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Abstract

A metamorphic robotic system is a collection of
mechatronic modules, each of which has the ability to
connect, disconnect, and climb over adjacent modules.
A change in the macroscopic morphology results from
the locomotion of each module over its neighbors. In
this paper, lower and upper bounds are established for
the minimal number of moves needed to change such
systems from any initial to any final specified config-
uration. These bounds are functions of initial and fi-
nal configuration geometry and can be computed very
quickly, while solving for the precise number of mini-
mal moves cannot be done in polynomial time. These
bounds can be used to ‘weed out’ and improve ineffi-
cient reconfiguration strategies, and provide a bench-
mark for the evaluation of heuristics in general.

1 Introduction

A metamorphic robotic system is a collection of
independently controlled mechatronic modules, each
of which has the ability to connect, disconnect, and
climb over adjacent modules . Each module allows
power and information to flow through itself and to its
neighbors. A change in the metamorphic robot topol-
ogy (i.e., a change in the relative location of modules
within the collection) results from the locomotion of
each module over its neighbors. Thus a metamorphic
system has the ability to dynamically self-reconfigure.
Changes in configuration with the same topology are
achieved by changing joint angles, as is the case for
standard (fixed-topology) robotic manipulators.

What distinguishes metamorphic systems from
other reconfigurable robots is that they possess all
of the following properties: (1) All modules have the
same physical structure, and each must have complete
computational and communication functionality; (2)
Symmetries in the mechanical structure of the mod-
ules must be such that they fill planar and spatial re-
gions with minimal gaps; (3) The modules must each
be kinematically sufficient with respect to the task of
locomotion, i.e., they must have enough degrees of
freedom to be able to ‘walk’ over adjacent modules
so that they can reconfigure without outside help; (4)
Modules must adhere to adjacent modules, e.g., there
must be connectors between modules which can carry
load.
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Figure 1: An Example Metamorphic Robot with Ap-
plications

While a wide variety of module designs satisfy the
above conditions, one particular class is discussed
here. These modules are mechanisms which can be
represented as polyhedra, e.g., certain kinds of plat-
form manipulators in the spatial case, or closed link-
ages in the plane. Figure 1 shows a planar example
where the modules are six bar linkages. Hardware im-
plementations that satisfy the above conditions can be
found in [MuKK94,Yim94,PKCh95].

Potential applications of metamorphic systems in-
clude : Obstacle avoidance in highly constrained and
unstructured environments; ‘Growing’ structures com-
posed of modules to form bridges, buttresses, and
other civil structures in times of emergency; Envel-
opment of objects, such as recovering satellites from
space; Micro-robots for medical applications. Some of
these applications are shown in Figure 1.

This paper addresses issues in the motion planning
of metamorphic systems with a fixed base, i.e., ‘ma-
nipulators,” as opposed to ‘mobile robots.” In Section
2, we formalize the motion planning/reconfiguration
problem. In Section 3 and 4 we establish upper and
lower bounds respectively on the number of moves re-
quired to reconfigure between any given initial and
final configurations. For a review of pertinent litera-
ture, see [Ch94, ChPE96].

2 General Formulation of the Motion
Planning Problem
In this section we formalize the motion planning

problem for metamorphic robotic systems. Figure 2
shows a schematic and hardware demonstration of a
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Figure 2: Schematic and Hardware example of Module
Motions

single planar module locomoting over another module.
For further demonstration of this type of locomotion
with hardware, see [PaCh95, MuKK94]. The kine-
matic constraints governing the motion of one module
over the surface of a collection of other modules are:

e Modules can only move into spaces which are not
already occupied by other modules.

o Every module must remain connected to at least
one other module, and at least one of the modules
must stay connected to the fixed base from which
the collection of modules originated.

o A single module may only move one lattice space
per timestep, and it achieves this motion by de-
forming and mating faces to faces {or in the pla-
nar case edges to edges).

Under these constraints, the motion planning/self-
reconfiguration problem is stated as : the determi-
nation of the sequence of module motions from any
given initial configuration to any given final configu-
ration in a reasonable (preferably minimal) number of
moves. Factors which complicate this are (1) module
motions do not commute; (2) modules are very re-
stricted in their movements. This is because in many
situations module motions cannot be composed, i.e.,
the motion of one module prevents any allowable mo-
tion of a neighboring module.

Motion planning/self-reconfiguration cannot be
achieved by algorithmic search methods for a large
number of modules because the computational com-
plexity of this approach is too great. This is due
to the fact that for a large number of modules,
the number of possible robot configurations is huge.
In fact, a number of works have dealt with the
enumeration of configurations composed of modules

[ChB93,Go65,HaP73,HaR70,Lu72], and the general
problem is to the best of our knowledge still un-
solved. For example, in the simplified case dealt with
in [HaR70] for hexagonal cells (modules), the number
of configurations generated (N) is asymptotic to

_ (2n — 1)! 5
N= (n—l)!(n+1)!<4>\/g’ )

where n is the number of modules.

This, as well as the results of other works, suggests
a very rapid (nonpolynomial) growth in the number
of different configurations as a function of the num-
ber of modules. However, establishing the number of
different configurations consisting of n modules is just
the first part of the problem. If each of these N con-
figurations represent a vertex on a graph, finding the
shortest path on this graph (optimal reconfiguration
sequence) takes O(N?) computations [Ak87,ReND77].
However, since N grows so rapidly as a function of n
this approach is not practical for large n.

Since an optimal sequence of module motions can-
not be found efficiently, we desire to bound from below
and above the minimal number of moves required to
get from one connected configuration to any other with
the same number of modules. This gives us a tool to
evaluate and/or improve the performance of any given
heuristic.

We also desire that these bounds have the following
properties:

e They can be computed quickly.

e They are a function of easily quantified character-
istics of the initial and final configurations, e.g.,
geometric parameters such as perimeter, area,
moments of area, intersections, unions, etc.

e They should couple our concepts of distance
between modules/lattice points and number of
moves between configurations.

e They should be tight bounds.

The next two sections establish bounds that satisfy
the above conditions.

3 Uppér Bounds on Minimal Number
of Module Motions

In this subsection, we derive closed-form upper
bounds on the minimal number of module moves
required to reconfigure between arbitrary configura-
tions. These upper bounds are functions of the initial
and final ‘perimeters’ of the configurations, and the
largest possible perimeter that a connected configura-
tion of n modules can have. In addition, these bounds
are functions of the number of modules in the largest
simply connected overlap between the two configura-
tions, IA p- We begin by formalizing some intuitive
concepts.

Definition : The ‘exterior’ of a configuration (collec-
tion of modules) is the union of all lattice spaces not
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within the configuration of modules, but at most one
lattice space distant from a module in the configura-
tion.

Definition : The ‘perimeter,” P(n), of a configuration
is the number of lattice spaces in the exterior of the
configuration.

Definition : A ‘movable module’ is a module that
can move from its current lattice space to an adjacent
space in the exterior of the current configuration with-
out isolating itself or disconnecting any other modules
in the process.

Definition : A ‘maximal simply-connected overlap,’

I;; B> of two configurations 4 and B is the largest sim-
ply connected subset of modules contained in AN B
which contains the base module. (This subset need
not be unique, but the number of modules in any such
subset is maximal.)

In the case of planar modules, the above definition
of perimeter reduces to the sum of the minimal num-
ber of empty spaces that surround the collection of
modules together with the minimal number of mod-
ules in the interior of each ‘hole’ if the configuration
has loops. For planar illustrations of each of the above
definitions, see Figure 3.
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Figure 3: Movable Modules, Exterior Modules and
Maximal Simply-Connected Overlap

We are now armed with the major definitions
needed to derive an upper bound on the minimal num-
ber of moves required to reconfigure from any initial
configuration to any other with the same number of
modules.

There are three perimeters that will be of partic-
ular interest to us for a connected configuration con-
sisting of n modules: (1) the perimeter of an n — 1
module connected subset of the initial configuration
(where one movable module has been removed such

that the resulting perimeter is minimized): P;(n —1);
(2) the perimeter of an n — 1 module connected subset
of the final configuration (where one movable module
has been removed such that the resulting perimeter is
minimized): Pf(n — 1); and (3) the greatest perime-
ter of any connected configuration of n — 1 modules :
Praz(n —1). For systems composed of planar hexag-
onal modules Ppnez(k) = 2(k + 2), and this value
occurs for serial configurations without branches or
loops. For the sake of notational compactness, we will
sometimes refer to the above functions without their
arguments when there is no ambiguity.

3.1 A Simple Upper Bound

Theorem: An upper bound on the minimal number
of moves required to reconfigure between any two
configurations A and B with n modules and maxi-

mal simply connected overlap with IAB modules is:
Ui(4,B) = (n = I15)(Prmac(n — 1)) /2.

Proof: When a given module moves, it is not counted
in the perimeter it must traverse. By definition, there
is no path that a module can take in the exterior of
a configuration which is longer than the full perime-
ter. Thus, if a module takes a path to, and returns
from, any arbitrary lattice space in the exterior of the
configuration, it will take at most Ppaq(n — 1) moves
because it is traversing a configuration with n—1 mod-
ules. Any minimal length path connecting two differ-
ent points will thus be at most half of this length,
because either the circuit has equal length on outgo-
ing and return paths, or else we can always choose
the smaller one. This process is repeated the fewest
number of times needed to reconfigure (for the tightest
bound). This number is the number of modules not in
a maximal simply connected overlap of the two config-

urations (which is n—I, ). Hence the maximum num-

ber of moves required are (n — Iy 5)(Pnae(n — 1))/2.

We impose the restriction that the largest simply
connected overlapping region including the base (as
opposed to the whole overlap) need not move for the
following reason. If the overlap is not simply con-
nected, modules from one configuration might be in-
side a ‘hole,” while modules of the other configuration
could be on the outside (see Figure 4). Similarly,
if the overlap is not connected at all, there may be
no way to reconfigure without moving the overlapping
modules. m

3.2 A Tighter Upper Bound

While the bound discussed in the previous section
is a valid upper bound, it can be made tighter by
incorporating information which is readily available,
i.e., the initial and final perimeters. Let M denote
the maximal amount of change which the motion of
one module can make to the perimeter of a configura-
tion. Furthermore, let us choose the initial and final
perimeters traversable by a module to be the smallest
of all possible perimeters of n — 1 connected modules
contained in the initial and final configurations, re-
spectively. We can do this without loss of generality
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Figure 4: An Example of Non-Simply Connected
Overlap

by examining all modules which are able to move in
the initial and final configurations, and choosing the
first and last modules so that the perimeter created
by excluding these modules is minimal. The following
theorem incorporates all this information:

Theorem: A tighter upper bound on the minimal
number of moves required to reconfigure between any
two configurations with (1) n modules; (2) maximal
simply connected overlap consisting of 1:4 5 modules;
(3) initial, final, and maximal possible perimeters F;,
Ps, and Ppq.; is the lesser of the following expressions:

Uz(A,B) = [Pﬂ:l + Mil(il - 1)/2 -+ Pmaz(ig - il)
+(n~Iyp —i2)(Pr +nM — I1pM)  (2)
—M(n=Iup)(n—Iug —1)/2+ Mis(iy — 1)/2]/2

and
U,(A, B) = [Pyis + Mi(iz — 1)/2
+(P;+nM —IigM)(n—Iyp—is)  (3)
~M(n = Iyp = 1)(n — Lyp)/2 + Mis(is — 1)/2)/2

where i1, i3 and 73 are integers defined by the expres-
sions: P;+i1M = Pag; Pmaz = Pr+(n—I p—i2) M,
and P;+isM = Py+(n—1I,5z—i3)M. M is the largest
amount by which the perimeter of a configuration can

change (increase or decrease) by the motion of one
module (in the hex case, M = 4).

Proof: Let p(j) be an upper bound on the number of
moves required for the j** module to move from its
initial position to the final position. The half perime-
ter that the first module traverses is bounded from
above by p(0) = P;/2, the second will be bounded
from above by p(1) = (P, + M)/2, and the j + 1%
will be bounded from above by p(j) = (P; + 3M)/2,
until 7 is large enough that either P; + 41 M = Ppnga,
or P, +isM = Py + (n — I;{B —i3)M for some inte-
gers j = 43 or j = 3. That is, until the perimeter
reaches its maximal possible value, or it reaches such

a value that the perimeter must start to decrease in
order to attain the perimeter of the final configura-
tion with moves of the remaining modules. The above
conditions have the geometric meaning of where the
lines defined by p(j) = P, + iM, p(j) = Pmas, and
p(j) = Py + (n — Iy — j)M intersect in the plane
whose independent coordinate is j and dependent co-
ordinate is p as shown in Figure 5. In other words,
the lines with slope +£M will intersect each other ei-
ther above the line with zero slope or below it. This in
turn depends on the initial and final perimeters (the
intercepts of the lines) and M (the slope of the lines).
Since the moves associated with each half perimeter
are added to the total, and we seek a bound on the
minimal total moves, we seek the planar figure that
will have the least area bounded by these three lines
and the j axis. This will either be a triangle with peak
below Pyaz, Or & trapezoid with Pp,,, as the top line.
The expressions in the statement of the theorem cor-
respond to these cases, and are derived below. The
two cases are depicted in Figure 5.

p(3) p(i

o

Case 1

Figure 5: Graphical Derivation of Upper Bounds

(case 1) Trapezoid: By definition, 4; is where the line
with slope +M intersects the horizontal line at Prqz.
Starting at j = 7; the half perimeter traversed will
be at most P4, /2 (since this is the maximal value
possible). This is true until Ppe. = Py +M(n—IAB -
is), for some integer j = é. This is where the line with
slope —M intersects the horizontal line at Ppq,. From
j = iy on, the perimeter must decrease in the steepest
way possible to be able to reach Py using the unmoved
modules. The perimeter for the remaining moves will
be bounded from above by p(j) = Py + M(n — Iyp—
j) in order for it to be possible to attain the final
perimeter. If we sum up all three contributions from
j=0ton— IAB —1, case 1 is proved. In other words,
the upper bound is:

’
n—I,p—1

3 opl) =

=0
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i1—1 i—1 n— IAB
Z(PﬂM )+ Pmact Y Pf+n Iyg—i)M).
Jj=t1 J=t2

These summations sunphfy using the formulas:
Z] pl=r—k+1,37 (j=r(r+1)/2-k(k-1)/2,
yielding Equation (2).

(case 2) Triangle: Suppose that the lines given by the
equations p(j) = P;+jM and p(j) = Py + (n— IAB -
J)M intersect each other below the line p(j) = Ppas.
By denoting as i3 the value of j where these lines in-
tersect,the perimeter is computed by summing along
the first line until 3, and then switching to the second
line. The result of this summation is:

n—I;B—-l
> opG) =
=0
iz—1 n—I:‘B—l
DB+ IM)+ Y (Pr+(n—Iup—§)M),

=0 =1

which is simplified using the same formulae as case 1,
yielding Equation (3). m

Though the expressions for the bounds described
above appear complicated, they have the advantage
that they can be computed in O(1) calculations. They
can also tell us right away that there will be at most
O(nPpq;) moves required to reconfigure no matter
what module design is chosen In the case of planar
modules this will be O(n?). However, in practice we
would like to have constructive upper bounds on the
minimal number of moves. That is, instead of con-
servatively assuming that half of the largest perimeter
is traversed each time a single module moves to fill a
space in the new configuration, we can construct inter-
mediate configurations by having modules move along
the perimeter until they stop at a suitable place in the
desired configuration. This will, by definition require
a fewer number of moves than the nonconstructive up-
per bounds presented above and will run in at most
O(n?) calculations in the planar case.

4 Lower Bound on Minimal Number of
Module Motions

A good lower bound on the minimal number of
moves required to reconfigure a metamorphic robot
is obtained by using the lattice metric and concepts
of optimal assignment. The lower bound presented
here is based on the fact that the minimal number of
moves required for a single module motion in a lattice
will be no less than the lattice distance, dr, between
the initial and final spaces [PCh96]. If it were possi-
ble to track the sequence of motions of an optimally
reconfiguring metamorphic robot, we could compute
the lattice distance between each module in its initial
and final lattice spaces, and the sum would be a lower
bound on the total number of module motions. Since

this is not possible, we will assign modules in two con-
figurations in such a way that the sum of the lattice
distances between matched modules is minimized over
all possible matchings. This minimal sum will be at
most the aforementioned lower bound. Since this is
something that can be computed relatively efficiently
(in at most O(n®) computations, see [PCh96] for de-
tails), this is the lower bound we will use. The basic
approach is summarized below.

Let the present configuration of the robot be de-
scribed by the set of modules A, where a; € A rep-
resents a module in conﬁguratlon Afori=1,.

Let the new conﬁgura,tlon be defined by the set B
where b; € B for j = 1,...,n represents a module in
conﬁguration B. A lower bound on the total number
of moves required to go form A to B (or vice versa)
is given by an optlmal assignment of each element a;
in A to an element b; in B, f: A — B, such that the
sum of the distances (as deﬁned by the lattice metric)
for the assignment is minimized. Equivalently, this
can also be treated as finding a perfect matching in
a weighted bipartite graph G = (A, B), such that the
sum of the weights of the matching is minimized. We
call this L(A, B).

5 An Illustrative Example

In this section, a planar metamorphic system with
hexagonal modules is used to demonstrate the meth-

ods developed in the previous sections.

Figure 6: Example Initial and Final Configurations

For an illustration of the lower bound on minimal
number of moves, consider the following example. Fig-
ure 6(a) shows the present configuration, Figure 6(b)
shows the new configuration and Figure 6(c) shows
an arbitrary labeling of the modules in the two con-
figurations. Out of all pOSSlble matchings of the la-
bels {1,2,3,4} with {1',2',3",4'} (of which there are
4! = 24), we choose one for which the sum of the lattice
distances between matched modules is minimized. In
this case it is easy to see that L(A, B) = 8. The reader
is encouraged to verify this by trying all possible ways
of bijectively matching modules and summing the lat-
tice distances. One such optimal assignment in this
case results from matching like numbered modules in
Figure 6, ie., 7 — i, and summing the lattice dis-
tances between all of them. It should be noted that
ennumeratmgd all possible matchings is very inefficient
(O(nh) ) algorithms for optimal assignment are
used in practlce

Now let us consider the upper bounds on the mini-
mal number of moves computed for this configuration.
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Figure 7: An Optimal Reconfiguration Sequence

In this particular case, P¢(3) = P;(3) = Pnaz(3) = 10.
The closed-form upper bounds are both computed
simply as: 3 -5 = 15. Constructively computing an
upper bound by rolling 4 to 4,3 to 3', and 2 to 2',
one gets 9. Thus, 8 < Mpyin < 9 < 15 for this ex-
ample. In fact, for such a small number of modules,
it is easy to test all possible combinations of moves
by hand, and one finds that Mp,;, = 9. Figure 7
explicitly represents one possible strategy for optimal
reconfiguration. The initial labels have been retained
so that motions are easy to track.

For large number of modules, heuristic searches
would have to be used with the bounds presented here
guiding the search.This issue is discussed in greater
detail in [ChPE96].

6 Conclusions

In this paper bounds on the fewest moves required
to reconfigure from one configuration of a metamor-
phic robot to another were established. These bounds
are important because explicit solution for the mini-
mal number of moves becomes computationally infea-
sible when the number of modules is greater than ten.
In addition to providing a bechmark for testing heuris-
tic algorithms, these bounds can be used to ‘weed
out’ and improve inefficient motion planning strate-
gies. Furthermore, the concepts developed here pro-
vide a framework from which efficient heuristics can
be constructed.
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