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Abstract—Hyper-redundant, or ‘snake-like’, manipulators have a very large number of actuatable degrees
of freedom. This paper develops an efficient formulation of approximate hyper-redundant manipulator
dynamics. The most efficient methods for representing manipulator dynamics in the literature require
serial computations proportional to the number of degrees of freedom. Furthermore, these methods are
not fully parallelizable. For hyper-redundant manipulators, which may have tens, hundreds or thousands
of actuators, these formulations preclude real time implementation. This paper therefore looks at the
mechanics of hyper-redundant manipulators from the point of view of an approximation to an ‘infinite
degree-or-freedom’ (or continuum) problem. The dynamics for this case is developed. The approximate
dynamics of actual hyper-redundant manipulators is then reduced to a problem which is O(1) in time,
i.e. the algorithm is O(n) is the total number of computations, but these computations can be completely
distributed over n parallel processors. This is achieved by ‘projecting’ the dynamics of the continuum
model onto the actual robotic structure. Applications of this method to practical computed torque control
schemes for hyper-redundant manipulators is demonstrated with two examples: (i) industrial pick-and-
place tasks and (ii) inspection in an environment filled with viscous sludge, such as a hazardous waste
dump. The results are compared with a lumped mass model of a particular hyper-redundant manipulator.

1. INTRODUCTION

Hyper-redundant manipulators have a very large number of actuatable degrees of free-
dom. Applications of ‘snake-like’ hyper-redundant manipulators include inspection
in highly constrained environments, tentacle-like grasping of objects and whole-arm
manipulation. Snake-like devices also have applications to locomotion [1-3].
Computationally attractive modeling of the system kinematics and dynamics is nec-
essary for hyper-redundant manipulators to be used effectively. An efficient framework
for the kinematics and motion planning of hyper-redundant manipulators is developed
in [4, 12], and demonstrated in hardware in [5]. That framework is based on a
continuous curve (or ‘continuum’) approximation which captures the manipulator’s
macroscopic geometric features. The continuum approach is an alternative to methods
developed recently for particular hyper-redundant robot morphologies [6, 7, 19].
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This paper extends the continuum approach previously used for hyper-redundant
manipulator kinematics to include efficient formulation of approximate hyper-redun-
dant manipulator dynamics. The most efficient methods for representing manipulator
dynamics in the literature require serial computations which grow linearly with the
number of degrees of freedom [§, 9]. Furthermore, these methods are not fully
parallelizable because serial iterations in force and velocity are intrinsic to their nature.
For hyper-redundant manipulators, which may have tens, hundreds or thousands of
actuators, this is not acceptable. This paper therefore looks at the dynamics problem
for hyper-redundant manipulators from the point of view of an approximation to an
‘infinite degree-of-freedom’ problem. The dynamic equations for this infinite degree-
of-freedom continuum model are developed. The dynamics of the continuum model is
then ‘projected’ onto actual robotic structures. Application of this method to practical
computed torque control schemes for hyper-redundant manipulators is demonstrated
and compared with a lumped mass model.

This paper is organized as follows: Section 2 reviews previous formulations of
robotic manipulator dynamics, basic principles of continuum mechanics and the kine-
matics of hyper-redundant manipulators. Section 3 uses the principles of continuum
mechanics to approximately represent the dynamics of hyper-redundant manipulators.
Section 3 also defines a procedure for ‘projecting’ the dynamics of the continuum
model onto actual robotic structures. This approach is demonstrated with closed form
solutions applied to a specific manipulator morphology: the Variable Geometry Truss
(VGT) manipulator. Section 4 applies this new dynamics algorithm to two problems:
(i) industrial pick-and-place tasks and (ii) inspection in a hazardous waste dump.
Section 5 compares the new algorithm with existing methods.

2. BACKGROUND AND REVIEW

This section contains a review of a broad selection of material. Subsection 2.1 briefly
reviews standard techniques for formulating the dynamics of robotic manipulators.
Subsection 2.2 reviews some basic laws in continuum mechanics — an area of me-
chanics not commonly used in robotics. Subsection 2.3 reviews the author’s previous
techniques for describing hyper-redundant manipulator kinematics.

2.1. Standard formulations of manipulator dynamics

The manipulator dynamics problem is generally formulated using techniques from
Lagrangian mechanics or iterative Newton-Euler formulations. Lagrangian mechanics
results in equations of motion of the form:

M@ + €@, )+ G@ =1. (1)
The direct evaluation of the left-hand side of the above dynamical equations for

a given trajectory in joint space, 4(t) € R¥, requires O(N?) computations for a
manipulator with N d.o.f. This is often referred to as the ‘inverse dynamics’ problem
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[10]. It has been shown that Lagrangian formulations can be improved so as to
have greater computational efficiency [8]. Nonetheless, the most commonly used
method for formulating manipulator dynamics efficiently is the iterative Newton—
Euler technique [9].

In the iterative Newton—Euler method, serial iterations in velocity are propagated
forward from the manipulator base to the end-effector and forces are propagated
backwards from the end-effector to the base. The equations associated with this
procedure are given in [9]. The Lagrangian and iterative Newton—Euler formulation
produce the same results. That is, torques are computed based on the desired joint
trajectory. The difference is that the Lagrangian technique computes the vector of
torques, and the iterative Newton—FEuler approach generates components of the torque
vector sequentially.

Computational aspects of these, and other, methods of formulating manipulator dy-
namics can be summarized by simply stating that the best methods require O(N)
serial computations. As one might expect, even this can become a heavy computa-
tional burden when considering hyper-redundant manipulators, where the number of
degrees of freedom may be on the order of dozens or even hundreds. For this reason,
it is worth investigating ‘continuum’ approximations to hyper-redundant manipulator
dynamics.

2.2. Review of continuum mechanics

Continuum mechanics is a field of study concerned with the kinematics and dynamics
of deformable media [11, 18]. Suppose we are given a deformable object. Let X
denote the position of an infinitesimal particle within this object. The mass of the

object is given by
M=/ pdV,
v

where p = p(X, t) is the mass density of the object and V is the volume occupied by
the object. Similarly, the linear momentum of the object is given by

P =/ pvdV,
\4

where ¥ = dx/d¢, and the angular momentum of the object is

Z=/i><p6dv.
\%4

Conservation of mass is therefore written as dM/dr = 0, the momentum balance is
dp /dt = F and the angular momentum balance is dL Jdt = N, where F and N are,
respectively, the force and moment applied to the object. In the case of a continuum,
these are broken down into contributions at the surface of the object and those which
act through the volume. The former are called ‘tractions’ and the latter are called
‘body forces’. In addition, these balances apply to any subdivision of the object.



220 G. S. Chirikjian

Figure 1. Forces acting on a continuum.

Figure 1 shows the body forces acting on an arbitrary cube within the volume and the
applied surface tractions. Using a few classical arguments, the above laws: (i) mass
balance, (ii) momentum balance and (iii) angular momentum balance are written in
control volume form, respectively, as:

d a - -
- dV = — dv -ndS =0, 2
dt_/{; atfvp +/Spv n (2)
- - d -
/tdS—}—fpde:—/pvdV, 3
s v dr Jy
- hnd - g d e -
/(xxt)dS—}—/(xpr)dV:-——/(xxpv)dV. @)
s v dt Jy

The subscripts S and V denote integrals over surface and volume of the region under
consideration. 7 is the normal to the control volume. 7 is the applied surface ‘traction’.
b is the body force per unit mass acting on the volume (e.g. gravity, magnetism, etc.).

It is interesting and useful for the formulation in Section 3 to note that the conser-
vation of mass equation can be written different as:

[ pGnav= [ n(@)av )
v Vo
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where X is the position of a given infinitesimal volume (or particle) at time ¢ = 0 and
= x(X t) is the position of that particle at all future times, i.e. x(X 0) = X. Vo
denotes the volume occupied by the object at time ¢t = 0, i.e. dVp = dX,dX,dX3,
whereas dV = dx; dx; dxs. The integrals above are taken bver the same material
particles, although the size and shape of the volume may change.

By changing the domain of integration of the expression on the left side of equa-
tion (5), we get:

fp(z,t)dV=f p(3(X,1),1)J (X, 1) dVs, (6)
v Vo

where J (X t) = det(ax/ X ) is the determinant of the Jacobian matrix of the trans-
formation X = x(X t). Clearly, since both expressions hold for all possible volumes,
we get

po(X) = p(#(X, 1), )T (R,1) or p(E(X.1).1) = po(X)/T(R, 1), ()

In other words, by knowing the density of the object at time zero and knowing how
it has deformed from that state, we know what its density is at the current time. This
will be particularly useful for hyper-redundant manipulators that stretch and contract,
thus changing density per unit length.

The next subsection reviews hyper-redundant manipulator kinematics, which forms
the foundation for a continuum model of hyper-redundant manipulator dynamics.

2.3. Kinematics of backbone curves

It is assumed here that regardless of mechanical implementation, the important macro-
scopic features of a hyper-redundant robotic manipulator can be captured by a back-
bone curve and associated set of reference frames which evolve along the curve. A
backbone curve parametrization and set of reference frames are collectively referred
to as the backbone reference set. In this formulation, inverse kinematics and trajectory
planning tasks are reduced to the determination of the proper time varying behavior
of the backbone reference set [4, 12]. Note that depending on the actual mechanical
implementation of the robot, the associated backbone curve may be inextensible (fixed
length) or extensible (variable length).

A continuous backbone curve inverse kinematic solution (which may be generated
by a ‘modal approach’ [12], ‘optimality-based approach’ [13] or any other method)
can be used to directly determine the actuator displacements of a continuous mor-
phology robot, e.g. such as one constructed from pneumatic actuator bundles. For
discretely segmented modular morphologies, such as the one shown in Fig. 2, the
continuous curve solution can be used, via a ‘fitting’ procedure [4, 12], to compute
the actuator displacements which cause the manipulator to assume the nominal shape
of the backbone curve model. In other words, the actual manipulator configuration is
‘algorithmically linked’ to the backbone curve model.

Techniques for the physically meaningful parametrization of backbone reference sets
are reviewed in Subsection 2.3.1. Subsection 2.3.2 reviews how actual manipulators
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Backbone Curve

T S
Figure 2, A modular morphology with superimposed backbone curve.

are ‘fit’ to the curve model. For the sake of brevity, only planar exampled are used
to illustrate these concepts. For more general formulations consult [4, 12].

2.3.1. Kinematics of backbone reference sets. The position of points on a backbone
curve can be parametrized in the form:

X(s,t) = / [1+ e(o, H)]is(o, t) do, )
0

where s € [0, 1] is a parameter measuring distance along the backbone curve at
time ¢. s need not be the classical arc length, which is denoted below as L. X(s, t) is
a position vector from the base of the backbone curve to the point on the backbone
curve denoted by curve parameter s. Uiy (s, t) is the unit tangent vector to the curve at s.
€(s, t) is the local extensibility of the manipulator. €(s, t) physically expresses how
the backbone curve, which abstractly represents important geometric aspects of the
real robot, locally expands or contracts relative to a given reference state, or ‘home’
configuration, of the robot. €(s,?) > O indicates local extension, while e(s,#) < 0
implies local contraction. One can also interpret the extensibility as a measure of how
the parameter s differs from dimensionless arc length by computing arc length in the
regular way [14]:

L(s,t) = /"‘[1 + e(o, 1)] do. 9)
0
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Using localization arguments, it is clear that the only time s is equal to L is when
e(s,t) = 0. It will be useful to assume that there is a time, say + = 0, when
€(s,0) = 0. This will be called the reference state and in this state L(s,0) = s.
This fact will be_applied to hyper-redundant manipulator dynamics in the same way
that x(X 0) = X is applied in general continuum mechanics. For compactness of
notation, the following is defined:

I(s,t) =0L/ds = 1 +€(s,1).

The parametrization of equation (8) has the following interpretation. The backbone
curve is ‘grown’ from the base by propagating the curve forward along the tangent
vector, which is varying its direction according to 4, (s, t) and varying its magnitude
(or ‘growthrate’) according to I(s, t).

In the planar case, the locus of backbone curve points is defined by X(s, 1) =
[x1(s, ), x2(s, )]T, where

xi(s, 1) = /sl(a, t)sinf(o, t) do, 10)
0

xo(s, 1) = /s I(o, t)cosB(o, 1) do. an
0

8(s, t) is the clockwise measured angle which the tangent to the curve at point s makes
with the x,-axis at time . Figure 3(b) illustrates the physical meaning of I(s, ¢) and
O(s,t). A simple relationship exists between the classical curvature function of the
curve and the functions 8, and I:

a6 106
K o= —— = —
aL I 0s
r3
D
& /.
g/ >
W :
)
I\'(s): 1/ z2
7 (a) Spatial (b) Planar

Figure 3. Description of backbone curve parametrization
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A frame can be assigned to every point on a planar curve defined by (s, ¢). This
frame is denoted by

—sinf cosf

QG, t)=< cos@ sin9>. (12)

A similar formulation results for the spatial case, where angles denoted K and T define
the direction of # (see Fig. 3a), and a roll about the backbone curve completes the
description.

For consistency, the second column of Q is chosen to be the backbone curve tangent
vector, i,

All the information contained in a planar backbone curve model is conveniently
expressed as a parametrized set of homogeneous transforms:

"(Q(s,t) x(s,t)>‘ (13)

Hs, 1y | x
AL 1

In summary, the kinematics of a backbone reference set, which uniquely describes
a hyper-redundant manipulator backbone curve configuration, can be described by a
set of physically meaningful geometric functions, which in the planar case are (s, 7),
and €(s, t). This general formulation contrasts recent work in which a continuous
curve model was used for the kinematics of inextensible revolute-jointed kinematic
chains [15].

A “fitting’ procedure uses the set of frames defined by H(s, t) to cause a hyper-
redundant manipulator to adhere to the backbone curve. Thus, the curve together with
a set of reference frames and a fitting procedure define the macroscopic geometry of
the manipulator. The next subsection details a parallelizable fitting procedure.

2.3.2. Inverse kinematics in parallel via ‘fitting’. A parallel algorithm developed in
[12], which is based on the formulation of the previous subsubsection, is reviewed
here. Manipulators with a modular architecture are considered. For example, the
modules of an extensible spatial hyper-redundant manipulator might be Stewart plat-
forms. It is assumed for simplicity that the modules are uniform in structure and
size.

The backbone reference set can be used to generate inverse kinematic solutions for
modular manipulators as follows. Consider the ith module in the manipulator chain
consisting of n modules. Attach a frame (represented as a homogenous transform),
H-!, to the ‘input’, or base, of the module, and a frame, H', to the ‘output’, or top,
of the module. For the discretely segmented modular manipulator configuration to
conform to the continuous curve geometry, the frames H'~! and H are chosen to
coincide with the backbone reference frames at points given by s = (i — 1)/n and
s = i/n, respectively (see Fig. 4). That is, equate H' to H(i/n, t), which was defined
in equation (13). Recall that equal partitioning of the curve parameter need not imply
equal spacing along the curve because in general L(s, t) # s.
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Figure 4. Fitting manipulator modules to the backbone

The frame H' measured relative to frame H'™! is denoted H_,. This consists of
the relative translation, ?ii_l, and rotation, Rf_,lz

i - M; s = M;
éq(‘jl’Mi):( xv—l-’(q ) rt—l(q )) (14)

0T 1

gMi e R™ is the vector of joint displacements which determine the geometry of the ith
module. In the plane, m = 3, while in space m = 6. The total number of manipulator
degrees of freedom is then N = nm. It is assumed that the inverse kinematics of each
module, which relates H' to H'~!, can be solved in a closed or efficient form (which
is commonly the case for platform manipulator modules) fori € [1,...,n].

The manipulator configuration will conform to the backbone reference set if:

S fi—1 ]
H_, (3" () = H 1<l_—;—’t>’}'{(i—,t>. Cas

In the planar case, equation (15) is rewritten as:

@) =Pl_ (0 (16)
and
(@) = pi_y (), a7

where

fiif'f/'zl(s’ 1) sin[6(s, ) — 0 (=2, t)]ds) %)

_—
Pi-t (fiif'll/nl(s, t)cos [0(s, 1) —o(=L,1)]ds
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. cos 6! sin 6!
P;._l(t)=( oM ’V). (19)

—sinfy, cosOy,

and

i (t) = 6(%, 1) — 9('%1, 1) is the relative angle of rotation of the frame at s = ,’—l
with respect to the one at s = %‘-

Assume that the functions {e(s, t), 8(s, t)} have been specified. Each R _;andF r
can then be computed in parallel as a function of the backbone reference set geometry
For example, in the planar case, if we specify that 6(s, z) = a;(¢)s and I(s, t) = a2(¢),
then:

a(1)
oLl —cosai(®)s] cosai(t)s  sinap(t)s
B, = “)2() , Q(s,t)=( are) 1o ) (20)
o ——sina;(t)s —sina;(t)s cosaj(t)s
and
- :ZZ; [1 -~ cos alrf‘)] . cos a—‘:—” sin ﬂ'éi)-
hd — 1 L —
Pii(t) = 20 G a® » P = @ aw | @D
a; () n —8in —  CO§ ==

n

This provides the kinematic inputs for each module in equations (16) and (17). The
inverse kinematics of each module can be performed in parallel to yield 7% as a
function of the curve geometry for each i. In this case the curve geometry is specified
by values of a; and a,. Therefore, a; and a; determine manipulator configuration.
An example illustrates this below.

Figure 5(a) shows one module of the planar truss manipulator. In this case, one
segment of the truss is composed of side members and a cross element. The vectors
representing the legs of the ith truss module defined in the frame at the center of the
(i — 1)st face are denoted Ay;, Asitr, Agiga.

ith face

(b) Configuration Specified by Backbone Curve

(a) One Module

Figure 5. A planar variable geometry truss manipulator
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These vectors are determined from the continuous curve model as follows:

Ay = pi_y — iy + P, (22)
Agiql = ﬁf_l - ﬁi—l + Péqﬁg, (23)
Msiya = Pi_y — iy '+ PL_j7ib, (24)

where r’ij. are the vectors to the jth vertex of the ith platform in the frame affixed to
that platform. For this specific example,

Ay = [—wi/2,01", 7 =[w;/2,0]",

where w; is the width of each horizontal face of the truss, as denoted in Fig. 5(a).
The controlled degrees of freedom are lengths

L = Al (25)

for k = 1, ..., 3n. Thus, equations (22)-(25) provide the inverse kinematics solution
for this module geometry based on the backbone curve information provided in (18)—
(21). A sample configuration is shown in Fig. 5(b) for a; = a; = 0.8. Is general,
restricting the configuration of a hyper-redundant manipulator to act as if it has fewer
degrees of freedom than it actually does in order to perform a task is called ‘hyper-
redundancy resolution’ [4].

3. CONTINUUM FORMULATION OF HYPER-REDUNDANT MANIPULATOR DYNAMICS

The general equations of a continuum and the kinematic representation of hyper-
redundant manipulator backbone curves reviewed in Section 2 are used here to for-
mulate the approximate dynamics of hyper-redundant manipulators in efficient form.
Each conservation law is addressed separately in the following subsections. Subsec-
tion 3.1 addresses the mass balance, Subsection 3.2 addresses the momentum balance
and Subsection 3.3 addresses the angular momentum balance. Subsection 3.4 intro-
duces methods for linking continuum mechanics to actual hyper-redundant manipula-
tor dynamics, i.e. the dynamics of the continuum model is ‘projected’ onto the actual
robotic structure. For the case of slender ‘snake-like’ hyper-redundant manipulators,
the continuum under investigation is the backbone curve.

3.1. Inertial properties of backbone reference sets: mass balance

Approximate inertial properties can be incorporated into this model very simply.
Because the description of the backbone reference set it cast within a Lagrangian
framework, manipulator inertial properties can be approximated using models similar
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to continuum mechanics. We simply define the mass density per unit curve param-
eter as pp(s). In practical terms, pp(s) approximately captures the inertial properties
of slender ‘snake-like’ hyper-redundant manipulators. No transport of mass occurs
within the manipulator. However, if the robot is actuated with hydraulics, this as-
sumption may no longer be valid because significant amounts of fluid may flow along
the manipulator.

Under the assumption that the manipulator has constant mass, the mass density per
unit curve parameter, po(s), will always reflect the manipulator’s macroscopic inertial
properties no matter how it bends and extends. The key to understanding why this is
the case is that in general L(s, ¢) % s. Denote the mass of a manipulator from its base
to a point on the manipulator at arc length L = L(s, t) to be M(L) = M{(L(s,1)).
The mass density per unit arc length is then:

oM oM o
(L8 = p(Lis, 1), 1) = - = —— Rl
s oL 26)
_pols)  pols)

T s, 1) L-es, )

Thus we see that if a manipulator contracts, and /(s, t) decreases, the mass density per
unit arc length will increase. Likewise, when the manipulator stretches, and (s, t)
increases, the mass density per unit arc length will decrease. However, the mass
density per unit curve parameter s will remain constant with respect to time, and
so conservation of mass is implicity incorporated in this model. This is actually a
degenerate case of equation (7), where in this case J = 1 + €(s, 1).

We can use this fact to transform integrals in the following way:

L(1,t) R 1 R oL
/L p(L,t)f(L,t)dL:/ ,O(L(s,t),t)f(L(s,t),t)gds

(0.1) o

1
- / po(s) £ (s, 1) ds

where f (L(s,t),t) = f(s,t) and o is an arbitrary value of the curve parameter.
Therefore, all inertial terms and body forces are written in a similar form independent
of whether they are expressed in terms of actual arc length, L, or referential arc
length, s.

3.2. Momentum balance

The conservation of momentum equations provided by continuum mechanics take on
a particular form when combined with the backbone model presented earlier. Namely:

d [! ax " L, -
< f po(s) 3 (s, 1 ds = Flo,1) + / G5, 1) + po()B(s, ) ds.  (2T)

The integrals over volume and surface in (3) both degenerate to one-dimensional
integrals over the curve parameter. This is because surface forces and body forces are
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F‘(a, 1)

(2) Internal Force and Moment in Continuum Model (b) Forces in Truss Members

Figure 6. Free body diagrams defining ‘projection’ of dynamics

both represented as forces per unit of the backbone curve parameter. Equation (27)
corresponds to a force balance on the free-body diagram in Fig. 6(a). This diagram
results from an imaginary cut made normal to the backbone curve at the point at
which s = . The vector F (o, t) is the internal force transmitted to the distal end of
the manipulator (s € [o, 1]) by the lower end of the manipulator (s € [o, 1]).

It should be noted that surface tractions acting on the manipulator, such as viscous
drag forces, will generally be in terms of arc length, i.e. f = f(L,t). The surface
traction per unit curve parameter is derived by observing that

L(1,1) N 1 . aL 1 .
/ tH(L,YdL = / tHL(s,t),t)—ds = / to(s, t) ds.
L1 o ds

g

Since this is true over all values of o, we have that
fo(s, 1) = 1(L(s, 1), DI(s, 1).

3.3. Angular momentum balance

The angular momentum balance equation provided by continuum mechanics, equation
(4), corresponding to Fig. 6(a) also has a special form for the case of hyper-redundant
manipulator backbone curves:

d ['. ax
5/{7 X(s, 1) X po(S)a—:(s, t)ds

= M(o, 1) + ¥(0,t) x F(a,1) (28)
1 —
+f (s, 1) x (fo(s, 1) + po(s)b(s, 1)) ds.

Again referring to the imaginary cut made normal to the backbone curve at the point
at which s = o, the vector M (o, t) is the internal moment transmitted to the distal
end of the manipulator.



230 G. S. Chirikjian

Equations (27) and (28) furnish all the tools needed to compute hyper-redundant
manipulator dynamics.

3.4. Projecting dynamics onto robotic structures

In order to make use of the continuum model, there must be a way to transfer the
dynamical information to the actual physical structure under consideration. In broad
terms, projecting the dynamics of the continuum model onto the actual manipulator
is achieved by again making an imaginary ‘cut’ in the continuum model. Only now,
the forces and moments at the cut will be matched with the actual hyper-redundant
structure at corresponding locations along the length of the manipulator. Inertial
forces, body forces and surface tractions accumulated from the distal end of the
manipulator to the cross-section under investigation will be approximated using the
backbone curve model. The resulting reaction forces are calculated in the physical
structure at the imaginary cutting plane. For example, the rules of structural analysis
are used when considering the forces on a variable geometry truss. For manipulators
with a macroscopic serial structure, the imaginary cutting planes are located at the
interface between links or modules. Therefore,

d (! a% U ) )
& ’ Po(s)—a')tﬁ(s, t) ds—/ (fo(s, £) + po(s)b(s, 1)) ds = F; (1), (29)
d rt. ) ( 92 N ds — L t : . : ;
@), 760 %m0 / 60 (@0 + miodbs, 0)ds

—F@/n, 1) x F(1) = Mi(2),

where ﬁ‘, and Mi are the continuum approximation of the force and moment exerted
by the ith module (or link) on the (i 4-1)st module of a hyper-redundant manipulator.

Each of the above integrals can be evaluated separately for i € [0,...,n — 1] and
so the dynamics problem can be completely parallelized. The key to this approach is
the continuum model, without which serial computations would have to be performed
and a Newton--Euler style algorithm would result. With the continuum model, closed
form solutions or quadrature approximations to the integrals can be computed and so
there is no need for iteration.

Assuming that the inertial forces, body forces and surface tractions computed from
the continuum model are representative of the actual manipulator, the reactions present
in the manipulator structure at the ith module are equated to the above quantities. It is
then simply a matter of matching forces in the actual structure to those generated from
the continuum model, as shown in Fig. 6(b). The resulting forces in the members are
found by inverting the matrix equation:

< Z3i Z3i41 Z3i42 ) F,
—[es (k) a] [E () ann] [ i(4e)dasa] ) \ B0

A3i42 31
_ F,
T \é M
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to solve for FXJ., which is the force in the jth member of the truss. In the above
equation, the following notation is used: [4, b,¢] = a- (b x ). For this particular
example, Fy; are the generalized joint torques, i.e. 7;. This information can be used

in a computed torque control scheme as shown in Fig. 7, where the vectors fij. are
defined in Subsection 2.3.2.

Note that 7i(i/n, t) = Q(i/n, t)ii. The vectors Z; are the unit vectors along the
truss elements written in base frame coordinates. That is,

. i—1 \ X
;= —Q| —, 1 | —.
Zi Q( " )fz

These are written explicitly as:

- i1 -] - i1 -~
=n{—)—x{(;)+x{—) +n(:
231 —_ -,nf—lll ) — E'l) _;xf_lll ) - (’)1) , (32)
[i(=2) +£(5) - 2(50) -G
- i1 -1 —ari—1 = (1
— P R, — + e } e [ =
23l+1 — -’nf_lll ) ngn) _'xf_li ) ~ gn) , (33)
17(57) +3(5) — #(50) +4(3)|
- ri—1 - f1 - il (1
— - + O T, -
o ) = 26) 4 3(5) i) o

Because truss structures absorb the vast majority of the load axially in its members,
there are no significant bending moments in these members.
Section 4 illustrates the general formulation of this section with a closed form

example. This example is examined in the context of (i) pick-and-place tasks and (ii)
inspection in hazardous sludge.

&=Kp(f(@) - §) + Ko(3i - §)

_ continuum
"~ |dynamics K, and K, are respectively
# position and velocity gain matrices.
curve f(?r.\ . |ioint level t ,’ + robot 74 L
ia kinematics] 4 \r_ ] servo é,'— N | am

Figure 7. Control scheme using continuum model
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4. EXAMPLES ILLUSTRATING APPLICATIONS

In this section, the theoretical developments presented previously are applied to two
practical situations in which hyper-redundant manipulators could be used. In both ex-
amples, it is assumed that the problem is planar and that the manipulator is constrained
to behave as if it has 2 d.o.f. by the algorithmic restrictions:

0(s) = a1()¢(s),  1(s) = ;a()$'(s). (35)

The ‘prime’ notation denotes differentiation with respect to s. ¢(s) is a strictly in-
creasing function (¢'(s) > 0 for all s € [0, 1]) with ¢(0) = 0 and ¢ (1) = 1. The
‘forward kinematics’ for the backbone curve representing this class of hyper-redundant
manipulator configurations is:

1
oo = x1(1, 1) = f ad ) sin@p() ds = (1 - cosa),  (36)
0 1
1
Yoo = x2(1, 1) = f @ (5) cos(@(s)) ds = Z sina, 37
0 1

with the position to points along the backbone given by:
as
x1(s,t) = —[1 —~ cosa19(s)], (38)
ay >

Xo(s, 1) = g—zl—sin a1 (s). (39)

The inverse kinematics (solution for a; and a,"as a function of end-effector position)
is:

a; = 2Atan‘.2..(xee7 Yee) (40)
and
at Yee
= SiYee 41
sina; @

where Atan2(-, -) is the two argument tangent function commonly used in robotics
[9]. The functions a;(z) and a,(¢) are thus calculated using (40) and (41) to cause
the manipulator’s end-effector to traverse a desired trajectory (xee(f), Yee(t)). The
manipulator inverse dynamics becomes a function of the two variables a; and g, and
their time derivatives when algorithmic constraints such as (35) are imposed. For
instance, if we take ¢(s) = s and py(s) = pp is constant:

as N sinags !
—=1s
d ! ax 2 (11[ ai ]s:i/n
—— s s, 1) ds = , 42
dr Jisn po ) ( ) dt2 a [cosals]l (“42)
ay aj =i/n
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and

d b, 9%
5;/5 x(s, 1) Xpo(s)?’?(s,t) ds
n

d a%_ 1, ssinagis cosays ! -
=pPo| T3 s T €3
I\ a aj a; s=i/n

4.1. Industrial pick-and-place tasks

(43)

One application of hyper-redundant manipulators is in industrial processes where
objects such as tools, metal components, etc., must be picked up from one location
and placed in another. In this section, the dynamics involved in performing such a
process is formulated, based on the general formulation of Section 3.

In this case, it will be assumed that there are no external surface tractions acting
on the manipulator. That is, the only external forces acting on the hyper-redundant
manipulator are body forces (in particular gravity). The force and moment vectors
acting on the distal » — i modules of a hyper-redundant manipulator due to gravity
will be of the form:

1 .
| s = (1- )i @)
i n

n

1
/ X(s,1) x (po(s)g) ds

n
. 1 1
as sima,s az | cosas .
= o gzm[s - ] + gl—[ } es, (45)
a a i/n a a i/n

where g is the vector of gravitational acceleration, and equations (38) and (39) have
been used to yield a closed form solution for X (s, t) with ¢(s) = 5. The total forces
(inertial and body) which must be compensated by forces in the members of the ith
bay of the truss are

N

- ! . d ! ox
Em=~/'mmwh+3 po(s) (5, 1) ds, (46)
i/n L Jim ot

1
0 =~ [ 56,0 % (n(s)3) &

n

1

d - ax - -
+ = | E(s,0) x pols) (s, ) ds — E(i/n, 1) x Fi(0), @7
dr Jism ot
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where each of the above integrals has been computed in closed form in (42)-(45),
and X(i/n, t) is given by (38) and (39) for s = i /n. F; and M; are then used in (31)
to compute forces in the truss.

4.2. Hazardous waste inspection

In some environments in which hyper-redundant manipulators will be expected to
perform, viscous frictional forces will present a major contribution to what the ma-
nipulator must overcome. This subsection considers the following problem: given a
hyper-redundant manipulator used for inspection in an environment filled with very
viscous fluid, approximate the forces on the manipulator as it traverses through the
‘sludge’ at very slow speeds.

For this problem, a very simplified model of the fluid behavior is assumed. In
particular, it is assumed that the Reynold’s number is zero (see [16] for a detailed
explanation). In essence, this means that the viscous forces are orders of magnitude
greater than the fluid’s inertial forces, such as would be the case of a manipulator
moving very slowly in a tar-pit. In this case, surface tractions (drag forces) dominate
the dynamics of the manipulator. This is in contrast to the example in the previous
subsection, where gravity and inertial terms dominate.

The drag on the manipulator per unit arc length as it moves through the sludge can
then be approximated using the slender cylinder model as:

t(L(s, 1), 1) = —puCri(s, t)- Ua(s, t) (48)

and
tl(L(S,t),t)=—'/,LC15(S,t)‘ﬁ1(S,t), (49)

where the subscript 2 represents the tangential component of drag force acting on the
manipulator and 1 is the normal component. This is consistent with the convention
in Section 2.3 for denoting backbone reference frame vectors. f, and #; are the com-
ponents of drag in these respective directions. v(s, t) is the velocity of the backbone
curve at the point with curve parameter equal to s, i.e.

-

U(s, t) = %(s, £). (50)

w is the viscosity of the fluid. The constants C; and C; are shape factors which have
been determined in the fluid mechanics literature. It has been shown [16] that for
very long cylindrical bodies,

1

C/Cy & . (51

2
It makes intuitive sense that pulling a cylinder through a viscous fluid lengthwise
would require less effort than pushing it through sideways. We will assume that this
is an approximation to a backbone curve which is ‘locally’ cylindrical.
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The viscous forces per unit curve parameter which result in surface tractions on
the manipulator are written in the base frame coordinates as:

fo(s, 1) = t(L(s, 1), )I(s, 1) = (t2(s, Dika(s, 1) + 1 (s, D1 (s, (s, 1), (52)

where in this case (s, 1) = ax(¢),

ta(s, Diia(s, 1) = -/ch(;l—jaws(s) + %(Z—j) sina1¢<s>) (S‘““1¢(S)) (53)

cosap(s)

and

- d
n(s, (s, 1) = —uCr— <§f)<aosa1¢(s> -1 (f‘;ff;‘f’é&) . (54)

when the manipulator shape is given by (38) and (39), where ¢ (s) = s.

It is assumed that the manipulator is neutrally buoyant in the sludge and the surface
traction due to viscosity is the only external force. In fact, if the manipulator is
moving very slowly (as must be the case for (48) and (49) to hold), the inertial forces
of the manipulator become insignificant, and the resulting force and moment on the
distal end of the manipulator is approximated simply as:

1
Fw=- [ inds=Fo+Eo. (55)

1
M) = —/ %(s, 1) X fo(s, £) ds — ¥(i /n, t) x Fi(t)

i/n

= M;&; — (i/n, 1) x Fi(t), (56)
where

ol ]

—=ai 3 s1na1s — COS as

a a; s=i/n

+ d <a2> I:s sin 2a1s]1

. dt\ oy 2 4a;, s=i/n
Fl=pG . (57

a2
—z-c'z; [—2 cosas + — sm als}
ai a; s=i/n

( ) [cos 2ays ] !
az
dt ay day s=i/n
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s sin2a;s ! .
_] = Yee + x2(i/n, 1)
s=i/n

a +
" d (a 2{2 4a;
F} = uCi—{— | , (58)
dt \a cos2a;s .
Qg | e + Xee — x1(i/n, 1)
4a s=i/n
and
a = . allay . 2,2 d (@ 1
M,-_—_._.Fi.ez-—/,bcz—z[—-al(l—i /n)——(—-—)cosals ] (59)
ay aylLai dr \ a; s=i/n

In this way, the forces in the members of a variable geometry truss are again computed
with (31), only now (55) and (56) are used to define F; and M;, and the inertial terms
are assumed to be small enough to ignore.

Thus we see that the continuum model has not only application to the dynamics
of hyper-redundant manipulators in industrial environments, but also to non-standard
niche applications in unstructured environments.

5. CONTINUUM VERSUS STANDARD DYNAMICS FORMULATIONS

By restricting a hyper-redundant manipulator to behave as if it possesses fewer degrees
of freedom than it actually does while performing a specific task, the continuum
formulation of hyper-redundant manipulator dynamics has been shown in this paper
to generate simple closed-form solutions to the inverse dynamics problem. These
algorithmic restrictions on a hyper-redundant manipulator’s degrees of freedom are
written symbolically in the form:

i=rf@ (60)

where ¢ € RY is the vector of generalized joint displacements and @ € RM is
the vector of a set of weightings (such as ‘modal participation factors’ [12]) which
specify the temporal behaviour of the backbone reference set. The function f(-)
contains information on the shape functions (or ‘modes’) chosen, kinematics of the
particular hyper-redundant manipulator under consideration and the fitting procedure
used. Because M < N, the fitting procedure (which algorithmically links the hyper-
redundant manipulator to the backbone reference set) effectively restricts the behavior
of the manipulator to fewer degrees of freedom than it physically possesses.

In order to achieve the same results usiong classical formulations of manipulator
dynamics, the following steps must be followed: Differentiating (60) with respect to
time, one finds: ) .

q = J(@a, (61)

where J(a) is a Jacobian which relates rates of change of the modal participation
factors, a, to the generalized joint rates. Differentiating again,

q=J@a+J@a. (62)
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Thus, given the mapping f (+) (which is enforced via the fitting procedure), and
the manipulator’s dynamical equations (in the form of equation (1)), we can find the
resulting inverse dynamics:

M(f@)[I@a +I@a] + C(f@,I@a) + G(f@) =z. (63)

This is what the classical Lagrangian formulation of manipulator dynamics looks
like for this case. The iterative Newton-Euler formulation for a hyper-redundant
manipulator constrained to a backbone curve can be formulated similarly. Thus, there
is a baseline for comparison between the continuum formulation and known models
for computing inverse dynamics.

The following subsections formulate (63) for a lumped mass model of the variable
geometry truss discussed earlier in this paper. The forces computed in the truss
actuators are then compared to those generated in the continuum model.

5.1. VGT dynamics

Consider the truss shown in Fig. 5. It is assumed that the mass of this truss is
concentrated at each vertex of the truss. These masses are denoted m;;, where i €
[1,..., n] denotes the module and j € [1, 2] denotes the left or right side of the truss.

The equations of motion are formulated here using Lagrange’s equations. In the
case of the pick-and-place task formulated using the continuum model in Subsection
4.1, the kinetic and potential energies are, respectively:

1 2 n YAy
TzEZ l’"ifXj‘Xj

Jj=1 i=

and
n

V=g) > myXj
j=1 i=1

where X ‘j is the position vector to the mass m;; with respect to the base frame of the
manipulator. The corresponding equations of motion are:

d(aL\ 3L _ .
dt aﬁk aﬁk__ ks

where L = T — V and F), is the force in the kth actuatable member of the truss.
These equations are written explicity as:

n a}}i

Z Zmu(}?lj —§>—5—£—Ij: = Fy,,

J=1 i=1
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where the chain rule can be used to generate:

a n n

wi Xl
X, = Z E”'ZZM acc" e

The inverse kinematics problem solved in equations (22)—(25) is then used to gen-
erate each leg length as a function of a; and a;. However, the vectors X ‘J and their
derivatives need to be computed via the truss forward kinematics. This is performed
in the following subsection.

5.2. VGT forward kinematics

As exemplified earlier in this paper (and dealt with in detail in the author’s previous
work [12]) the inverse kinematics of variable geometry truss manipulators is easily
solved. This, coupled with previously developed kinematic and motion planning algo-
rithms [4, 17], allows for fast parallelizable solution of hyper-redundant manipulator
inverse kinematics.

However, in order to compare the approach to hyper-redundant manipulator dynam-
ics introduced in this paper with standard techniques, we also need to compute the
forward kinematics of the variable geometry truss in order to have explicit represen-
tations of the vectors X ‘J

As has been documented in numerous works, the forward kinematics problem for
parallel manipulators is generally much more difficult than the inverse kinematics
problem. This is the reverse of the serial manipulator case in which the inverse
kinematics is more complicated than the forward kinematics. For manipulators such
as the variable geometry truss, which is a cascade of parallel modules, the complexity
of the forward kinematics problem is a hybrid of the parallel and serial cases.

Figure 5(a) shows one module of a variable geometry truss manipulator. The
forward kinematics problem for each module is the determination of the function
H::_l([,3,~, L3i41, Lai4+2), which maps the truss leg lengths to the position and orien-
tation of the end-effector relative to the base frame. This can be calculated using
trigonometric and/or geometric constructions. In the past, trigonometric arguments
were used. Here, a simple purely graphical method will be used for the case when
the truss width is the same for each module, i.e. w; = w.

Consider the legs with lengths £; for j € [3i, 3i 4 1, 3i + 2] in Fig. 5(b). Our goal
is to find the positions of ‘vertex 1’ and ‘vertex 2’ as a function of leg lengths. The
relative position of these vertices with respect to a frame fixed to the left corner of the
base of the ith module are denoted (x;;, y1;) and (x5, y2.;), respectively. Finding
the position and orientation of the top plate with respect to the bottom follow trivially
once we have this information.

The following constraints apply:

2 2 2 2
Xy + Y2 =Ly, (X2, — w)” + y21 = 5314—2’

i+t =L3 (x10 — %200 + i + y2.)*
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These equations are solved simultaneously to yield:

2 2 2
. L5 — Ly —w
x2,i - k)
2w

1

2 2\ 3

yoi= |2, — L — Lo —w° 2
W1 3i+1 2w

1
—b — (b* — 4ac)?
2a ’

and

-

Xy = yri = (£} —xi)) ,

where

2 2 2 2 2
a= 4x2‘i -+ 4)’2,:" b= 4(w X2 — L3;x9,i — [,3,~+1x2,,~),
e 4 2 2 2.2 2 2 4 2 2
¢ =Ly + Ly +2L5,L5, — 2L5w" — 2L5 w” + w” —4yy ,L3;.

The forward kinematics of the whole truss structure is then expressed in terms of
a sum of contributions from each truss module. The angle of inclination of the ith
face with respect to the (i — 1)st face is given by

1,i

v — .
cos(Af;) = Z2E T ELE L
w

. sin(Ag) = 22T
w
and so:
AG; = Atan 2()12',' = V1,is X2, — x;',-).

In order to represent the absolute position of each vertex of the truss in base frame
coordinates, the absolute angular displacement of the ith plate is defined as:

6; = Z’: AB;,
i=0

where by definition Afy = O for a fixed base. The absolute position of each vertex
with respect to the center of the base of the truss is then written as:

g ayd - - LN
X4 = X414+ ROTIEs, 9k_1][xk,,~ +(1+ (—1)!)?:1].

ROTIés, o] is the rotation matrix which rotates vectors coun_}erclockwise about the e3
axis by an amount o and this recursive definition starts at X(} = (=1) (w/2)é,.

With this kinematic information, the Lagrangian model of manipulator dynamics is
completed by simply taking the appropriate partial derivatives.
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5.3. Numerical results

The continuum model was run together with a lumped mass model governed by
Lagrange’s equations. In both models, the acceleration of gravity and mass of the
manipulator were set to g = [0, —1]T and M = 1, respectively. It was further assumed
that the mass distribution was homogeneous in both models, so in the continuum case,
o =1, and in the lumped parameter case, m;; == ﬁ A test end-effector trajectory of
the form:

11 301
Xeolt) = 5 + 7 €OSQmt/1000),  yeolt) = 7 + 7 sin(2/1000)

was used for T € [0, 1000]. This is a cyclic trajectory around a circle. Equations (40)
and (41) convert this information into the appropriate participation factors a; and ay,
which in turn specify the manipulator shape.

Results are shown in Figs 8 and 9. Fig. 8, plots of the magnitudes of the force
vectors generated by the two dynamic models are compared over the trajectory. The
measure used is:

1/ =\e 1
E =—<F-F)2=—F ,
1= (BB 3nl N
where F‘x = [Fagyeens F/\3,,_,]T~ In this plot a truss with 10 bays was used, i.e. n = 10.

In Fig. 9, the convergence of the two models with increasing degrees of freedom is

E =1 C lumped-mass
1
Ei=3 'K
continuum
E, =0 , .
T=0 T = 500 T = 1000

Figure 8, Comparison of the models over a circular trajectory
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Figure 9. Convergence of the continuum and lumped-mass models
illustrated. Here the plotted quantity is
T -ol -
_ Jo |FA = Ff|dT

T Far

where the superscripts | and ¢ denote the lumped mass and continuum models, re-
spectively. e is the normalized difference between forces generated by the continuum
and lumped mass models integrated over the trajectory.

Note the convergence of the two models between n = 2 and n = 35. Between
n = 15 and n = 35, the difference between the models is less than 10%. This is
extremely encouraging, because a lumped mass model is the worst case scenario to
which the continuum approach can be compared. Heuristics which close this gap
even further are currently being explored.

6. CONCLUSIONS

This paper has formulated the dynamics of hyper-redundant manipulators as a con-
tintum mechanics problem. While the modeling technique is an approximation, the
benefit of having expressions which can be evaluated by a highly parallel computer
without any time dependence on the actual number of degrees of freedom is a powerful
result. The method was demonstrated with an example of a hyper-redundant manip-
ulator doing pick-and-place tasks in environments with gravity (such as industrial
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settings) and in a viscous sludge (as may be the case in hazardous waste inspec-
tion). The accuracy of the method was verified by comparison with a Lagrangian
formulation of lumped mass manipulator dynamics. It was found that the actuator
forces generated in these models differed from each other by less than 10% for truss
structures with between 15 and 35 bays, or 45 and 105 actuated degrees of freedom.
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