form as:

g = gqre + be-i{gl™ — gi™") for b, €D

(2)

by defining the diagonal matrix B in such a way that each of
its diagonal elements are a bit of the binary number with the
most significant bit written in the (1, 1) place in the matrix,
and least significant bit written in the (n, n) place. The vectors
g™, @™ € R" contain all joint limit information.

If the manipulator is to be used for pick-and-place tasks with
multiple intermediate points defining a discrete trajectory, one
possible design approach is to set the manipulator kinematic
perameters (q™", @™, &) so that the end-effector can exactly
reach a finite number of points in the workspace. With a priori
knowledge of a finite number of points which the end-effector
must traverse, algorithms presented here will generate the kine-
matic parameters of a binary manipulator which guarantee that
the end-effector reaches the designated points. In order to solve
this problem, it is first necessary to formalize the scenario.

Suppose there are m distinct points which the manipulator's
end-effector is to reach corresponding to m different bit patterns.
In practice, the m desired end-effector positions would be given,
while the corresponding binary states would have to be found.
One way to do this is with a discrete optimization procedure
which yields the m binary manipulator states resulting in the
end-effector positions of the baseline design closest to the de-
sired points. In this way, the baseline kinematic parameters only
need to be tweaked slightly for the manipulator to achieve the
desired performance. In this paper it is assumed that the m
binary states have already been chosen. For each of these con-
figurations, we can write the expressions:

0= G R =)

ek B e (6)

and
x. = g(q', a) (7)
for i = 1, ..., m, where B; has been specified for each i.

Equations (6) and {7) can all be written together as one big
equation:

4+ g(q', @)
x5, |=| giq'.a) | R™ (8)
Xe giq™, a)
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q™ =g
a= qmm = qgu: F= RHE.' {g}
& — &g

where M = 5 in the serial case, Eq. (8) is written in the compact
notation:

x =f(a) e R™, (10}

where X is called the “*aggregate’’ end-effector position vector,
and a is the vector of variable kinematic parameters measured
from the baseline design [thus the subtraction of baseline pa-
rameters g5, g3°, and ax, in (9)].

If the only kinematic parameters which are variable are joint
stops, then we write:

a= (q _qu) g B,

i (11)

qQ " — 4
where M = 2 in this case. Unlike the M = 5 case, this is
independent of whether the manipulator is serial, parallel, or
hybrid serial-parallel.

The form of Eq. (10} indicates that the problem of kinematic
synthesis for binary manipulators performing pick-and-place
tasks is analogous to the standard inverse kinematics problem
for redundant continuous range-of-motion manipulators (with
the roles of joint angles and kinematic parameters reversed).
Furthermore, the problem is addressed differently depending on
whether: mV < Mn, mN = Mn, mN > Mn. Adopting terminol-
ogy from robot kinematics, the above cases are respectively
called “*redundant,’’ *‘sufficient,”” and *‘insufficient.”’ In this
paper these terms are used interchangeably with: “‘underdeter-
mined,”” “‘completely determined,”” and “‘overdetermined.”

In the underdetermined case, it is desirable to minimize a cost
function in order to resolve the redundancy. This is addressed in
Section 3. In the case of equality, the expression is linearized
and iterated in much the same way that kinematically sufficient
manipulator joint-trajectory generation can be performed. When
the problem is overconstrained, then the methods of Section 4
are wsed,

A binary manipulator is a semi-dedicated machine, 1.e., it is
designed to do a very specific pick-and-place task. However,
the kinematic parameters determined by the design process can
be changed as new tasks are presented to the design algorithm.
In practice, these physical parameters would be set by making
adjustments to the manipulator structure by changing the joint
stops. This in turn specifies the geometry associated with each

binary state of the manipulator. Figures 2(a) and (&) are the -

workspaces of the same binary manipu!ator shnwn in Fig. I
mlh different joint stops. In Fig Z{a} - n and g™

iﬁ- whereas in Fig. 2(b), ¢™ = x and g™ = . For ]argv:
numbers of bits, brute force representation of the workspace
becomes intractable. An efficient alternative can be found in
Ebernt-Uphoff and Chirikjian (1995).

Joint Limits can be altered by putting stoppers of different
lengths to limit the stroke in a desired way. This idea can be
generalized to include programmable stops which allow the
stroke to be controlled. The benefit of programmable stops is
that they could operate at very low speeds. They would be fixed
while a task is being performed, and adjust themselves over a
much larger time scale than the duration of a task, thus adding
flexibility of function and form without an explosive increase
1 COSL

3 Optimal Binary Mechanism Synthesis: Underde-
termined Case

As was discussed in Section 2, we are presented with a prob-
lem in which the number of vanable kinematic parameters ex-
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(b}

Fig. 2 Workspace of 15-bit mmpuhmrmﬂu 131 [qr" gm=) = [3/20, 5/
20) (B) (Gimiers Tova) = (4725, 6/25); fori = 1,

ceeds the number of end-effector position variables that we
seek to specify. This is analogous to the redundancy resolution
problem in manipulator kinematics.

In this section. methods for kinematic redundancy resolution
are reformulated to derive equations governing the optimal ad-
justment of binary manipulator kinematic parameters. The crite-
ria used here are intuitive: given an initial, or baseline, design
and a number of points which the manipulator is expected to
reach, alter the onginal design as little as possible in order to
reach the points. Thus, the vector x, which is the concatenation
of end-effector positions corresponding to each of the m initial
configurations, will be made to follow an imaginary trajectory
to the desired aggregate end-effector positions. This trajectory
will be parametrized by “*artificial time"" (i.e., we are not inter-
ested in the trajectory that links the baseline and final aggregate
end-effector positions. but rather only the end points). Since
this calculation is done off line and not in real time, problems
with computational efficiency do not drive the development of
algorithms in the binary synthesis problem to the extent they
do in redundancy resolution. A problem which is similar to
redundancy resolution is that the vanation of the kinematic
parameters (joint stops) in artificial time must not only follow
end-effector constraints, but also satisfy optimality criteria
which are path independent (since we are only interested in
terminal values). This is called the cycliciry problem in redun-
dancy resolution, and has been addressed in a number of works,
e.g. (Baker and Wampler, 1988; Chung et al., 1994 ).

This section 1s organized as follows: Section 3.1 reviews the
derivation of the Jacobian pseudo-inverse solution and shows
how this is applied to the kinematic synthesis of binary mecha-
nisms. Section 3.2 reformulates this method in order to synthe-
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size binary mechanisms in a way that makes the smallest possi-
ble changes to a baseline design,

3.1 Incremental Optimal Synthesis. The most common
redundancy resolution technique is adapted here to find incre-
mental changes in the vector a 50 as to alter a baseline design
in a comtrolled way while observing the desired aggregate end-
effector position vector. Incremental changes in & are denoted
da, and incremental changes in aggregate end-effector position
are denoted as 6x.

In terms of incremental changes, the aggregate end-effector
constraint { 10) is written as:

bx = Jha, (12}
where J = B™™" jg the JTacobian of the transformation. It is
assumed throughout this section that mN << Mn, i.e., that the
problem is underdetermined.

Let us assume that it is desirable to find a, which will
minimize the quantity:

15a™W fa (13}
from point to point, subject to the constraint that the aggregate
end-effector vector follows a preseribed trajectory from initial
to final points. W is symmetric and positive definite. The ratio-
nale for this formulation is twofold: (1) efficient existing tech-
niques are easily adapted; (2) in practice incremental minimiza-
tion of &a yields reasonable values for a when the path between
baseline and goal aggregate end-effector locations is direct, and
the baseline design does not need to be altered substantially.

This problem is solved using standard methods of constrained
optimization {Campbell and Meyer, 19793, which vield

ba = WLIT(JW LT ) Lex. (14}
MNote that when W = 1, the standard Moore-Penrose pseudo-
inverse results.

Thus, the vector x, which is the concatenation of end-effector
positions corresponding to m different binary configurations,
will be made to follow a trajectory to the desired aggregate
end-effector positdons. This trajectory will be parameterized by
“‘artificial time™” (i.e., we are not interested in following a tra-
jectory, but rather the resulting end points). This calculation is
done off line and not in real time. Since this method is not
cyclic, and the results will therefore be path dependent, the
trajectory is chosen heuristically 1o be a straight line connecting
baseline and goal aggregate end-effector positions. This is writ-
en as:

X(1) = X, + HX, — X)), {13)
where x, and x, are the baseline and goal aggregate end-effector
positions, respectively. Alternate approaches based on other re-
dundancy resolution techniques can also be used [ e.g., Baillieul,
1985; Nakamura et al., 1987 ). Ideally, the variation of the kine-
matic parameters (joint stops) in artificial time must not only
follow end-effector constraints, but also satisfy optimality crite-
ria which are path independent since we are only interested in
terminal values. The psendoinverse approach can be augmented
s0 the resulting solution is path independent, as discussed in
the literature (e.g., Baker and Wampler, 1988; Chung et al
1994, The following subsection presents one approach.

3.2 Configuration-Based Optimization: Underdeter-
mined Case. Suppose instead of the usual joint rate norm cost
functions used in kinematic redundancy resolution, we seek to
minimiza:

sa'Wa (16)
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subject to the constraints:

x = f{a), (17)

where (-] is the concatenation of forward kinematic functions

corresponding to different binary states of the manipulator, and

W e R*"™" is a constant symmetric positive definite matsix.
To solve the problem, a function is defined as:

F=31a"Wa+ p'(f(a) - x), (18)

where p is a vector of Lagrange multipliers.
The constrained optimization problem then becomes one of
solving the following simultansous equations:
BE .08
da dpe
which together represent a system of Mn + mN scalar equations.
These equations are written as Eq. (17) together with:
Wa+ u =0,

where J € R™**" is again the Jacobian matrix &f/5a.
Equations (17) and (20} can be written together in rate, or
incremental, form as;

o7, (19)

(20)

(ﬂ? o 'éa)_({l 3
o G_)Lé;a, RV heh)
W = W7 is a matrix such that

Wia = Wha + &/, (22)

By inverting the above matrix, we can solve the following
simultaneously:

ba = WIT Wy ek (23}

and
b= —(JWIJT ) X,

The kinematic parameters and Lagrange multipliers are up-
dated with the simple rule a < a + da and pt + g + &g, The
initial values of these vectors are both zero because at the base-
line design a = 0 and the constraints need not be enforced, so
o=10,

Due to numerical inaccuracy, this method can be augmented
so that the right hand side of {21) is replaced with:

(&)

bx J

{24)

(25)

(8F/da)” is the left side of (20). In general, 0 < o < |l is a
scalar “*gain.”” Thus, if the solution is accurate, this term will
vanish because (20 holds, but if numerical errors are present,
this term will provide corrective feedback to converge to the
solution, This result is known in the opimization literature as
the Lagrange-Newton method.

4 Kinematically Insufficient Binary Mechanisms

In the previous section it was assumed that the number of
adjustable kinematic parameters was equal to, or exceeded, the
number of end-effector position variables which the binary ma-
nipulator was expected to accommodate exactly, However, if
we want to use a greater fraction of the end-effector positions
attainable with binary manipulators, then the following kinemat-
ically “‘insufficient” problem must be considered: Given that
the number of specified end-effector position variables (mN')
exceeds the number of adjustable kinematic parameters (Mn),
alter the binary manipulator geometry so that the end-effector
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positions come as close as possible 1o the desired points. Since
the number of end-effector points generated with an n-bit binary
number is 27, whereas the number of kinematic parameters is
linear in the number of joints (i.e., Mn), the kinematically
insufficient problem is inescapable as n increases.

This section formulates this issue using methods from the
theory of generalized inverses (e.g., Golub and Van Loan, 1983;
Campbell and Mayer, 1979). The basic approach is the same
as in Chirikjian { 1994b). Sections 4.1 and 4.2 parallel the solu-
tions presented in the previous section for the overdetermined
case. In Subsection 4.1, the method of least squares is used in
an iterative fashion, in an attempt to distribute the inaccuracy
inherent in solutions to overconstrained problems evenly over
the end-effector points. In Subsection 4.2, a scheme based on
configuration optimization for overconstrained systems is devel-

oped.

4.1 An lterative Least-Squares Approach. In this sec-
tion, the method of least squares is used to alter a binary manipu-
lator’s kinematic parameters so that the end-effector positions
corresponding to chosen binary states come as close as possible
to what is desired. Because the number of kinematic parameters
available to vary is less than the number of end-effector position
variables which the manipulator is expected to reach, there will
generally be no exact solution. The best we can hope for in this
kinematically insufficient scenario is to minimize error.

Recall the general overdetermined least squares problem:
Given a matrix A € R™* with rank s, where r > 5, and vectors
¥ € R*, b € R, then the weighted least squares solution of
the problem

Ay=bh (26)
is the one for which the weighted 2-norm of: e = Ay — b
{the error vector) is minimized. Using elementary techniques
of unconstrained minimization, i.e., set the gradient of a cost
fanction to zero {3(e"We)/8y = 07) it is easy to show that
the solution to this problem has the form:

¥ = (ATWA)'ATWD = A}b, (27)
where Ay denotes the weighted least squared error pseudoin-
verse,

Recall from the previous sections that the kinematic synthesis
problem for binary mechanisms lends itself to the form:

Jia = &x. (28)
In the current scenario, the number of rows of J exceeds the
number of columns becanse there are fewer kinematic parame-
ters than aggregate end-effector constraints.

Equation (27 ) represents an expression which must be iter-
ated withA = J, ¥ = da, and b = &x to yield a solution to the
problem at hand. Starting with initial values: a{0) = 0 and
x(0}) = x,, the kinematic parameters are augmented at each
timestep in artificial time, I, as:

a(r+ &) = a(r) + fa(r), da= Jydx.

Even though &a as calculated above is the *‘best possible™
solution, each iteration will result in the end-effector drifting
away from the prescribed “‘imaginary”™ wajectory, x(r), be-
cause the problem is overconstrained. This is remedied in a
straightforward way: instead of defining &x to be the tangent
associated with a desired imaginary trajectory (§x = (dx/dt)ér
= (X, — X,)&r), use the heuristic definition:

(29)

ox = F(||x, — f(a)])(x, — £(a))ér (30)

where again x, is the aggregate goal end-effector position, and
Fi-)is a function that is chosen to accelerate the convergence
to the goal. Two possible choices are F(x) = & and F(x) =

Bie* + x*, where ¢ is a small constant introduced to prevent
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division by zero if the goal is achieved, and 5 is a constant
“gain’” used to regulate convergence to the goal.

In this way, the solution is continually forced in the direction
of the goal, even though no a priori wajectory is followed. For
the problem at hand, unlike the kinematic redundancy resolution
problem, reaching the goal is the only task of significance, and
the “‘imaginary’’ trajectory need not be followed.

Another problem to overcome is the potential loss of rank in
J—the aggregate jacobian, and the resulting numerical prob-
lems in computing the pseudo-inverse. To avoid this problem,
and to bound the magnimde of fa, a **damped’” version of the
pseudo-inverse is used:

bfa = (JTWJ + p1)y "W éx, (31)
where p is an introduced constant. This solution results from
the minimization of the cost function:

C=e¢"We + p'6a’fa (32)
which bounds the norm of da, where e = Jfa — éx.
4.2 Configuration-Based Optimization: Overdeter-

mined Case. In the previous subsection, we sought to mini-
mize the instantaneous (or rate ) error: | Jéa — &x|| at each itera-
tion. The benefits of that approach are concepmal simplicity,
easy implementation with standard techniques, and relatively
little computational complexity. The drawbacks of that ap-
proach are that it does not minimize a”a (even though it does
bound $a’da in the damped case), and the solution may not
converge. The former of the above problems can lead to designs
that vary greatly from the baseline design, and the latter indi-
cates that no solution may result.

In this subsection, the direct problem of minimizing ||T(a)
= x|| is addressed for the overdetermined case. Thus, the devel-
opments of this and the previous subsection parallel the rate and
configuration based methods presented in the previous section.

In order to generate the desired results, a cost function of the
form:

C =3ifa) — x)"M(f(a) - x) + 3a"Wa (33)

is minimized, where W and M are constant symmetric positive
definite matrices. These matrices will generally be taken to be
diagonal. The purpose of introducing the matrix W is to weight
the semsitivity of kinematic parameters with respect to each
other. The matrix M weights the sensitivity of end-effector posi-
tion emror. Ratios of the norms of the two matrices allows us
1o balance the total amount of change to the baseline design
and aggregate end-effector emor.

Senting the gradient of C defined in Eq. (33) to zero, one
gets:

T
(E) M(fia) —x) + Wa = 0.

% (34}

This is a nonlinear algebraic equation which is always diffi-
cult (and usually impossible) to solve analytically. The above
can be linearized by considering infinitesimal changes:

[ o af\" of
|:—-—aaz Mif-x) + (E) Ma + W]éa

M g
—Kéa—(aa)ﬁx. (35)

and inverting K to find éa that will vield the desired solution.
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The elements of the matrix K are written explicitly below so
that there is no confusion about the above notation:

v (8% 3f .. O
Ki=W,+ ¥ (——M,..; —xj+—’*M.—-). (36)
- 2 El=l Ea. aﬂ.ﬁ : ﬁ s aa, kaﬂi

Positive definiteness of the matrix X is the sufficient condition
for a minimal solution. If at the beginning of the process we
check for positive definiteness, and the matrix remains invertible
during the process (i.e., none of the eigenvalues become non-
positive ) then the matrix is guaranteed to remain positive defi-
nite. Thus, the algorithm is guaranteed to provide an optimal
solution provided the matrix above is initially positive definite,
and remains invertible throughout the process.

If a singularity is encountered, the linear trajectory defined
initially must be hewristically augmented to attempt to circum-
vent the singularities, If this is not possible, the method will
not converge. However, given that the trajectory lengths are
extremely small in comparison o manipulator length scales,
one would expect that algorithmic singularities will be rare.

5 Examples of Binary Mechanism Synthesis

In this section, the synthesis algorithms presented in Sections
3 and 4 are demonstrated with a variable geometry truss struc-
ture, The forward kinematics of this structure can be found in
Chirikjian { 19944}, while the forward kinematics of other truss
structures is addressed in Jain and Kramer (1990),

Subsection 5.1 demonstrates two algorithms (incremental op-
timization and configuration optimization) for the case when
the number of desired end-effector position variables is less
than the number of variable kinematic parameters. Subsection
3.2 demonstrates two algorithms (iterative incremental least
squares, and configuration least squares optimization) applied
1o the overdetermined case.

5.1 Underdetermined Problems. Letus suppose that our
goal is to move a single point of the initial workspace to a
desired point in a new workspace of a 15 bit binary VGT
without regard to any other points. Thus, mN = 1-2 = 2 for
this problem. Likewise, Mnr = 2+ 15 = 30. However, since each
actuator is either fully remracted or fully extended (with no
possibility of both happening at the same time ), there are effec-
tively only 135 kinematic parameters that we can change once
the binary state is specified.

Applying the incremental algorithm from Section 3 (with W
= 1) starting with the configuration in Fig. 1{a) as the baseline,
and altering kinematic parameters so that the end-effector
reaches the point x,, = (0, 0.8) while retaining the same binary
values, the resulting configuration is that shown in Fig. 3(a).
The new joint stops are:
qmm

0.150, 0.150, 0.125, 0.152, 0.155, 0.150, 0.150, 0.150,)T
( 0.133, 0.145, 0.147, 0.150, 0.150, 0.150, 0.139

and

qu:

_ {0.256, 0.262, 0.250, 0.250, 0.250, 0.231, 0.246, 0.258,\"
~ \ 0.250, 0.250, 0.250, 0.241, 0.244, 0.255, 0.250

Note that for each element of the above vectors, if the ith
element has been changed in one, it is not changed in the other,
Applying the configuration optimization algorithm from Sec-
tion 3 (with W = 1) again starting with the configuration in
Fig. 1 as the baseline, and altering kinematic parameters so that
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(b)

Fig. 3 Configuration generated with: {a) incremental eptimization (b)
configuration-based optimization

the end-effector reaches the point x,. = (0, 0.8) while retaining
the same binary values. The new joint stops are:

ql‘ﬂ.ll'l
e (0,150. 0.150, 0.129, 0.154, 0.151, 0.150, 0.150, 0.15{3.)?
3 0.132, 0.148, 0.149, 0.150, 0.150, 0.150, 0.137

qfhll.
_ {0253, 0.258, 0.250, 0.250, 0.250, 0.231, 0.248, G.Zﬁﬂ.)r
= ( 0.250, 0.250, 0.250, 0.238, 0.244, 0.258, 0.250 ]

which are very similar to the results generated using the incre-
mental method. The comresponding configuration is shown in
Fig. 3(b), which looks almost identical. In fact, if one is looking
for a “‘reasonable’ solution the incremental approach will come
close to the configuration optimization approach when the mag-
nitude of the difference between baseline and desired end-
effector positions is small.
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5.2 Overdetermined Problems. Let us suppose that we
have a 3 bit binary VGT, ie., only one section of the VGT
from Fig. 1, and the transverse elements have fixed length,
Thus, Mn = 2-3 = 6. Furthermore, let us assume that we are
interested in positioning the four end-effector points corre-
sponding to the binary values (010, 000, 110, 111).

Figure 4 illustrates the least squares approaches presented in
Section 4 for this problem. In Fig. 4(a) the baseline set of
configurations has joint stops g™" = (.75 and g™ = 1.25 for
i =1, 2, 3. The configurations shown comespond to the binary
values: (010}, (000), (110), and (111). The desired locations
for the *‘end-effector”” (middle of upper transverse element in
the platform) corresponding to these binary values are denoted
with spots. The coordinates of these locations are: (0.0, 0.8),
(=0.5, 0.5), (0.1, 1.05), and (0.4, 1.05). Using the iterative
least squares approach (damped with p = 0.01 and un-

e

f

£

(c)

Fig. 4 4 States of a 3-Bit truss: (2) baseline; (b) altered with iterative
least squares; (c) altered with configuration-based optimization
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(=)

"--.____-_---‘-‘_

(®)

Fig. 5 3 States of a 3-bit truss: (a) baseline (b) altered configuration
{exactly determined) case

weighted ), the resulting configurations are shown in Fig. 4(&),
and the new joint stops are: (g7, gi ) = (0.934, 1.283),
(g™, g=) = (0.350, 1.190), (T, ¢T™) = (0.683, 1.104).
As can be seen, there is an improvement in the position of the
end-effector, but the positions are not exact and the error is not
distributed evenly.

In Fig. 4(c), the same baseline kinematic parameters are
used. Only now, the configuration-based error minimization
method is used, where g = (.01 and both weighting matrices
(W and M) are identity matrices. The resulting joint stops are:
(g7, g7™) = (0.765, 1.230), (g7, gT™) = (0.696, 1.245),
(2", g7*) = (0.743, 1.158). As can be seen from Fig. 4(c),
the error is distributed very evenly over the end-effector points
as compared to Fig. 4(&).

Figure 5{a) has the same baseline parameters as Fig. 4(a).
However, it is assumed that only three points need to be reached
by the end-effector. This makes the aggregate jacobian square,
and so direct inversion is generally possible. Note that all the
methods presented here will yield similar results {assuming g
is small) in the sufficient case. In this example, the chosen
binary values are: (010), (000), and (111). The desired loca-
tions for the end-effector corresponding to these binary values
are: (0.0, 0.8), (—0.5, 0.5), and (—0.4, 1.05). The resulting
configurations reach the desired points to three decimal places
with joint stops: (7", gT**) = (0.930, 1.144), (g3", g7*) =
(0.369, 1.190), (g5, g7**) = (0.671, 1.104), and the resulting
binary platform mechanism is shown in Fig. 5(b).

DECEMBER 1995, Vol. 117 / 579



6 Conclusions

This paper has presented the binary mechanism synthesis
problem and provided several ways to solve it. All these meth-
ods are based on looking at the kinematic parameters of the
mechanism/manipulator as the variables in the problem, and
using methods of constrained optimization/redundancy resolu-
tion to yield a solution. Examples were given to illustrate these
methods,

The problem solved in this paper is analogous to the shape
synthesis problem in classical kinematics. It should be noted
that there is an additional *‘layer’” to the binary synthesis prob-
lem which must be addressed in future work. Namely, when
the number of binary states becomes large, selecting an optimal
subset of the 2" possible configurations from which to construct
the aggregate end-effector vector is a nontrivial problem for

large n.
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