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Gregory S. Chirikjian, Member, IEEE, and Joel W. Burdick 

Abstract-“Hyper-redundant” robots have a very large or 
infinite degree of kinematic redundancy. This paper develops 
new methods for determining “optimal” hyper-redundant ma- 
nipulator configurations based on a continuum formulation of 
kinematics. This formulation uses a backbone curve model to 
capture the robot’s essential macroscopic geometric features. 
The calculus of variations is used to develop differential equa- 
tions, whose solution is the optimal backbone curve shape. We 
show that this approach is computationally efficient on a single 
processor, and generates solutions in O( 1) time for an N degree- 
of-freedom manipulator when implemented in parallel on O( N )  
processors. For this reason, it is better suited to hyper-redundant 
robots than other redundancy resolution methods. Furthermore, 
this approach is useful for many hyper-redundant mechanical 
morphologies which are not handled by known methods. 

I. INTRODUCTION 

YPER-REDUNDANT” manipulators have a very 
large relative degree of kinematic redundancy. These 

robots are analogous in design and operation to “snakes” or 
“tentacles.” For example, Fig. 1 shows a photograph of a 
30 degree-of-freedom robot which has been constructed by 
the authors and to which the theory in this paper has been 
applied. This paper addresses the issue of computing the 
inverse kinematics of such highly redundant robots. We term 
this problem “hyper-redundancy resolution.” 

Traditionally, kinematic analysis and motion planning for 
redundant manipulators has relied upon a pseudo-inverse [ 171, 
generalized inverse [20], or extended inverse [l]  of the manip- 
ulator Jacobian matrix. Some have considered schemes to find 
redundant manipulator trajectories which optimize joint rates 
or torques over a whole trajectory instead of point-to-point, 
e.g., [25] and 1221. Other inverse kinematics schemes have 
been developed based on the concept of dynamic isotropy [ 181. 

The principal contribution of this paper is a new and com- 
putationally efficient method for determining the kinematically 
optimal configurations of hyper-redundant robots. This method 
has a number of advantages over other possible techniques. 
First, it is applicable to a wide variety of hyper-redundant robot 
mechanical morphologies which are not handled by known 
redundancy resolution techniques. For example, it is useful 
for devices driven by distributed actuators or constructed from 
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(b) 

Fig. 1. Photograph of 30 DOF hyper-redundant robot 

pneumatic tube bundles [23], [26], where it is difficult or 
impossible to define a Jacobian matrix. Second, this method 
generates cyclic joint trajectories for a given cyclic end- 
effector trajectory. Third, it is computationally efficient for 
a large number of degrees of freedom. We show that for 
computation on a serial processor, the computational burden 
of the method grows as O ( N ) ,  where N is the number of 
actuated joints. While competing method for configuration 
optimization based on a Jacobian can also have computational 
complexity that grows as O ( N )  (see Section 11), our method 
can be implemented using a very simple parallel processing 
scheme, and so the computational burden of this new method 
can be reduced to 0(1) in time if distributed over O ( N )  
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processors. That is, the computational time can be independent 
of the number of degrees of freedom if O ( N )  processors are 
used. T h i s  claim has not been made for any other redundancy 
resolution technique for general hyper-redundant manipulator 
morphologies. 

The method presented here is based on a “backbone curve” 
that captures a hyper-redundant robot’s macroscopic geometric 
features. The backbone concept was introduced in previous 
work [SI, [ l l] ,  and has been used as a basis for developing 
obstacle avoidance [71, locomotion, and grasping [9], [12] 
analysis and algorithms for hyper-redundant robots. This paper 
uses the calculus of variations to develop necessary conditions 
for determining backbone curve shapes which satisfy task con- 
straints and a user-defined optimality criterion. To illustrate the 
idea, we focus on a cost criterion which is a weighted measure 
of mechanism bending and extension. Shapes generated from 
other optimality criteria can be formulated analogously. 

A summary of the potential uses of hyper-redundant robots 
and previous work by other researchers in the kinematics and 
design of hyper-redundant robotic systems can be found in 
[5] and [ll].  We list here those prior works which are most 
relevant to this paper. Reference [24] considers an optimal 
shape synthesis problem for a high degree of freedom Variable 
Geometry Truss (VGT). The solution in [24] is an approximate 
one, which can be considered a subset of the method in this 
paper. The work presented here is also useful for a broader 
class of mechanisms than VGT systems. Several authors [25], 
[22] have presented algorithms for the “global” (or path- 
wise) redundancy resolution problem. They typically use the 
calculus of variations or optimal control theory to find joint 
displacement trajectories which satisfy terminal end-effector 
constraints and minimize a user-defined cost function. This 
paper focuses on optimal manipulator conjigurations, though 
this method can also be used for trajectory generation. The 
optimal shape design of thin elastic rods which implement a 
desired robot wrist compliance was considered in [4]. This is 
analogous to finding the geometry of a “stiff‘ hyper-redundant 
robot which best implements a desired compliance behavior. 

Section I1 reviews joint-based redundancy resolution tech- 
niques which are applicable to the problem of configuration 
optimization. Section I11 reviews the basic backbone curve 
modeling technique and the associated “fitting” procedures. 
Section IV develops an optimality criteria for hyper-redundant 
manipulator shape based on a weighted measure of backbone 
curve bending, twisting, and extension. Section V provides a 
detailed application of the technique to a VGT mechanism. 
Section VI compares the computational and qualitative advan- 
tages of the continuum approach versus joint-based methods. 
Section VI1 summarizes our conclusions. 

11. JOINT-BASED CONFIGURATION OPTIMIZATION 
Based on our experience in building and controlling the 

robot seen in Fig. 1, we believe that configuration optimization 
is a more useful goal than trajectory optimization for hyper- 
redundant robots. The reasons for this are twofold. First, one 
is likely to build hyper-redundant robots in a modular fash- 
ion-i.e., as a cascade of many similar or identical mechanical 

modules (most practical hyper-redundant robots have NOT 
been constructed with serial chain topologies, as they are too 
weak). For example, the robot in Fig. 1 is comprised of a 
concatenation of 10 identical modules, where each module is 
a 3 degree of freedom planar parallel manipulator. In order 
to have reasonable strength-to-weight ratios, the actuators in 
these modules will often have nonnegligible restrictions on 
bending, extension, etc. Thus, it makes sense to insure that at 
each configuration, the local module kinematic and mechanical 
constraints are not violated. This can easily be done in an 
approximate way via configuration optimization. Configuration 
optimization algorithms can also be the basis for trajectory 
planning schemes, in which one insures that the robot’s 
configuration is optimal at each point in the trajectory. The 
techniques of [25] extremize a criteria which is integrated over 
a trajectory, not at each configuration. Second, configuration 
optimization schemes are cyclic in subsets of the workspace 
void of singularities. Cyclicity can be quite important for 
hyper-redundant manipulators. 

For the purpose of comparison to the continuum approach 
presented later in this paper, we now review how one 
might formulate configuration optimization procedures using 
a framework based on discrete joint displacements and a 
Jacobian matrix. 

Recall that redundancy resolution techniques based on the 
pseudo-inverse (or weighted pseudo-inverse) of the manipu- 
lator Jacobian matrix are based on the idea of constrained 
optimization. Let 3 denote the vector of joint displacements. 
The weighted pseudo-inverse solution is the joint velocity 
vector, 3, which minimizes the instantaneous cost function 
i g  W i  subject to the linearized end-effector kinematic con- 
straints k~ = Je. W is an N x N symmetric positive 
definite weighting matrix, N is the number of mechanism 
actuated joints, TD E RM is the desired end-effector or 
task coordinates, and J is the M x N manipulator Jacobian 
matrix. Recall that the solution to this optimization problem 
is 8 = J a k D ,  where J a  = WP1JT(JW-lJT)-l is the 
weighted pseudo-inverse. The computational complexity of 
the unweighted pseudo-inverse (W = 1) is O ( N )  when J is 
computed recursively (see Appendix B). The weighted pseudo- 
inverse requires O( N ~ ~ ~ ( ~ J ’ ) )  computations for a general 
symmetric weighting matrix where O( N p )  computations are 
required to compute the components of W-l. p depends on 
what matrix function is used, and whether or not W(e) is 
defined and inverted at each timestep, or W-’ is calculated 
symbolically off line. This, coupled with the fact that these 
computations cannot be performed completely in parallel, 
means that there is an undesirable rise in computation time 
when using the pseudo-inverse (weighted or not) as the number 
of joints increases even if O ( N )  processors work in parallel. 

The optimal conjiguration redundancy resohtion problem 
can be analogously defined. The goal is to minimize a cost 
which is a function of configuration while also satisfying 
end-effector position constraints 

.T 

- 
mjng(8) subject to E ( @  = f (3)  - 50 = 0 (1) 

e 



796 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 11, NO. 6, DECEMBER 1995 

where g($) is the cost function, f (8)  is the forward kinematic 
function, and I D  is the desired end-effector location. This 
method is cyclic [2], unlike the pseudo-inverse which generally 
is not. For the purpose of discussion, let us assume that the 
configuration cost is 

g(8) = 5iTwe. (2) 
2 

- For example, if the joint displacements are defined so that 
0 = 0 is the center of the joint range, then (3) is a measure of 
mechanism’s deformation from the center of its joint range. 

There are a number of methods by which one can compu- 
tationally solve (2). One of the most popular methods is the 
Lagrange-Newton approach [19]. This method is based on the 
definition of a Lagrangian 

(3) 
-T - L(8,X) = g(8)  + x .(e) 

where 7; is a vector of undetermined Lagrange multipliers. An 
extrema of L(8,x)  extremizes g(8) subject to the constraint 
c(8) = 0. Numerically, local extrema are found by starting 
with estimates 80 and 10, and then iteratively solving the 
matrix equation 

- 

\ ,  

for 68, and 6&. The matrix P ( 8 k , x k )  in (4) has the form 
P(8, , Ik )  = Vzg(8k) + Xz02cz(8). New best estimates 
of the extrema are - obtained by the update rule 8,+1 = 8 k + 6 e k  

and xk+l = X I ,  + 6Xk. This method has the advantage 
that if the initial estimates are good, then convergence to 
a local minima is quadratic. While general configuration 
optimization implemented with the Lagrange-Newton method 
requires O ( N 2 )  computations if the above quantities are 
defined recursively and solved iteratively (or O ( N 3 )  computa- 
tions if the ( N  + M )  x ( N  + M )  matrix is explicitly inverted), 
there are some manipulator morphologies and some choices 
of cost functions which permit as few as O ( N )  computations 
with this technique (when the joint angles are defined from an 
appropriate datum). In these cases P and J will have special 
structure. 

Further, one must be able to compute second derivatives 
of g(8) and the manipulator Hessian matrix (i.e., second 
derivatives of f (e)). These computations are often extremely 
difficult for the nonserial topologies used in practical hyper- 
redundant designs. A variant on this method has been derived 
in a different way and was implemented as a weighted pseudo- 
inverse for serial chain manipulators in [15], and the method 
was shown to be cyclic for a particular example. 

Another class of numerical methods rely on a projected 
gradient [19]. In this approach, from an initial estimate, 80, 
one would like to minimize g($) by moving in the direction 
of the negative gradent of g(8). However, only moves which 
satisfy the constraints are allowed. This procedure, which is 
also iterative, can be performed as follows. Let 80 be an 
estimate of the local minima, which is assumed to satisfy the 
constraints. Let Z k  be an N x N matrix whose columns are 
a basis for the null space of J ( 8 k )  (for example, the matrix 

1 - Jt($k)J(Gk)). In the first step (termed the estimator step), 
a better estimate of the minima is obtained by taking a step in 
the direction of the projection of the negative gradient onto zk: 

- - 
o k + l , O  = o k  - Q:Zkvg(ek). (5)  

Q: > 0 is either a small constant (typically Q 5 l), or its value 
can be chosen using a line search. 

Since the tangent space is a poor approximation to the 
curved constraint surface, the estimator step will result in 
a configuration 8k+l,o which is not on the constraint sur- 
face. This constraint violation is fixed in the subsequent 
“corrector” step, whose goal is to find a S8k+l ,o  such that 
c(ek+l,O+@k+l,O) = - s. Assume that S$k+l,o = Yk’uk, where 
Y I ,  = [Fk, ) Y k , ,  e - I y k N ]  is a basis for the range space of 
JT(8k+l ,o ) .  In fact, one can choose YI, = JT(8k+l,o).  The 
undetermined coefficients Tik which minimize the estimator 
error to lSt order are obtained as the solution to 

- 

(6) 
- - c ( ~ ~ + I , o )  = J(Wlc+l,o)YkDk. 

If we do in fact choose Y k  = J’(8k) and combine the 
estimator and corrector steps together, then we arrive at the 
adaptation of the well known “pseudo-inverse with null space 
projection” redundancy resolution scheme [2] to configuration 
optimization: 

8 k + i  =Bt ,  + Jt(5, - f ($k))  - ~:ZkVg(gk). (7) 

While combining the estimator and predictor steps into one 
step is advantageous from a computational point of view, it 
does lead to poorer convergence than the proper estimator- 
corrector scheme. 
This scheme has computational complexity O ( N )  when the 

Jacobian is computed recursively, and the null space projection 
term is computed by first computing the pseudo-inverse, 
pedorming the multiplication JVg, and then multiplying the 
pseudo-inverse. Otherwise, treating the Jacobian null space 
basis as an N x N matrix, and projecting Vg onto this basis 
has computational complexity O(N2) .  Either way, it is clear 
that these computations cannot be distributed among O ( N )  
processors to achieve O( 1) time performance because many 
of the computations are serial or recursive in nature. 

Furthermore, neither the Lagrange-Newton or pseudo- 
inverse with gradient projection methods for configuration 
optimization can be easily applied to continuous morphology 
hyper-redundant robots (such as those made from pneumatic 
tube bundles (e.g., [23] )  where it is not possible to define a 
Jacobian in the standard sense. The remainder of this paper 
is dedicated to macroscopically solving the configuration 
optimization problem in an entirely new way: using a 
continuum approach. 

- 

In. CONTINUUM KINEMATICS OF BACKBONE CURVES 

The continuum approach to hyper-redundancy resolution is 
based on a two-step modeling and computation procedure: 

In the first step, we assume that, regardless of the mechan- 
ical implementation (e.g., the morphologies shown in Fig. 2), 
the hyper-redundant robot can be modeled using a continuous 
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Fig. 3. Backbone curve abstraction. 

(a) (b) (c) 

Fig. 2. Examples of hyper-redundant robot morphologies. 

backbone curve that captures the robot’s macroscopic geomet- 
ric features (Fig. 3). A backbone curve parametrization and 
an associated set of reference frames that evolve along the 
curve are collectively referred to as the backbone reference 
set. In this paradigm, hyper-redundancy resolution is reduced 
to the determination of the proper time varying behavior of 
the backbone reference set. Depending upon the robot’s actual 
mechanical implementation, the associated backbone curve 
may be inextensible (or fixed length) or extensible (variable 
length). Techniques for physically meaningful parametrization 
of backbone curves are reviewed in Section 111-A. For more 
details about the backbone curve approach and its suitability 
for modeling hyper-redundant robots, see [ 111. 

In the second step, the continuous backbone curve redun- 
dancy resolution solution is used to specify the actual mech- 
anism’s joint displacements. The continuous solution can be 
used to directly specify actuator displacements in a continuous 
morphology robot. For discrete morphology robots we employ 
a “fitting procedure” to adapt the continuous solution to the 
discrete robot. The goal of the fitting procedure is to deter- 
mine the actuator displacements which cause the discretely 
segmented robot to adhere exactly or as closely as possible to 
the continuous backbone curve solution. One fitting procedure 
which is specialized to a modular hyper-redundant robot me- 
chanical architecture is reviewed in Section 111-B because of 
its use in subsequent examples. Fitting procedures for other 
mechanical morphologies can be found in [5] and 1111. 

A. An Integral Backbone Curve Representation 

be parametrized as follows: 
Points, z(s, t ) ,  on an extensible spatial backbone curve can 

where s is the backbone curve parameter and t is time. E ( s ,  t )  
is the unit vector tangent to the curve at s. Unless otherwise 
specified, in this paper we use the following convention: 
u(0, t )  = [0,1, OIT. Z(s, t )  is a scaling factor that controls the 
length of the curve tangent and assumes the general form 

qs, t )  = 1 + € ( S ,  t )  > 0. (9) 

Fig. 4. Definition of angles K ( s , t )  and T(s ,  t )  

E ( s , ~ )  is the local extensibility of the manipulator at point s 
and time t .  E < 0 indicates a local contraction, while E > 0 
corresponds to local expansion. The backbone curve arc-length 
between the backbone curve base (s = 0) and any point along 
its length is 

r s  

L(s ,  t )  = J, Z(a, t)da 

Any parametrization of the unit sphere can be used to define 

(1 1) 

E ( s ,  t ) .  In this work we choose 

= [sin K cos T ,  cos K cos T ,  sin TIT. 

The definitions of K and T are shown in Fig. 4. By conven- 
tion, K(0,  t )  = T(0, t )  = 0 is assumed. Henceforth, we will 
not express the dependence of functions on the variables s 
and t unless absolutely necessary. 

The kinematics of planar curves is a degenerate case of 
(11) with T = 0 Vs. To distinguish the planar case, we 
use the symbol 0 instead of K ,  where 0 is the clockwise 
measured angle which the tangent to the planar curve makes 
with the sz-axis at time t. Note that in the planar case 
U = [sinO, cosBIT. 

A backbone reference frame at s has right-handed orthonor- 
mal basis vectors, {i?l,i?z,e3}, and its origin coincides with 
point 3. The set of backbone frame orientations can be written 
as 

- 

Q = ( E l  E2 Es) E SO(3) (12) 

where i?i = E%(s,t) ,  = ii, and Q(0, t )  = 1. There is 
freedom in the assignment of backbone reference frames. A 
backbone curve parametrization will typically have a set of 
frames naturally associated with it. We call this frame the 
parametrization induced reference frame, or induced frame, 
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1 The 4 x 4 homogeneous transform relating {Fi} to (Fi-1) 
is denoted by Hi-,. This consists of the relative translation, 
i and rotation, R:-l, of {Fi}  with respect to {F,-l}, i.e., 

. (15) 
R:- (qMt ) - (qMz)  ( ?iT 1 

H:-,(QMa) = 

qMZ E RM is the vector of joint displacements which 
determine the geometry of the ith module. It is assumed that 
the inverse kinematics of the module, which relates {F,} tb 
{Pi-,}, can be solved in a closed or numerically efficient 
form. 

The manipulator configuration will exactly conform to the 
backbone reference set at points {s,} if 

(16) 

{ F ~ - I }  

Fig. 5. Fitting a modular manipulator to a backbone reference set. 

and denote it by QIR. For the parametrization of Fig. 4, we 
assign to every s the frame whose orientation is described by Hf-l(qM’(t)) = K1(sz-i ,  t ) X ( s , ,  t )  

1 cos K sin K cos T - sin K sin 
Q I R  = (-sinK cosKcosT -cosKs inT  (13) 

0 sin T cos T 

where Q I R ( O , ~ )  = 1. The induced frame should not be 
confused with the backbone reference frame. It can differ from 
the backbone reference frame by an s-dependent twist about 
backbone curve tangent, which we term the roll distribution, 
R(s, t ) .  R measures how Q twists about the backbone curve 
with respect to QIR,  and it is defined as Q = Rot(&, R)QIR,  
where Rot@, 4) is rotation about axis V by angle 4 .  R(0, t )  = 
0 follows from the fact that Q(0, t )  = Q I R ( O , ~ )  = 1. 

In summary, the backbone curve reference set, which con- 
sists of the backbone curve and associated set of orthonormal 
frames, is described with a small set of shupefinctions, which 
we denote by ?J = [K,  T ,  R, LIT. The choice of shape function 
basis is not unique, and other possibilities are described in [11]. 
Note that the backbone reference set can also be expressed as 
a parametrized set of homogeneous matrices 

where ?E(.) and Q(.)  are defined in (8) and (12). 

B. “Fitting” Procedures 
Here we consider a fitting procedure for a hyper-redundant 

robot structure built from a concatenation of n identical 
modules. For example, the VGT structure of the robot in Fig. 1 
fits this paradigm. 

Consider the ith module (Fig. 5). Attach a frame, {F,-1}, 
to the “input,” or base, of the module, and a frame, {F,}, 
to the “output,” or top, of the module. For the discretely 
segmented modular manipulator configuration to conform to 
the continuous curve geometry, the frames {F,-l} and {F,} 
are chosen to coincide with the backbone reference frames 
at a set of n + 1 “fitting” points: {s,}.  We typically choose 
s,  = z/n for z = 0, . . . , n. Recall that equal partitioning of the 
curve parameter need not imply equal physical spacing along 
the curve, because L(.)  can be chosen from a broad class of 
functions. 

where X ( s , t )  is defined in (14). That is, the right hand side 
of (16) expresses the relative displacement of the backbone 
curve reference frame at s, with respect to the backbone curve 
reference frame at sz-l, while the left hand side describes 
the relative displacement of the ith module output frame 
with respect to its input frame. When the two are equated, 
the discrete mechanism aligns exactly with the continuous 
backbone curve at the n fitting points. We typically choose 
one of the fitting points to be the end-effector frame, so that 
distal position and orientation of both the continuous backbone 
curve and the discrete mechanism are in exact alignment. An 
example of this method is given in Section V. 

On a serial processor, the computational burden of the 
fitting procedure for modular morphologies is O ( N ) .  More 
importantly, the algorithm can easily be parallelized to great 
advantage. Assume that each module contains one computer 
processor and is connected to a central computer by a commu- 
nications network. Once the backbone curve shape functions 
which solve a hyper-redundancy resolution problem have been 
computed by the central processor, each E t p l ,  and 
module inverse kinematics can be computed in parallel on 
the relevant processors. Thus, for modular geometries, such as 
the one in Fig. 1, the computational complexity of the fitting 
procedure is 0(1), or constant, in time for N processors. 
That is, it is independent of the number of modules if one 
chooses this simple parallel processing model and broadcast 
communications architecture. 

W .  OPTIMAL BACKBONE CURVE CONFIGURATIONS 
In this work we focus on “optimal” configurations that 

minimize a weighted combination of bending, twisting, and 
local extensiodcontraction of the backbone curve while also 
satisfying task constraints. Using the continuous backbone 
curve model, this section uses the calculus of variations to 
compute the optimal backbone curve shapes. The optimal 
configurations that satisfy other criteria can be formulated in 
an analogous fashion. 

A. Quantifying Backbone Curve Optimality 
Deformation of the backbone curve (and the resulting 

change in hyper-redundant manipulator configuration) results 
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from mechanism bending, twisting, rolling, and exten- 
siodcontraction at each s. A dimensionally consistent cost 
function which includes these effects is 

where t r (A) denotes the trace of matrix A,  and ‘“” represents 
differentiation with respect to s. In the problem at hand, the 
cost function and constraints are functions of time, but since 
we are extremizing from point to point in time, the calculus 
of variations formulated for a single dependent variable (see 
Appendix A) is directly applicable. t r  QWQT is a measure 

positive semi-definite weighting matrix. We make the reason- 
able assumption that there is no preferred direction of bending, 
and hereafter W is restricted to the isotropic form W = a l ,  
where 1 is the 3 x 3 identity matrix. Similarly, (i - 1)2 is a 
measure of a mechanism’s extension and contraction from its 
nominal length. Thus, a weights the relative cost of bending, 
twisting, and rolling, while ,B weights extensiodcontraction. 
In this section, the calculus of variations is used to generate 
backbone curve shapes which extremize (17). Other criteria 
can be similarly handled. 

At s = 0, the backbone reference frame must coincide with 
the base frame. At s = 1, the backbone reference frame must 
correspond to the desired end-effector orientation, Q D .  Thus, 
the boundary conditions 

of mechanism bending and twisting. - s , )  is a 3 x 3 symmetric 

are imposed on the Euler-Lagrange equations. The minimum 
bending problem can be stated as the minimization of (17) 
subject to the isoperimetric constraints 5 ( l , t )  = z ~ ( t )  (the 
desired end-effector position, where T(s ,  t )  takes the form of 
(9) with boundary conditions (18). (See Appendix A for a 
review of variational calculus and explanation of the above 
terminology). 

The corresponding Lagrangian is 

- 
pc is a vector of undetermined Lagrange multipliers arising 
from the isoperimetric end-effector constraint 5( 1, t) = T D  ( t )  . 

The only issue which needs to be resolved is how to choose 
the functions a(s)  and P(s ) .  The choice naturally depends 
on the particular hyper-redundant robot morphology and the 
intuition of the hyper-redundant robot user. In instances where 
the robot is constructed from a concatenation of uniform 
modules (such as in Fig. 1) or pneumatic tubes, these functions 
are independent of s, and the following analysis leads to a 
useful choice of the weighting functions. 

First consider a planar robot. Imagine a deformable envelope 
or “tube” which closely fits the structure. We will assume 
that the undeformed position of the manipulator is straight 
with a nominal uniform extension. This is equivalent to a 
straight and unstretched state of the tube. For each manip- 
ulator configuration that is different from the nominal state, 
there is an associated configuration which is a deformation 
of the surrounding tube. Therefore, tube configurations that 

correspond to the least variation from an undeformed state 
will correspond approximately to manipulator configurations 
with the least variation from the initial configuration. 

Let Z denote the backbone curve (or centerline) of a planar 
tube in its distorted shape at any fixed time. Let Z+ and Z- 
denote the respective sides of the planar tube in the distorted 
state 

(20) x+ = 5 + r E ,  Z- = T - r E  

where T i  is the unit vector normal to the backbone curve at 
s, and T is the constant tube radius. A reasonable measure of 
the local deviation of the tube at a point s from its nominal 
configuration (which is assumed here to be a straight tube with 
no extensiodcontraction) is the sum of the squared difference 
in length between the tube tangents and the length of the 
nominal reference tangent 

- 

f = f((llk+ll 7 + (Ilk-11 - 1):) 
= f ( ( ~ ~ k + r ~ ~ ~ - ~ ) 2 + ( ~ ~ k - ~ ~ ~ ~ - l ) z )  

= ( L  - 1)2 + (rL6l2 = ( L  - 112 + (.el2. 
= f (( IluL - T L m I  - 1)2 + (IIuL + TLKUII - 1)2) 

(21) 
Equation (21) corresponds to the integrand of (17) in the planar 
case, with /3 = 1 and a = f r 2 .  We take the tube radius, r ,  to 
be half the width of the physical manipulator. This provides 
for a cost function which is dimensionally homogeneous. 

In the spatial case, it can be shown that similar functions 
result by taking the magnitudes of the tangents of the deformed 
and underformed fibers which lay longitudinally along a spatial 
tube, and integrating the square of this magnitude around the 
tube (which is the spatial analog of the sum in (21)). 

Other physically meaningful choices for a(s)  and p ( s )  are 
based on inertial properties of the manipulator. For instance, 
one can define a mass density per unit curve parameter, p(s) ,  
to approximate manipulator inertial properties. This can be 
used to weight bending and extension so that the base of the 
manipulator (which has the largest inertia to move) bends 
less than the end. One choice to achieve this is p ( s )  = 
Js’ p(a)da,  a = f r 2  J, p(a)da. Because the density per unit 
curve parameter does not change even if the manipulator 
stretches or contracts, p is not a function of time. Dynamics 
algorithms based on the continuum model can be computed in 
O ( N )  computations, and can be completely distributed over 
N processors to yield 0 ( 1 )  time performance 1141. 

1 

B. Solving the Inverse Problem 

The previous subsection developed a cost function for a 
configuration. Substituting this cost function into the Eu- 
ler-Lagrange equations results in a set of differential equations 
whose solution is a backbone curve shape which extremizes 
this cost for a given set of initial conditions (i.e., conditions 
of the curve at s = 0) and a given set of Lagrange multipliers. 
Let the set of undetermined initial conditions and the Lagrange 
multipliers be termed the reduced configuration variables, 
which we denote by 7. For a given cost function and its 
associated Euler-Lagrange equations, the end-eff ector location 
is strictly a function of the small set of these reduced configura- 
tion variables. That is, for a given value of 7, integration of the 
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Euler-Lagrange equations will produce a unique end-effector 
location. This section considers the “inverse” problem of 
determining the reduced configuration variables for a desired 
end-effector location. Many other techniques are known for 
solving this problem, as reviewed in [6]. We develop a 
particular method here because of its generality, because of 
its close resemblance to standard methods in manipulator 
kinematics, and for the purposes of computational complexity 
analysis. 

Equation (S), when evaluated at s = 1, can be expressed 
in the general form 

1 

(22) 
- z(1,t) = 1 v(7J)ds 

where ?j is the set of shape functions. If y ( s , t )  is a solution 
which extremizes (17) at t ,  subject to the constraints that 
z( 1, t )  = :o(t), then g is a function of t via the reduced 
configuration variables 7: y( s , t )  = e( s , 7( t )  ) . 

The corresponding rate linearized (or “resolved rate”) kine- 
matics commonly used in robotics can then be written sym- 
bolically as 

(23) 
d a?? 8% 
-(z(l,t)) d t  = [11 % s d s ]  = Jz 

where J is the Jacobian associated with the reduced configu- 
ration variables 7 and is termed the reduced Jacobian. Note 
that J is typically a 3 x 3 (4 x 4) or 6 x 6 (7 x 7) matrix 
for inextensible (extensible) planar or spatial backbone curves. 
Note that the size of J does not depend upon the number of 
mechanism degrees of freedom, but only on the dimension of 
the task coordinates (where the length of the manipulator is 
considered a task variable in the extensible case). 

Equation (23) can be used to develop numerical procedures 
for solving the reduced configuration variable inverse problem. 
In the most simplistic approach, let To be an initial guess of the 
reduced variables. One can iterate the following approximation 
to (23) to find the values of 7 which solve the inverse problem 

ayk+’ = r k  + J-’(7k)Azk, (24) 

where ,k is the iteration index and ATk is the error between the 
actual end-effector location (computed with estimated reduced 
variable vector 7’) and the desired end-effector location. 
However, to compute J(yk), one requires an expression for 
av(s)/a?J (which is easily obtained) and an expression for the 
function a%(s, ?)/ay, where $(s,7) extremizes (17). Unfor- 
tunately, the extremal value of 8$( s ,T) /87 can generally be 
realized only in numerical, and not symbolic form. We must 
therefore develop indirect methods for computing the extremal 
value of 85/87, and hence J. 

The Euler-Lagrange equations will generally be of the form 

(25) 
- 5 + f ( $ ,  g, 7, s) = 0 

m o ,  71, a o ,  Y), 7) = 0, 

with initial conditions 
- 

(26) 

where /, f ( . )  E I R p ,  7 E EL”, and f(.) E We have 
dropped the “hat” from $, but there is no ambiguity because 

of the context in which jj is being used. P is the number of 
shape functions needed to fully specify the hyper-redundant- 
manipulator configuration, and recall that M is the number of 
end-effector or task coordinates. In the plane P = 2 and M is 
typically 3 for nonextensible robots, or M = 4 for extensible 
robots. For spatial manipulators P = 4 and M = 6 or 7. 

Given (25) and (26), one can determine a?J/ay by a system 
of auxiliary differential equations. These M sets of auxiliary 
equations are derived by taking the derivatives of (25) and 
(26) with respect to the M components of 7. Since derivatives 
of smooth functions commute, the auxiliary equations can be 
expressed as the P x M matrix equation: 

(27) 

Note the linearity of the above equations in the auxiliary vari- 
ables dy,/8y, for (2,j) E ( l , . . . , P )  x ( l , . . . ,M)  . This lin- 
earity simplifies the numerical solution. The initial conditions 
of the 2nd order auxiliary equations are written symbolically 
as the 2P x M matrix equation 

which can generally be separated. In addition to the com- 
mutation of derivatives, we have also made use of the fact 
that differentiation and function evaluation commute in the 
following cases: 

Thus the extremal value of 87j/a? can be computed numer- 
ically from the auxiliary equations, and subsequently used 
to compute the reduced Jacobian in (23). The simultaneous 
(possibly parallel) solution of the original system of equations 
and the auxiliary equations provide the means by which the 
instantaneous end-effector kinematics of the hyper-redundant 
manipulator backbone curve is computed at each time step. 
If the algorithm is parallelized over M + 1 processors, the 
required computation time will be no greater than that of the 
original set of Euler-Lagrange equations plus the time required 
to invert the reduced Jacobian matrix. 

V. A DETAILED EXAMPLE: THE OPTIMAL 

A detailed application of this approach to a variable geome- 
try truss (VGT) manipulator having the same geometry as the 
robot in Fig. 1 is developed in this section. The next section 
compares the computational complexity of this method to the 
noncontinuum approaches of Section I1 for the same VGT 
robot geometry. 

In the planar case, Q consists of a rotation, by angle 8, 
about the axis normal to the plane. Thus, 

BACKBONE CURVE FOR A PLANAR VGT 

l 1  2 

2 0  
= - 1 [aa 8 2  + p ( L  - 1) ] ds.  
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In the case of (Y = and p = 0 (i.e., an inextensible backbone 
curve), this cost function becomes the integral of squared 
curvature. This is a problem which has been considered in 
detail in the mathematics, mechanics, and computer science 
literature [21]. Solutions for this case in terms of Elliptic 
functions are known. 

In the extensible case, the following choice is made for 
hyper-redundant manipulators with homogeneous structure: 
a ( s )  = i r2  and p(s)  = 1 (consistent with the arguments of 
Section IV-A). The Euler-Lagrange equations corresponding 
to the functions 6 and L are, respectively, 

r2e - p1Lcosd + p2Lsin6 = 0 (31) 

d .  - (L - 1 + p1sin6 + p 2 c 0 ~ 6 )  = 0, 
ds 

where p1 and p2 are the undetermined Lagrange multipliers 
associated with the planar end-effector position constraint. 

We must now determine the boundary conditions and the 
reduced configuration variables. There are generally four task 
coordinates for a planar robot: x,,, yee, de,, and Lee. That is, in 
addition to the end-effector position and orientation, the total 
manipulator length from base to end-effector is also treated as 
a task variable. Let us consider the problem of extremizing 
the integral in (30) while letting O(1,t) and L(1,t)  be free. 
That is, we do not care about the end-effector orientation or 
the total length of the robot in the optimal configuration. Thus 
the free boundary conditions ((51) in Appendix A) are used: 

e(1) = 0 (33) 

h( 1) - 1 + p1 sin d(  1) + p2 cos d (  1) = 0. (34) 

The initial conditions O(0) = 0 and L(0) = 0 are imposed by 
the fixed base conditions. The undetermined initial conditions 
are 8(0) and L(0). Thus, the reduced configuration variables 
consist of the two Lagrange multipliers and the two unspecified 
base boundary conditions: 

These reduced configuration variables map to the four task 
variables through the Euler-Lagrange equations. 

The solution proceeds as follows. Equation (32) has the 
exact first integral: 

(36) L + 71 sin6 + 72cos6 = 7 4  + 72. 

L from this equation can then be substituted into (31), effec- 
tively decoupling the 6-variable Euler-Lagrange equation from 
L-variable Euler-Lagrange equation. Integrating Equation (3 1) 
with respect to s, while observing the boundary conditions at 
s = 0 and (33), yields 

(37) 

Observing that (34) and (36) must hold simultaneously, we 
obtain the relation 

2 
--T 73 = 7lYee - 72Xee. 

7 4  = 1-72.  (38) 

Thus, 7 4  can be eliminated, and 73 is represented in a way 
that directly describes its influence on end-effector position 
(as opposed to slope at the base of the manipulator). 

In this example, there are three sets of auxiliary equations 
corresponding to the remaining three reduced configuration 
variables (since 7 4  was eliminated). Each of these sets of 
equations consists of two separate equations of the form 

+ &2L sin 6 + 7 2  sin 6) = 0, (39) 
872 

86 
8% 

+ Si2 cos 6 - 72- sin 6 = 0, (40) 

with initial conditions 

for i = 1,2,3. &j = 1 when i = j and zero otherwise. 
Equations (39) and (40) are solved to find dO/ayi and dL/dy, .  

The Jacobian matrix for this example is a 3 x 3 matrix, since 
one of the reduced configuration variables was eliminated. The 
first two rows have components 

d7i 1 -(1)=1 8x1 [ ~ s i n 6 + ( l + r ) - c o s 6  d€ ds (42) 
d7i 

872 1 $=l [Gcos6- ( l+c ) - s in6  d€ ds (43) 

for i = 1,2,3. Recall that E is the extensibility: L = 1 = 1 + E. 

The last row in the Jacobian matrix comes from differenti- 
ating (37) with respect to time, yielding 

(44) 
dxee dye, d7l d72 2d73 

r d t  72- dt - 71- dt = yee- dt - X e e z  - 

and so the last row in the Jacobian matrix is [yee, -xee, r2]. 
Having calculated the reduced Jacobian, (24) is used to find 
the inverse solution. The initial values of the reduced variables 
are 7 = 0, which corresponds to the underformed reference 
state 6(s,O) = 0, L(s,O) = s. 

Until this point, not a single joint-based computation has 
been performed. In order to “algorithmically link” the back- 
bone curve model with an actual physical device, we apply a 
fitting procedure to determine the discrete joint angles which 
cause the mechanism to exactly or closely adhere to the 
continuous backbone curve shape. The VGT mechanism is 
a modular structure, and therefore the fitting paradigm of 
Section 111-B can be applied. All that is required is the inverse 
kinematics of a VGT module, which is easily solved. 

For example, Fig. 6 shows one module of the planar variable 
geometry truss manipulator (which is the same geometry as the 
robot in Fig. 1 and is described in detail in [lo]). The three 
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Fig. 6. Planar variable geometry tmss fitting geometry. 

vectors which are collinear with the prismatic actuators can 
be determined as follows: 

a wUI --i - pi-l - E'.-1 + ROT(-ijJ3,6'b)5"; 
- 2 -  c -jJtWl -Fi2-1 +ROT(-Es,QL)G i =  1 , 3 , 5 , . . -  

j = 1 , 2  -1 

= pi-,  - E;-' + ROT( -E3, 6'L)S; i = 2,4,6, . . . 
(45) 

where dL = Q ( s i )  - Q(si-1) and $ are the vectors to the jth 
vertex of the ith platform in the frame affixed to that platform. 
For this example, % = [-wi/2,OIT and $ = [wi/2,OIT, 
where wi is the width of each horizontal truss module face 
(Fig. 6). The controlled degrees of freedom are the lengths 

49 = l l ~ l l  
for i = 1, . . . , n, and j = 1,2. Equations (45) and (46) provide 
the inverse kinematics solution for this module geometry. 
This procedure is used in Section VI to generate optimal 
configurations for a given end-effector trajectory. 

VI. A COMPARISON OF THE CONTINUUM 
AND JOINT-BASED APPROACHES 

In this section we consider the qualitative and quantitative 
features of the continuum approach for configuration optimiza- 
tion versus joint-based configuration optimization methods. 
We also compare the two approaches in terms of numerical 
efficiency for a VGT manipulator. Section VI-A discusses 
the applicability and computational burden of both methods. 
Section VI-B provides the results of numerical trials. 

A. Generality and Order of Computation 

Practical hyper-redundant robots have not and wilE not 
be constructed of a serial chain of rigid links and motors, 
since such designs are too weak. Consequently, most of 
the hyper-redundant structures built to date use nonserial 
structural designs and actuation schemes, such as tendons, 
pneumatic hoses, or seriallparallel mechanisms like the VGT. 
It is often difficult or impossible to define a Jacobian matrix 
for many of these structures. One particular example of this 
is the case of hyper-redundant manipulators composed of a 
cascade of modules where each module does not have closed 
form forward kinematics-as is often the case for parallel 
manipulators with revolute joints. In this case, the joint-based 
approaches of Section I1 cannot even be applied directly. 

However, it is always possible to relate actuator displacements 
to a backbone curve (since the inverse Enematics of all 
kinematically sufficient serial and parallel manipulators can be 
performed efficiently), thereby establishing a fitting procedure. 
With a fitting procedure, the continuum approach is then 
applicable. 

Moreover, the continuum approach has computational ad- 
vantages over the discrete methods of Section I1 for general 
manipulator structures as the number of joints becomes large 
if sufficiently parallel computer architectures are used. Recall 
that the computation of the optimal shape using the continuum 
approach is a two phase process. First, the optimal continuous 
backbone curve shape is computed. The computational cost of 
this step is independent of the number of mechanical degrees 
of freedom of the actual discrete mechanism, and is therefore 
O(1). Next, the mechanism is "fitted" to the resulting curve. 
For modular designs, such as the one in Fig. 1, tlus process has 
a computational burden of O ( N )  when implemented on a serial 
processor, or O( 1) when implemented with a simple parallel 
computing architecture with one processor per module (or even 
one processor for every m modules for some number m > 1 
which is independent of N) .  Thus, the total computational 
burden of this approach scales as O ( N )  on a serial processor, 
or is O( 1) in time on a simple parallel processing architecture 
with O ( N )  processors. 

Alternatively, all of the discrete joint based procedures 
for performing configuration optimization are at best O ( N )  
in complexity when implemented on a serial processor, and 
some are much worse for arbitrary macroscopically serial ma- 
nipulator morphologies, e.g., the Lagrange-Newton method. 
However, as the number of degrees of freedom increases, 
the continuum based approach becomes more computationally 
attractive for all morphologies if it and competing methods 
are implemented in parallel on O ( N )  processors. This is 
because the computations required for the continuum approach 
completely decouple, whereas the O( N )  computations of 
competing approaches do not. 

One can also reduce the scaling of the computational burden 
of discrete approaches by going to parallel architectures. 
However, the architecture required for parallel computation of 
the Jacobian pseudo-inverse and other matridvector manipu- 
lations of conventional redundancy resolution cannot achieve 
O(1) time performance with O ( N )  processors. This is true 
in part because to achieve O ( N )  performance for the gra- 
dient projection method applied to a general manipulator 
morphology, the Jacobian must be computed by recursion. 
This does not parallelize completely, as is also the case for the 
matrix vector multiplications required to compute the pseudo- 
inverse once the Jacobian has been computed. In addition, such 
parallelization will require very complicated interprocessor 
communication and synchronization. Conversely, the parallel 
computing scheme for the continuum approach is trivial. 

Thus, the continuum approach is favored for large num- 
bers of degrees of freedom. To make this comparison more 
concrete, we now apply the projected gradient method of 
Section 11 to configuration optimization of a planar VGT truss 
manipulator, and compare the computation time with that of 
the continuum approach-both running on a single processor. 
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Fig. 7. Continuum method (calculus of variations) solution. 

B. Numerical Comparison of Two Approaches 

In this section, we compare the computation required to 
determine the optimal configurations for the VGT manipulator 
described previously. In this numerical comparison, the end- 
effector of the VGT mechanism follows the straight line 
trajectory 

with no prescribed orientation. This trajectory is approximated 
by 101 discrete points, i.e., Tee(t) is evaluated at intervals of 
At = 0.005. For configuration optimization, the goal is to 
determine the optimal configuration at each point along the 
trajectory. 

We define the optimal configuration as the one which 
requires the least deformation, or joint displacement, from a 
reference configuration. In this case, the reference configura- 
tion at t = 0 corresponds to a VGT configuration in which 
the outside actuators have length q3,(0) = q3,+2(0) = t and 
the diagonal actuators have length q3%+1(O) = e. That is, 
the reference configuration is straight, with no extension or 
contraction. The vector e = Q - Q(0) measures the amount of 
joint displacement from the reference configuration. Note that 
the desired trajectory was chosen so that the manipulator is 
initially in its reference configuration at t = 0. 

For the sake of comparison, we use two redundancy resolu- 
tion methods on the trial trajectory: 1) the continuum approach 
with the minimum deformation criteria discussed earlier and 2) 
joint-based configuration optimization with the square of the 
norm of joint displacements as the optimization criteria imple- 
mented via gradient projection onto the Jacobian null space. 
The latter is implemented in two ways: Jacobian calculated 
numerically column by column (using the standard centered 
difference approximation for derivatives applied to the forward 
kinematic function), and the Jacobian calculated recursively. 
The forward kinematics for the VGT described earlier and used 
here can be found in [ 131. The Lagrange-Newton method is 
not used in this comparison, because it is generally far slower 
than the Jacobian-based approaches. 

Our implementation of the continuum approach follows 
directly the developments in Section V. The weighting factors 
on mechanism bending in the cost function of (17) are is 
chosen to be B ( s )  = 1 and a(.) = r2/2, where r = & 
because the width of each fixed truss element is taken to be 
w = t, and r = w/2. The backbone curve configuration 
that corresponds to the undeformed reference configuration 
can be found by taking ~ ~ ( 0 )  = 0 in (35) for i = 1 ,2 ,3  and 
integrating (31) and (32). The resulting backbone curve is a 

Fig. 8. Joint-based configuration optimization. 

uniformly parame~zed straight line described by the shape 
functions 6(s,O) = 0 and L(s,O) = s. The reduced Jacobian 
elements are calculated at each time step using Liebnitz’s rule 
and Euler integration. For purposes of numerical integration 
with respect to s, the backbone curve interval s E [0 ,1]  
is subdivided into 5n intervals so that the backbone curve 
interval s E [s,-~,s,], which defines the motion of the ith 
module, is approximated by five segments. The configurations 
resulting from this method are shown in Fig. 7 for a 10 module 
VGT mechanism (with the same topology as the robot in 
Fig. 1). The configurations are shown at intervals of At = 0.1 
starting at t = 0.1. 

The joint-based configuration optimization simulation uses 
the projected gradient method reviewed in Section 11. The 
objective function is 

1 -  - 
2 

g(3) = -6.6, 

where 3 is the displacement of the joints from their reference 
configuration position. We have taken a = 3m < 1, so 
the influence of the null space term becomes more pronounced 
the further the configuration is from the global minimum of the 
cost function. If one were to do a line search for the optimal 
value of Q (which would be the most rigorous approach) this 
would add to the computational requirements of this method. 

Unlike the continuum approach, the joint-based approach 
requires us to compute the derivatives of the VGT forward 
kinematics equations. Since we are comparing this method for 
VGT structures consisting of 2 to 20 modules, it would be too 
tedious to derive closed form algebraic expressions for all the 
derivatives. In fact, the need to derive expressions for these 
derivatives for the parallelherial structures often used in real 
hyper-redundant systems is a major drawback of the Jacobian 
based methods. Instead, we numerically evaluate derivatives 
for each module and recursively compute the Jacobian as 
outlined in Appendix B. 

The configurations resulting from the joint-based configu- 
ration optimization method implemented with pseudo-inverse 
with gradient projection onto the Jacobian null space are 
shown in Fig. 8 for the case of a 10 module VGT mechanism. 

Fig. 9 shows the computation time (in seconds) required 
on a SUN SPARCstation ELC to compute the redundancy 
resolution solution for each method along the whole trajectory, 
and to display the results at all timesteps. CONT indicates time 
required for the continuum approach, PSEUDO is the time re- 
quired for the pseudo-inverse with nullspace projection where 
each column of the Jacobian is generated separately, and REC 
is the same as PSEUDO except that the Jacobian is recursively 
computed. Since both methods (CONT or PSEUDOAEC) 
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Numbes of Modules 

Computation time for calculus of vanations, and configuration opti- Fig. 9. 
mzahon via gradient projection. 

are aimed at the same objective, the configurations of the 
manipulators are qualitatively similar using both methods, 
though the continuum approach appears to give “smoother” 
results. 

The computation time for PSEUDO grows quadratically in 
N ,  whereas the computation time for CONT and REC are 
both linear in N .  Furthermore, the slope and intercept for 
CONT and REC are remarkably close. We believe this is due 
to the fact that the O ( N )  computations required to display the 
manipulator during the simulations contributes a great deal to 
the computation time for both methods on the workstation that 
was used. However, removing the computation time required 
for the simulations in this comparison favors our method 
because it is the fitting procedure and display that makes our 
method O ( N )  instead of O(1) on a serial processor. 

This is important because for point-to-point motions in the 
workspace, the fitting procedure does not have to be performed 
at each timestep when using the continuum approach, and 
so the only O ( N )  computations that have to be performed 
can be done infrequently. This is not true for the joint based 
methods, which require O ( N )  computations at each timestep. 
To emphasize this point, Fig. 10 plots the time required 
to compute both methods as before, but only display both 
methods at intervals of At = 0.1, instead of At = 0.005. 
Here we see that the continuum approach is much better than 
even the recursive Jacobian-based approach. 

Furthermore, the continuum method can be implemented 
in ways which accommodate real-time control. For example, 
a look-up table scheme or neural network can store the 
relationship between end-effector coordinates and reduced 
configuration parameters. This relationship can be computed 
off-line and stored using O(1) amount of memory. Table 
lookup and interpolation (or neural network generalization) 
can approximate the mapping between reduced parameters and 
end-effector coordinates in O( 1) time. Manipulator configura- 
tions can then be reconstructed Cjoint values calculated) via a 
fitting procedure in O ( N )  time. If one were to form a look- 
up table of discrete joint values, this would require O ( N )  

20 
Humber of Modttles 

Fig. 10. 
figuration optimization with intermittent display. 

Computation time for calculus of variations, and joint-based con- 

memory, and O ( N )  time to interpolate. In this mode, the 
continuum method can be viewed as a “data compression” 
technique. 

VII. CONCLUSION 

This paper developed a method for determining “optimal” 
hyper-redundant manipulator configurations based on the cal- 
culus of variations and a continuous backbone curve model. 
This method also serves as the basis for trajectory planning 
schemes in which each configuration along the trajectory is 
optimal. Using the backbone curve approach and an associated 
optimality criteria, the entire backbone configuration becomes 
a function of a set of reduced configuration variables. It was 
shown that this method is computationally competitive with 
the most efficient joint-based approaches when implemented 
on a serial processor, and possesses the property that it can be 
computed in 0(1) time if computations are distributed over 
O ( N )  processors-a statement which is not true for other 
methods. 

APPENDIX A 
REVIEW OF VARIATIONAL CALCULUS 

Recall [16] that vector functions g ( s )  E I R p  (where in our 
case, g(s )  will be interpreted as the set of backbone curve 
shape functions and s is the backbone curve length parameter) 
will extremize the integral 

I = Jo’ f ( s , g ( s ) , i j ( s ) , % ( s ) ,  . . . , J (” ) )ds  (47) 

which is subject to the isoperimetric or integral constraints 

if the Lagrangian 

C(S) = f ( s ,  g, . . .) + p, . h(s, g, . . .) (49) 

is a solution to the Euler-Lagrange equations 

= 2 and p, is the vector of Lagrange multipliers that is 
associated with constraint (48), and is independent of s. In our 
problem, the isoperimetric constraints arise from end-effector 
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position constraints of the form (8). Thus, E(.)  will take the 
form Z(s)U(s); and ZD is the desired end-effector location. 

With constraint (48) and boundary conditions v(0) = & 
and$(l) =$  for i  E [0,1,...,n],(50)canbesolvedtofind 
j j ( s ) ,  and pc that extremize (47). In some cases we may not 
choose to impose boundary conditions at s = 1, in which case 
the “free” end conditions at s = 1 will be [3]: 

Existence of solutions to the Euler-Lagrange equations is 
discussed in [16]. We develop one solution method in Section 
IV-B for the purposes of computational complexity analysis 
and for comparison to the joint based approaches of Section 
11. 

APPENDIX B 
RECURSIVE COMPUTATION OF MACROSCOPICALLY 

SERIAL MANIPULATOR JACOBIANS IS O ( N )  
Let e i  denote the set of joint variables of the ith module 

of a hyper-redundant manipulator comprised of a cascade 
of identical modules. Assume that there are p such joint 
variables, and n modules, i.e., N = pn. Let gi(gi) denote 
the displacement (e.g., homogeneous 4 x 4 matrix) between a 
reference frame attached to module i - 1 and module i. The 
location of the end-effector or tool frame with respect to the 
base frame is thus given by 

Son = 91(G1)~2(g2) * *  *gn(gn)- 

In general, for an object whose location in space is given by 
a displacement g ( t ) ,  its body velocity is computed as 

g-% 

where the “‘” denotes differentiation with respect to time. Note 
that matrix g-lg takes the form 

[$ ;] 
where LJ is a 3 x 3 skew symmetric matrix. We can convert 
this to 6 x 1 “twist” coordinates via the “V” operator: 

[E] = [$ ;IV. 
The body Jacobian is thus 

The first p columns take the form 

while columns j p  + 1 to ( j  + 1)p take the form 

f o r i =  l , . . . , p a n d j = l , . . . , n - l  . 

Hence, to compute the body Jacobian, one needs to compute 
all sequences of the form gJ . . . gn for j = 1, . . . (n - 1), 
and their inverses. This can be done recursively in O(n) 
calculations (though it needs O(n) memory storage). Next, 
the individual matrix columns are computed using a constant 
time algorithm. 

Note that the Jacobian which is used in standard robotics 
practice is neither the rigorously correct body coordinates Ja- 
cobian or spatial coordinates Jacobian. Instead, it is a “hybrid” 
Jacobian. The hybrid Jacobian, J H ,  can be computed as 

where Ron is the rotation matrix part of gonr which presumably 
has already been computed. However, this too is a linear time 
operation. 

Hence, the Jacobian of modular structures can in general be 
computed in O(n) = O ( N )  time. 
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