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These methods have applications to computer aided geometric design, the mechanics of
materials, and realistic real-time simulation and animation of physical processes. In
mechanics, volume preserving deformarions are intimately related to the conservation of
mass. The importance of this fact manifests itself in design, and in the realistic
simulation of many physical systems. Whereas volume preservation is generally written
as a constraint on equations of motion in continuum mechanics, this paper develops a
set of physically meaningful basic deformations which are intrinsically volume
preserving. By repeated application of these primitives, an infinite variety of deforma-
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tions can be written in closed form.

1 Introduction

This paper develops and enumerates deformations of ob-
jects which locally preserve volume. Given a three dimen-
sional object described in Cartesian coordinates x = [x,, x,,
x,)7, a deformation maps these coordinates into a new set of
coordinates: X = X(x). A volume preserving deformation is
one for which the volume of the object is kept constant after
the deformation. This is written mathematically as:

[ dxydx,d; = J;H,dxzﬂ-
X

3

.{de: (V, X)dx,dx,dxs. (1)

where
[ X, 48X, é&X,
:"'?1_ dx, _'E
x- | & % &
= dx, dxy  dxy =
aX, dX; 4X;
8_1:1 dxy ri'.z;J

The quantity in Eq. (2) is called the deformation gradient.
A focally volume preserving deformation is one for which

det (V,X) = 1. (3)

A trivial example of a locally volume preserving deformation
is a rigid body motion of the form X(x) = Qx + r where Q is
a special orthogonal matrix.

A locally volume preserving deformation is also globally

Contributed by the General and Machine Element Design Committee
for publication in the JoOurNaL OF MECHaNICAL DEesion. Manuscript
received Feb. 1994; revised Jan. 1995, Associate Technical Editor: 5. A
Velinsky.

Joumnal of Mechanical Design

volume preserving, i.e., Eq. (1) is satisfied automatically by
Eq. (3), but the converse is not generally true. Furthermore,
compositions of locally volume preserving deformations are
also locally volume preserving. That is, given two locally
volume preserving deformations: F(x) and Gix), the composi-
tions F(G(x)) and G(F(x)} are also locally volume preserving.
This is a direct result of the chain rule, e.g.:

VF(G(x)) = ,F(y)V,G(x), (4)

(where ¥ = Gix)) and the fact that the determinant of a
product of matrices is the product of the determinants, so

det(V,F(G(x))) = det(V,F(y))det(V,G(x)) =1-1=1.
()

Locally volume preserving deformations have significance
in solid mechanics, biomechanics, and solid geometric model-
ing because of their intimate relationship to the conservation
of mass of incompressible materials. For instance, in the
analysis and simulation of the large deflections of many
nonlinear elastic and plastic materials, Eq. (3) is incorporated
as a constraint. Whether a solution is sought using analytical
techniques or numerical techniques such as finite element
methods, this constraint oftén arises. It is also the case that
when one seeks to simulate the physical world in a realistic
way, such constraints must be accounted for. Having a method
of parametrizing classes of constant volume deformations
could provide designers in mass-sensitive fields, such as
aerospace engineering, a valuable' tool for enumerating
changes to current designs.

Many works in the computer graphics, mechanics, and
geometric design literature have dealt with the deformation
of solid models. Barr (1981) used angle-preserving deforma-
tions of superquadric surfaces to generate a wide variety of
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forms. Approximate methods for enforcing volume preserva-
tion where also examined. Barr (1984) extended these ideas
to include general local and global deformations of arbitrary
volumes. Sederberg and Parry (1986} developed free-form
deformations of solid models based on trivariate Bernstein
polynomials, Sederberg and Ferguson (1986) locked at the
particular case of volume preserving deformations within this
framework. It was found that velume preserving deforma-
tions based on cubic polynomials are limited to simple shear
and scaling, and compositions thereof. Free-form deforma-
tions are also considered in Gudukbay and Ozguc {15990).
Platt and Barr (1988) developed methods for representing
the deformations of general solids based on continuum me-
chanics. In this approach, as is commonly done in solid
mechanics, volume preservation is represented as a con-
straint which is imposed by using Lagrange multipliers (See
Lai Rubin and Krempl, 1978; or Malvern, 1969).

Other works have considered the importance of volume
preservation when simulating and analyzing biological sys-
tems. However, no general framework for describing volume
preserving deformations has been developed. Miller (1988)
simulates the locomotion of snakes and worms. This includes
simultaneous longitudinal contraction and radial dilation so
as to preserve volume. Chadwick et al. (1989) construct
deformable animated figures which are made to look as real
as possible (including volumetric constraints on contracting
muscle). Arts et al. {1992} use locally volume preserving
deformations with constant deformation gradients to model
cardiac mechanics. Kier and Smith (1985) state the impor-
tance of local volume preservation in “muscular-hydrostats.™

Whereas volume preservation is generally written as a
constraint on equations of motion in continuum mechanics,
this paper develops a set of physically meaningful basic
deformations which are locally volume preserving. By re-
peated application of these primitives, an infinite variety of
deformations can be written in closed form without the need
for constraint equations. This opens up the possibility for
more realistic real time simulation and animation of the
physical world.

In Section 2, physically intuitive “Cartesian” deformations
are defined and illustrated. In Section 3, two types of bend-
ing deformations based on planar offset curves are defined
and used. Section 4 extends concepts from fluid mechanics,
resulting in useful deformations. Section 5 shows examples of
how combinations of closed form primitives can be used to
generate more complicated locally volume preserving defor-
mations.

2 Cartesian Deformations

In this section several locally volume preserving deforma-
tions which preserve parallelism between planar sections are
examined. These are referred to here as Cartesian deforma-
tions since they are essentially motions of flat planar sections.

In Subsection 2.1, pure shear deformations are examined.
In Subsection 2.2, pure “twist” deformations are examined.
In Subsection 2.3, stretching and contraction are formulated.

2.1 Simple Shear. A simple shear deformation is one
for which planar segments slide over each other without any
rotation or change of their normal (denoted by the vector n).
This deformation is expressed as:

S(x)=x+d{x-nlt (6)
where t is any vector defined such thatn - t =0, andt - t = 1.
If one imagines that R® is composed of an infinite number of
parallel planes, each with normal n, this deformation slides
each of these planes a distance 4 in the t direction. Since t
lies in the plane with normal n, the effect is that each plane
is translated within itself.
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Fig. 1{a) A referential (undeformed) square
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Fig. 1(b} A simple shear deformation: S4{x)

As an example, consider the shear deformation:
x, + d(x;)
Si(x) = X2 : {7

This corresponds to Eq. (6) for the choice, n = e; and t = &),
In fact, 5,(x) can be taken to be the standard form for a
shear because Eq. (6) can be generated from an appropriate
composition of Eq. (7) with rigid body motion.

By taking the partial derivatives #5/5x; for i = 1, 2, 3, and
computing the triple product of these vectors (which is the
determinant of the deformation gradient), one finds it equals
unity no matter what choice for o is used. Figure 1 shows an
example of a square before and after a shear deformation. In
this case, d(x,) = x1.

As in all figures throughout this paper, the undeformed
D;chct is the square defined by the Cartesian product: [—1,
1] x[-1,1]

A useful extension of simple shear is “fiber” shear. That is,
instead of a whole plane translating, lines are translated
independently of other parallel lines. An example is:

£y + d(x;, x3)

§,(x) = *; : ()
i3

An easy way to think of this deformation is that it is like the
motion of uncooked spaghetti being removed from its box.
Each strand can translate while remaining parallel to other
strands.

2.2 Twisting. This deformation is similar to the simple
shear in that three dimensional space is viewed as an infinite
cascade of parallel planar sections. In this deformation, each
plane is rotated about an axis which intersects the origin, and
is parallel to the unit normal vector n. The plane is thus
mapped back into itself. This is written as:

Tix) = (x-nn + ROT[n-a(x-n)j(x — (x-n)n). (9)
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The notation ROT[n, o] represents the rotation matrix which
rotates vectors about the unit vector m by an angle « in
accordance with the right hand rule. In this case a is a
function of the distance along the axis of rotation, so the
resulting deformation is a twist. One can verify by direct
calculation that this is also a locally volume preserving defor-
mation.

Compositions of pure twist and shear along the same axis
allows arbitrary translation and rotation of parallel planar
segments.

23 FElongation and Contraction. This subsection again
formulates deformations in which three dimensional space is
viewed as an infinite cascade of parallel planes. Only now,
each of these planes is translated along the normal direction
instead of orthogonal to it. Furthermore, as material ele-
ments which occupy these planes are stretched or contracted
in the normal direction, inverse operations must be per-
formed in each of the planes. That is, to locally conserve
volume, an element which is stretched in one direction must
contract in an orthogonal direction. A functional relationship
which satisfies this criteria is given by:

gix

o n][ -{x=(x-n)n)]t

E(x) =f(x - n)n +

+ﬁ[(t xmn)-(x— (x-n)n)](t xn),

where f(-), f(-), g(-)>0,and t-n=0 where t-t=1.
Other than these restrictions, the differentiable functions
f(-), gl-), and the vector t are arbitrary. Note that a ’
represents differentiation of a function of a single variable.
As an example, if t = ¢, and. n = e; then one gets:

g(x3) %
s
flxz)

X3
g(x2)

Two special cases of Eq. (10) are when g(-) = yF (+),
and g(-) = 1. In the first case, Eq. (10) reduces to:

x—(x+n)n
Vi (x-n)

As an illustration of the second case, when n =e; and
t = e,;, we get:

(10)

Eo(x) =

E,(x) = f(x - n)n + (11)

f(x)

Xz
E(x) =1 Fix) (12)
X3
An example of this is shown in Fig. 2, where f(x,) = (1/2)x]
+ (3/2)x,.

3 Deformations Based on Offset Curves

This section develops a class of deformations based on the
geometry of offset curves. Section 3.1 reviews basic proper-
ties of offset curves. Section 3.2 introduces pure bending
deformations based on offset curves. Section 3.3 introduces
the concept of offset shear-bending deformations.

3.1 Properties of Planar Offset-Curves. The offset of a
planar “backbone” (or generator) curve is a curve which is
parallel to the backbone. This is intimately related to the
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Fig. 2 Nonuniform stretching: E,(x)

envelope of a circle whose center is moving along a backbone
curve. Applications of offset curves include planning the
trajectories of numerically controlled milling machines (Tiller
and Hanson, 1984; Pham, 1992) and the locomotion of
snake-like robots (Chirikjian and Burdick, 1991). Properties
of offset curves have been studied in Farouki and Neff
(1990). In this subsection, some properties of offset curves
are reviewed. These properties will be used in the following
subsections to define locally volume preserving “offset defor-
mations.”

In the plane, an offset curve, o{L}, of a given backbone
curve, e{ L), is defined as:

o{L)=c(L) + ryn(L) (13)
where n(L) is the unit normal to the curve (L)}, and r; is a
constant called the offset distance. For convenience, L is
taken to be the arclength of the curve (- ).

The set of offset curves of a given curve can be thought of
as curves which are all parallel to each other with different
values of ry. The notion that two curves are parallel is a
reflective property. That is, if “A”is parallel to “B”, then “B”
is parallel to “A”. To see that offset curves are in fact parallel
to each other is straightforward.

Suppose we take the offset of an offset curve as follows:

i(LYy=0o(L) +rym(L) (14)

where r, is the offset distance of the second offset curve with
respect to the first, and m(L) is the unit normal to o(L). By
taking the derivative of (13) with respect to L and using the
Frenet-Serret equations (see Millman and Parker, 1977) for
the planar case, one finds that

L1}
= (1 =rx)u. (15)
where u(L) is the unit tangent vector to (L} and x(L) is the
curvature function of the curve. This means that the unit
tangent to of L), which is (de/dL)/|de/dL] is the same as the
unit tangent to ¢. It follows trivially that they then have the
same unit normal. Thus, m(L) = n(L), and so,

{LY=e(L)+ (ry+r;m(L). (16)
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That is, the operation of taking an offset of an offset is the
same as taking the offset of the original curve with offset
distances equal to the sum of the individual offset distances.

Two interesting properties of sets of planar offset curves
are presenied in Farouki and Neff (1990), and are restated as
follows. First, the area between two offset curves of equal but
opposite distance from a given backbone curve is invariant
under changes in curvature of the original curve. Second, the
sum of the lengths of two such offset curves is invariant
under bending of the backbone curve. These statements
assume 1 — rix > 0. This assumption is important because
offset curves develop cusps or self-intersect otherwise.

The first of the above mentioned properties is relevant to
the current discussion in that our goal is to model volume
preserving deformations. However, the area preserving prop-
erty of regions enclosed by offset curves is a global, not local
property. That is, the total area is preserved, but if one looks
at small elements within an area bounded by offset curves,
small area elements can change as the backbone curve geom-
etry changes.

For instance, if one considers a rectangle of width w and
height k, the area is 4 = wh. If the centerline of the area
bends into a circular arc, the area will be preserved, provided
the area does not overlap itself. This is observed by taking
the difference in area of two concentric circles with radii
differing by w and considering the portion of the resulting
annular area which has a centerline of length equal 1o the
original centerline. The area of the whole annulus is 4 =
wliw + r)* = r?], where r is the radivs of the inner circle.
The centerline of the annular area is a third concentric circle
with radius r + w2 which bisects the annulus. Such a center-
line will have circumference: 2w(r + w/2). The portion of
the centerline of equal length as the original centerline is
given by the ratio: A/7(2r + w). The area of the segment of
the annular area of centerline length f, is then

A=him(2r+w) X -n-[{w + r}2 - rz] = hw.

However, the area elements on the inside of the circular arc
will be compressed, while those on the outside will be
stretched. This is clearly not locally area preserving. As
stated earlier, the area preserving properties associated with
planar offset curves is a global, not a local property. How-
ever, by extending the idea of an offset curve the following
subsection develops two types of locally volume preserving
deformations,

3.2 Bending Deformations which Locally Preserve Vol-
ume. This section develops a closed-form intrinsic
parametrization of a class of bending deformations which are
locally volume preserving. The following subsections develop
two analytical models. These models are planar, though there
are natural extensions to three dimensions (see Chirikjian,
1993). In Subsection 3.2.1 an analytical formulation based on
“wvariable offset” curves and the area contained within these
geometric structures is investigated. In Subsection 3.2.2, a
deformation based on bending and reparametrization of a
collection of constant offset curves is developed.

321 Variable Offset Bending For a deformation to be
locally area preserving, the area of each infinitesimal element
must remain constant during the deformation. In order for
the offset curve model to incorporate this feature, a general-
ized definition of a planar veriable offset bounded area is
defined below:

O(x) = e(x,) + rx;, x;)mx,). (17

This expression has a dual meaning. First, it can be con-
sidered as a deformation of a region in x; —x; space.
Second, it is of the form of a set of offset curves with variable
offset distance. Note that the parameter x, is not only a
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coordinate in the reference configuration, but also the ar-
clength of the backbone curve. The above definition gives the
function rlx;, x,) two spatial degrees of freedom. The first is
so that the offset can vary with the backbone curve parame-
ter. The second is so that any point within the area bounded
by two variable offset curves can be specified with the coordi-
nates (x,, x,). If for instance, the initial backbone is a
straight line ¢ = x,e,, and r(x;, x,) = x,, then initially (x,,
x,) are the Cartesian coordinates for this slab, and they serve
as referential coordinates for any continuously deformed
configuration. See Lai Rubin Krempl (1978) or Malvern
(1969) for definitions and details of referential descriptions
of material deformation.

"So that the model can incorporate the constraint of local
volume (area) preservation no matter what kind of bending
occurs, the function r(x,, x,) is left undetermined for the
time being. In order to enforce the local area preservation
constraint, the following expression is observed:

a0

70
det{(V0D) =|— x —
| dxy X

=1. (18)

That is, the area of each infinitesimal element defined by the
Cartesian product: [x,, x, + dx,] % [x,, x, + dx,] must be
independent of bending.

~ Evaluation of Eq. (18) by substituting in (17), and observ-
ing:
&0 ar

= —n1

dx4 L

dx

and using the fact that u-w=n-n=1 and u-n=10,
vields
ar 20
= )—=1
a=ri= (20)
This expression is integrated with respect to x, to yield:

[

[r + %KHJ = x, + ¢(x,). (21)

The arbitrary function c(x,) is taken to be zero. Note that a
nonzero choice of c(x;) corresponds to composing a shear
deformation, i.e., replacing x, with x; + ¢{x,) is a shear in
the same way that Eqgs. (6) and (7) are.

Using the quadratic formula to solve for r(x,, x,), one
finds that:

1+ (1= 2x(x,)x)"
Flxy, x2) = g

HEN

of which the negative root is used. This is used because as
x{x;) goes to zero, r{x;, x,) should converge to x., ie., the
unbent configuration should correspond to the slab
parametrized with Cartesian coordinates (x,;, x;). Note also
that curvature of the backbone curve is always limited so that
1/2x > x, to avoid singularities.

As an example, consider the planar arclength parametrized
backbone curve:

(22)

r1 1 o
e(x;) = (; sinax, ~(1-cosar)) . ()

The deformed region is initially the square [—1, 1] x [—1, 1]
shown in Fig. 1(a). In effect, Equations (17) and (22-23)
define a deformation which bends the x, axis into a circular
arc while preserving area locally. Figure 3 shows this for
a= w12

322 Offser Shear-Bending. In this subsection, the prop-
erties of offset curves are exploited further. It is shown how
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Fig.3 Variable-offset bending: O(x)

allowing shear along directions parallel to the backbone
curve preserves volume locally as the curve bends. This
deformation is shown to be locally volume preserving when
each of the collection of offset curves is parametrized by its
own arc length instead of the backbone curve arclength, ie.,
a reparametrization is required. Shear in this context is
achieved by simply allowing translation of each offset curve,
while maintaining parallelism with the backbone curve.

Given a set of offset curves where the backbone curve
arclength is s, and offset distance is x,:

O(s, x3) = e(s) + x2n(5), (24)

the variable x, can be defined to be the arc length of each
offset curve:

| 0 1
xy = L5, x) = jl; ‘E ds = J’D{I —xkl(o))de

=35 —x,8(s5), (23)

where 6(s) is the integral of x(s). Solving Eq. (25) for 5, one
gets 5 = §(x,, x,). This expression is rarely algebraicly invert-
ible. That is, in general the relationship s = §(x,, x,) cannot
be found in closed form. Mevertheless, such a relationship
(even if it is not expressible in closed form) does exist.

If we choose the coordinates, x, and x., and reparametrize
the set of offset curves such that

O(x, x2) = O(L(s. 1), %) = O(s, x3),  (26)

then O(x) (viewed as a deformation) preserves local area
independent of changes in curvature of the backbone curve.
Proof of this fact is given below by direct calculation. The
chain rule yields:
430 40 9L 30 30
AX dx, dxa dx4 a5 dx, ds

Writing Eqs. (27) in matrix form, and using the fact that
dLfds =1 — xynls) and aL/dx, = — 8(s), we getz

#0 A0
s 1-x6 0} 9% :
2 28
0 [ = 1] 26 )
aX; E;
Inverting this equation, we find that:
a0 40
ax, b 0 F
el B B0
o 7%,

Since x4 is unchanged by this deformation, one finds that:
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Fig. 4 Offset shear-bending: Olx)

a0
x—)'esn{uh-(n]'e3=l.

Xy
(30)

Thus, independent of the curvature of the backbone curve,
®, local area is preserved using these deformations. MNote
however, that the restriction 1/x > x, must be made in order
to avoid the singularities which occur when 1 = xx..

As an example, consider a backbone curve in Eq. (23). In
this case, x(5) = g, and (25) can be inverted to yield: s =
x,/(1 — ax,). Figure 4 shows this type of deformation ap-
plied to the same referential square as used earlier.

det(V,0) =

1 (aﬂ
a8

]._.ng

4 Deformations Based on Fluid Flow

Until now, this work has addressed purely geometric means
of generating locally volume preserving deformations. In this
section, elementary concepts from potential flow theory in
fluid mechanics are used to define other types of locally
volume preserving deformations. These deformations will be
of the form X(x, ). The time, f, is used to parametrize an
evolving deformation. It is eritical in deformations which
mimic mechanics to use time. Once a solution is found, time
can be frozen as needed to define particular deformations.

The general conditions for incompressible irrotational flow
are respectively that the divergence and curl of the velocity
field with respect to spatial coordinates, X, are zero. That is,

(31)

By introducing a potential function, &(X), such that the
velocity field is given by: v(X) = Vi ¢, the incompressibility
condition is equivalent to satisfying the Laplace Equation:
Vi = 0, and the irrotationality condition is automatically
satisfied.

In planar steady incompressible potential flow, a stream
function of the form (X, &) is also defined such that the
Eulerian velocity of the flow measured at each point (v = [u,
u,17) is of the form:

Vg ¥=0 and Vyxv=40D

=l dhalr =
v Xy, X3) 'ﬁl‘; and uy(X,, X;) = _&_X1- (32)
By introducing the stream function, the irrotationality con-

dition is equivalent to solving the Laplace equation:
W

—_——=0. 33
aXE =X 45

Vil =
A large class of closed form stream functions and potentials
exist which satisfv a wide variety of boundary conditions.
However, one additional step must be taken in order to
define a closed form deformation, X(x, r). Namely, the refer-
ential (Lagrangian) and Eulerian velocities must be matched:
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(34)

This must be true whether stream functions or potentials are
used to define the velocity field,

This first order nonlinear partial differential equation must
then be solved given appropriate initial conditions. In gen-
eral, this cannot be done in closed form. However, the
following subsections illustrate examples where it is possible.
These subsections also illustrate how generalizations can be
" extracted from potential flow theory.

4.1 Vortices. The stream function of a vortex is written
in terms of Cartesian coordinates as:

(35)

Substituting this into {32) and (34), and using the initial
conditions: X(x, 0) = x, one finds that:

K = E
i = _E;n (X;' -e-Xf:I',

Kr
2-.7[113 - xg) E

X(x, 1) = ROT[:;_.-:U + (36)

The geometric meaning of this deformation is that circles of
radius r = (x} + x2)'? from the center of the vortex rotate
about the center by an angle a(r, t} = ¢, + (Ki/2wr?). The
constant ¢, induces rigid body rotation.

The function alr, r) results from the irrotationality condi-
tion in fluid mechanics. However, if this condition is relaxed,
Equation (36} generalizes to:

V(x) = RDT[e:,,, o(vF 2, xs)x.

The function (-} is an arbitrary differentiable function. The
condition #{0, 0} = 0 is imposed without loss of generality
because rigid body rotation can be composed.

Figure 5 shows this type of deformation applied to a
rectangle. In this case, #(r,, 0) = r2.

(37)

4.2 Sources and Sinks. For a simple source/sink of
strength g, the stream function is:
q =
¥ =5 tan TXX)- (38)
When g > (, it is a source, when g < (), it is a sink. Solving
Eqs. (32) and (34) with the initial conditions: X(x, 0) = x, one
gets:

X
(c(r) +x} +23)"* ———
(%7 +x3)
X(x, 1) = = 55 . (39)
(e{t) +x} +x3)" ———5
{x,ﬁ +x._?::| =
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where clt) = 471/g. Figure 6 shows an example of this
deformation for ¢ = 1, and the deformation is denoted X, (x).

This deformation is easily generalizable to the spatial case
in three ways:

First, Equation (39) can be considered one slice of a
“cylindrical” source where ¢ = ¢(x;, 1). In this way, tunnels
can be made which fill 2 solid model by repeated application
of the deformation composed with rigid body motions.

Second, one can imagine that if instead of a source, a
radial stretch in the x, —x, plane is generated, the x;
direction will have to be compressed. That is, if a point at
radius r = (x] + x3)"? gets displaced 1o a new radius r* =
hir), then in order for a differential volume element written
in cylindrical coordinates to have preserved volume: rdrd 8dz
= r*dr*d8*dz". This means that if # = #* (just like a source)
and :* = glr, z), then

4
h{r}h’{r]&—f =,
This can be solved to yield
rZ
el o R e

The C(r} term can be viewed as a shear of concentric
cylinders along their common axis. Since this is a special kind
of fiber shear, we take C(r) = 0 knowing that such shears
can be composed with the following more basic form (which
is written in Cartesian coordinates):

X, '
(x +23)"
K=

w{(x3 + x1)F}—2r
{{1 *3) ']1:1'1:+x§}"' ,

h{(x3 +23)")

P(x) = (40)
(3 +x3)"xs

‘ .ﬁ[l:xf + xi}h::]h’[{xf -+ x%}m}

This type of deformation is inspired by the cylindrical nature
of the planar source, but is really a type of stretching where
planes normal to the stretch direction do not remain planes.
The only restrictions on A(-) are that it be differentiable and
0 < A'(-) < = We also impose the condition #(0) = 0 with-
out loss of generality. If evaluating at 0 < € == 1, one can
avui? :;umeri-:al division by zero by observing that e/hiel =
1/h'(e).

The third way to extend the concept of a source to the
spatial case is to define a spherical potential of the form
¢ =[—mMAmw(xf + x3 — x2)]. This results in a deformation
of the form:
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In both the planar and spatial cases, these source deforma-
tions provide a means by which voids can be formed in an
otherwise simply connected solid model In order to use
them, a very small box, cylinder, or sphere must be intro-
duced in the reference configuration to surtound the singu-
larity. In this way the topology of a solid model is changed,
and the deformation makes large changes in geometry. This
gives tremendous freedom to designers and solid modelers.
That is, an initial simply connected blob of material can be
made into a solid with as many voids as desired by multiple
application of this deformation composed with rigid body
maotions.

5 Composition of Deformations

This section illustrates how composition of the volume
preserving deformations presented earlier in this paper can
be used to efficiently generate an infinite variety of volumet-
ric shapes from a single referential volume.

A trivial example is the repeated composition of rigid body
rotations to produce deformations of the form:

F'(x) = RTF(Rx).

If RT =1t n, t ¥ n] where n and t are unit vectors, then
deformations represented in standard form can be used to
generate more general deformations. For instance, looking at
Egs. (6) and (7), one finds that S$(x) = R"S,(Rx). Similarly,
Eq. (10) can be generated from the standard elongation,
E,(x), by observing that E(x) = R E(Rx).

In the following subsections, composition of deformations
will be used to expand the variety of shapes that can be
generated, and applications are presented.

5.1 Stretch and Variable-Offset-Bending. Consider a
combined stretching and bending deformation. In this exam-
ple, the stretch deformation in Eq. (12) is first applied, then
the bending deformation defined by Eqs. (17} and (22-23) is
applied. The resulting deformation is:

Ci(x) = O(E;(x)).

The choice of primitive deformations resulting in Fig. 7
are:

(42)
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Fig. 9 Shear and offset shear-bending: O(S,(x))
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and
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= Flxy, x2) sin ax,;
O(x) = , (44)

1

E{l — cos ax, ) + r{x,, x;) cos ax,
3

where r(x,, x,) =[1 — (1 — 2ax,}"*/a), and a = =/12.

5.2 Shear and Bending. Figure 8 is a composition of
shear and the bending deformation based on variable offsets
defined in Subsection 3.2.1. This is written as O{S,(x)).

Figure 9 shows a composition of shear and the type of
bending described in Subsubsection 3.2.2. That is, this defor-
mation is of the form: O(S,(x)) where S,(-) is defined in
Equation (7), and O(x) was defined in Eq. (33). In this figure,
d(x,) = (1/2x,.

53 A Spatial Example. As an application of the meth-
ods presented in this paper, consider the following scenario:
An exotic looking bottle is needed for a new product, e.g.,
perfume, soft drink, ete. Aside from the cosmetic characteris-
tics, the bottle will be molded from a specified amount of
glass, and contain a specified volume of liquid. With the tools
developed in this paper, an infinite variety of bottle designs
can be created. Assume a cylinder is used as the referential
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Fig. 10 Design of a bottle using multiple deformations

volume. A collection of planar sources is put on the axis of
the cylinder to form a “line of sources”. If the magnitude of
the sources is constant along the length, the resulting hole in
the cylinder will be cylindrical, and the resulting object will
be a uniform hollow cylinder. Likewise, a line of sources with
nonuniform distribution of magnitude will create a general
axisymmetric void. The line of sources can terminate {source
strength goes to zero) at one or both ends inside the referen-
tial eylinder. Applying nonuniform stretching and contraction
along the axis of symmetry of this shape results in “hour
glass” and “coke bottle” shaped volumes.

This is demonstrated in Fig. 10. The referential volume is
a cylinder with radius 1/5, height 1, and base at the origin of
the coordinate system. First a Cartesian stretch along the axis
of symmetry is applied where f(x) = tan~! (x). Then the
object is translated down the axis of symmetry a distance of
0.3, a generalized planar source is applied with o(x) =
(157 — x*»* for |x| < 1/5 and clx) = 0 otherwise. The
object is then translated back up the axis of symmetry, and
the object shown is the result.

While other methods, such as those in Celniker and Gos-
sard (1989), or Cox et al. {1991} are applicable in this type of
problem, the current formulation presents an alternative
paradigm.

& Conclusion

This paper has presented methods for generating and
using locally volume preserving deformations which can be
expressed in closed form. A combination of classical differen-
tial geometry and parametric geometry were used 1o generate
these closed-form deformations. These deformations have
applications in computer aided geometric design when mass
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and volume constraints restrict design choices. Further appli-
cations may include efficient approximations to problems in
the mechanics of materials and biomechanics. Similarly, the
closed-form primitives presented here could be used to ap-
proximate the physical universe in such diverse areas as
robotics (e.g., modeling the kinematics and dynamics of robots
with flexible actuators), and even virtual reality (e.g., real-time
simulation of virtual contact with a very compliant environ-
ment).
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