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Abstract. In this work, methods for the solution of Fredholm equations of the first kind with
convolution kernel are presented, where all the functions in the integral equation are functions
on the Euclidean motion group, and the convolution product is defined relative to the group
operation. An application in which such equations arise is examined in detail. The properties
of the Fourier transform of scalar-valued functions on the Euclidean motion group are reviewed
and applied to an exactly solvable example. Standard regularization techniques are then adapted
and illustrated for cases in which exact solutions are not possible.

1. Introduction

Properties of the Fourier transform of scalar-valued functions on a given Lie g@up
are used in this paper to solve equations of the form

/G K(ge) f g 0 o) die(ge) = (k% f)(g0) = hgo) @)

whereg,, g: € G, k(-) andh(-) are given square-integrable scalar functionsGmi(g,)
is a volume element a,, and f(-) is a function onG which is to be found either exactly
or approximately.

This is a generalization of the Fredholm integral equation of the first kind with
convolution kernel

/ k(é)f(x—é‘)dé=/ k(x — &) f(&) dé = (kx f)(x) = h(x) @

except thatG is a Lie group with operation, and d(-) is a left-invariant volume element
on G. This contrasts the specific case @f= R with the group operation = +, and
du(gs) = d&. For precise definitions of the terms used above see [10, 13, 22, 25, 31].

We will address the case wheh = SE(2)—the two-dimensional special Euclidean
group which describes all motions (translations and rotations) within the Euclidean plane.
A subgroup of this group consists of translations, and the theory has as a subcase the
standard theory of Fredholm integral equations of the first kind with convolution kernel.

The approach we will take is similar to the standard solution of Fredholm integral
equations of the first kind with a convolution kernel like the one in equation (2). Namely,
when possible a generalization of the Fourier transform will be used to convert this to a linear
algebraic equation, which can either be solved exactly, or if the system is rank-deficient, is
solved approximately using regularization methods.
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The reason for looking at the case whén= SE(2) is that the mathematical problems
formulated in this paper are motivated by applications in robot kinematics and motion
planning, and group theoretical image processing and machine vision where the motion
group plays a vital role. One such application is explored in detail in section 2, and others
can be found in [1,19].

We begin with a review of the Euclidean motion group of the plae(2), and provide
motivation for exploring its unitary matrix representations, and the concept of the Fourier
transform of functions on this group.

Any elementg € SE(2) and its inverseg~! can be represented as homogeneous
transformation matrices of the form

R b _ RT —RTh
g:(OT 1) g1:<OT 1 ) 3)
whereb € R? andR is a 2x 2 proper orthogonal matrixRR” = 1 and detR) = +1). The
set of all matrices with the properties &f together with matrix multiplication is a group

called the special orthogonal groupQ (2). The group operation fo§ E(2) is also matrix
multiplication, and the product of two elements is defined by

R . RTl El RT2 52 . R171?2 Bl-i-RlEz
greez=1o 1)\o 1)7\ o 1 '

Each element of E(2) is parametrized in either rectangular or polar coordinates as

cost —sind x1 cos® —sind rcosg
g(x1, x2,0) = ( sind  cosH xz) or g(r,¢,0)= ( sind cosf  rsing )
0 0 1 0 0 1

The convolution product of square integrable functions $Fi(2) is expressed in
rectangular coordinates in the form

(f1* f2)(x1,%2,0) = f1(g(E1, &2, @) f2(g 1 (€1, &2, @) 0 g(x1, X2, 0)) A (g (61, &2, @)

SE2)
1 T oo poo
~ @2 / / / J1(61, &2, &) fo(x1 — §1)ea + (x2 — §2)sax
—(x1 — &1)sa + (x2 — &2)car, 0 — ) déq d&5 Ao

whereca = cose andsa = Sina.
Using polar coordinates the convolution product has the form

(fl * f2)(r9 ¢’ 9) = / fl(g(p’ Vs (Y))fz(g_l(p, Y, Ol) o g(r’ ¢7 0)) dl""(g(p7 Y, O{))

SE(2)

1 7 7 00
= (27{)2_/_ /; ~ fl(p’ ) (Y)

X fo (\/r2 + 02— 2rpc(p — ), t(r,p, P, a,v),0 — 01) p do dy do

where

t(r,p, ¢, a,y) = Atan2(r sin(¢p — a) — pSin(y —a), r cO¢p — a) — p COy — a))
and a normalized volume element/measure with which to integrate is defined by
1

(20)2 d&1 d&2 dor

1
di(ge) = 22" dp dy da =

wheregg = g(&1, &2, @) = g(p, v, ).
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The function Atan2y,x) is the two-argument inverse-tangent function which is
equivalent to tan‘(y/x) whenx and y are positive, and generates a result in the range
—m to = depending on the signs afand y.

In the above cases, notational abbreviations of the f@@(x1, x2, 0)) = f(x1, x2, 0)
and f(g(r, ¢,0)) = f(r, ¢, 0) have been made since the meaning is clear from the context.

The fact that g (g) as defined above fofE(2) is a left and right invariant volume
element (i.e. f(g:) = du(gy o g¢) = du(g: o gy)) gives the convolution product some
interesting and useful properties

In particular, equation (1) can be written in the alternative form

/ Kge 0 850 f (g0 du(ge) = (k% £)(g0) = h(gy) ()
SE(2)

by the change of variableg — g, oggl. This is true despite the fact that the gratip(2)
is not commutative and not compact.

One way to approach the problem of findiigg, ) is to treat it as one of a more general
form:

/ K (g2, 20) f (g¢) due(ge) = h(g). 5)
SE(2)

This problem can be addressed in the usual ways that integral equations with non-self-
adjoint non-separable multidimensional kernels are dealt with. For example, we can expand
the unknown function in terms of a complete orthonormal series, and solve an associated
set of linear algebraic equations. Using rectangular coordinates, equation (5) is rewritten as

f / / K (1, %2, 0, &1, 2, o) f (B0, £, o) 01 085 der = (27)2h (x1, 32, )

and for the particular case of the convolution kernel in equation (4),
K (x1,x2,0, 81,82, 00) = k(x1 — §1¢(0 — @) + 825(0 — ),
xp —&15(0 — ) + 62c(0 — @), 0 — ).
Making the approximation

N N N
flEn g2 ) ~ expl-(E2+80)/21) D" Y fijcHi(E) Hy(E)e e
i=0 j=0 k=—N
where H;(x) is theith normalized Hermite polynomial, the coefficienfs; can be found
in the least squares sense in exactly the same way they would be for a standard integral
equation. Multiplying both sides by, (x1) H, (xz)e*i+%/2ev=1r and integrating over
x1,X2, andd means that the approximate solution of this convolution equatidh(2) using
the Hermite—Fourier series approximation can be written as a system of linear equations of
the form

K? = E or Z Kmnpijkfijk = hmnp
ijk
which is solved to findf; .
There are two problems with this approach. First, the métras [2N+1)(N+1)?]? =
O(N®) elements, each of which is of the form

Kmnpijk = / / / / / / K(-xlv X2, 0, éls %-21 a)Hm (-xl)Hn (XZ)Hi (él)H] (%-2)

x &~ ()2 (61 +85) 2V 1p0 oV ~Tke G, i) oy clxy dixp dO.

1 One can easily derive this volume element and demonstrate its invariance using methods in [9] or [31].
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These integrals will generally not be solvable in closed form, and multidimensional
numerical integration can be time consuming and error prone [3]. Second, inverting the
(2N + 1)(N + 1)? x (2N + 1)(N + 1)? matrix K to find the coefficientsf;;; will require
O((N®)3) = O(N?®) computations. While this can be doneNf =~ 10, if we want a good
solution, N ~ 100 may be required.

These problems are compounded if one extends this approach to the Euclidean motion
group of three-dimensional spacgE(3). This is a six-dimensional Lie group for which
each of the @V'?) elements in the coefficient matriX would require 12-dimensional
integrals, and thek would have to be inverted, requiring(®'8) computations.

Alternatively, sampling techniques developed recently for functions on Lie groups (e.qg.
[5, 23]) could potentially be used to approximate the integral equation at a finite number of
points. From there, finite difference approximation methods and modifications thereof (e.g.
[14,15, 20]) could be applied as they are in the case of integral equations on the real line.
Another approach would be to use efficient transforms developed for discrete groups [4, 27].
However, it is not clear how these approaches can be adapted to honcompact groups such
as the Euclidean group since the number of points in the discretization may need to be large
in each dimension.

In order to avoid these problems, and address the case of convolution kernels in the
most natural way, the Fourier transform on the Euclidean group will be used.

The remaining sections of this paper are organized as follows. Section 2 examines a
scenario in which the inverse problem in equation (1) arises. Section 3 reviews unitary
representations of E(2) and the definition of the Fourier transform &1 (2). Section 4
illustrates some of the useful properties of this Fourier transform, including an analogue
to the convolution theorem and Parseval’'s equality for functions on the Euclidean group.
Much of this material is a combination and restatement of that found in [29] and [30].
Section 5 provides an example in which the solution to equation (1) is generated exactly.
Section 6 extends standard regularization techniques to solve equation (1) (or equivalently
equation (4)). Section 7 is the conclusion.

2. An application in robotics

In order to motivate the need for solving the inverse problem stated in equation (1), we
examine a problem from the field of robotics in detail.

A robotic manipulator arm is a device that is used to position and orient objects in
the plane or in three-dimensional space. A manipulator is generally constructed of rigid
links and actuators, such as motors or hydraulic cylinders, which cause all motions of the
arm. If the actuators have only a finite number of states, as is the case with stepper motors
or pneumatic cylinders, then the arm has a finite number of configurations and only a
finite number of framesare reachable by the hand. This is illustrated in figure 1 for a
manipulator composed of linear/translational actuators. This manipulator is capable of only
reaching eight positions and orientations in the plane. Such a manipulator is called a binary
manipulator [2]. The set of all reachable positions and orientations is callesldhespace
Clearly, in the case of discrete actuation the workspace is a discrete sul§gat®f though
it is not a discrete subgroup.

For discretely actuated manipulators tliensity of reachable frames InSE(N)
determines how accurately a random position and orientation can be reached. This density

1 A frame in space is competely determined by the position of its origin and its orientation relative to another
frame.
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Figure 1. An eight-state binary manipulator.

information is also extremely important in planning the motions of discretely actuated
manipulator arms [6]. Density is calculated directly by dividing a compact subset a¥)
containing the workspace into finite but small volume elements. The number of positions
and orientations reachable by the end of the manipulator which lie in each volume element
is stored. Dividing this number by the volume element size gives the average density in
each element. An efficient method for the calculation of this density histogram is given
in [7]. A smooth density function can be used to approximate the shape of this density
histogram as in [8]. Note that the density function is always real-valued and positive.

It is an important aspect of the manipulator design problem to specify the density of
reachable frames throughout the workspace. That is, areas which must be reached with
great accuracy should have high density, and those areas of the workspace which are less
important need less density. For relatively few actuators, this is achieved by enumerating
reachable frames (positions and orientations) and using an iterative procedure as discussed
in [2]. However, to compute this workspace density function using brute force and iterating
is computationally intractable for large In fact, it requiresk™ evaluations of the kinematic
equations relating actuator state to the resulting end frame for a manipulator agtbators
each withK states. In figure 1K = 2 andn = 3 so the problem is simple.

A grey scale of the density of frames reachable by a discretely actuated manipulator is
shown in figure 2 with several configurations of the arm superimgosgkis manipulator
is essentially a serial cascade of modules with the same kinematic structure as in figure 1,
only now each leg has four states instead of two. Since each leg has four states (and
thus the whole manipulator has4~ 10'8 states) the workspace density cannot simply be
computed using brute force. In fact, it would take years using current computer technology
to enumerate all the positions and orientations of the frame attached to the end of the
manipulator for each discrete configuration.

The concept of convolution of real-valued functions 8B (N) provides a powerful
computational tool for computing this density efficiently [7,8]. If we imagine that the
manipulator is divided into two connected parts, then a density funetigrn) can be
associated with those frames reachable by the end of the lower half of the manipulator, and a
density function8(g) can be associated with the end of the upper half of the manipulator.
is defined relative to the base frame, ghtteats the frame at the end of the lower segment
as the base frame. That i8(g) = 8(g) when the manipulator is cut into two equal parts

1 A density function onSE(2) can be written ap(x, y, #). What is shown is really the integral of this over
from —z to 7 so that a planar picture results.
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Figure 2. A discretely actuated manipulator witi%states.

and there are an even number of identical modules. Howevand 8 will not be the same
function in more general scenarios. By adjusting kinematic parameters such that actuator
strokes are limited or extended, the set of reachable frames (and thus the density) is altered.
This is achieved mechanically by simply inserting or removing rigid stoppers that specify
the physical actuator length corresponding to the discrete states.

While it may not be possible to calculai&’ frames to compute the density function of
the workspace, it is often feasible to compufé’? frames for each of the two segments.
For the example discussed earlier, this would be of the order of a billion calculations, which
can be done easily in less than an hour on a not-so-sophisticated computer. The density of
the whole workspace is then generated by the convolution of these two functions:

/ w(9)B(g~ o h) du(g) = y (h).
SEQ)

The geometry of why this is so follows below. Suppose there are two frames of
reference—the base frame and one attached to the middle of the manipulator. Quantities
described in the the base franig;, are denoted with a prime, while quantities described
in the frame in the middle of the manipulatoF,, are denoted without a prime. Let the
homogeneous transform matri{ describe the position and orientation of a third frame,

Fs, with respect tar,, and letH describe the position and orientation 8§ with respect
to F1. Then the position and orientation &% with respect tar; is

H' =HH

as illustrated in figure 3.

If a real-valued functiorp (H) is defined in the moving frame, then the same physical
guantity can be represented in the fixed frame’'a&l’), wherep'(-), is a different function
from p(-). Knowing that the change of coordinates does not change the physical quantities
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Figure 3. Concatenation of homogeneous transformations.

being described, one recognizes that
p'(H) = p(H).

Furthermore, because of the relationship betwHeand H' one finds that
p'(H") = p(H™H").

In other words, in order to represent the function that is defined in the moving frame in
the fixed frame coordinates, the homogeneous transform which describes the motion must
be inverted and applied to fixed frame coordinates. Thus, the natural way to think of
convolution of functions on the Euclidean group is that a funcpe¢) is multiplied by

py(H) = p2(H~1H) and integrated over all values ®f:

(p1* p2)(H) = /

p1(H) p2(H ™ H) du(H).
SE(N)

This calculation does not depend on the number of actuated modules in the manipulator,
and allows us to compute the workspace density much more efficiently than by brute
force. We can further subdivide the manipulator into smaller parts and perform multiple
convolutions for even faster workspace density function generation.

Now, suppose that one of the halves of the manipulator has been desigfgdg
specified), and the problem is to design the other half of the manipulator4fig)d so that
the density function for the workspace of the whole manipulator comes as close as possible
to a desired density functiop(g). One must then solve the inverse problem

(a*pB)g) =y

for B(g). Oncepf(g) is known, the methods developed in [2] can be used to find the
appropriate kinematic parameters in the manipulator arm.

The remaining portion of this paper is devoted to the task of elegantly solving the
above-stated inverse problem. But first, material from the pure mathematics literature is
reviewed and then applied in later sections to the solution of this problem.
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3. Unitary representations and the Fourier transform

Recall that one of the most powerful properties of the usual Fourier transform is that the
Fourier transform of the convolution of two functions is the product of the Fourier transforms
of the functions. This property extends to the concept of a Fourier transform for functions
on SE(2), but some review is first required. The reader familiar with the concept of the
Fourier transform or§ E(N) can go directly to section 5.

Recall that the Fourier transform pair for a suitable functiftx), for x € R is defined
as

flo) = \/271 /_: Jf(u(—x, w) dx fx) = \/% /_Z f@u(x, ) do (6)

whereu(x, w) = €“*. Note thatu(x + y, w) = *0H) = do*d®y = y(x, w)u(y, w). This

is an example of @aomomorphismIn general, a homomorphism is a mapping between two
groupsh : (G, o) — (H, d) such thath(g1 o g2) = h(g1)oh(g2). In particular, the function
u(-, w) maps(R, +) — (U, -) for eachw € R whereU is the set of complex numbers with
unit modulus, and is scalar multiplication.

The convolution theorenfor functions on the real line states thatf (x) * g(x)) =
f(w)g:(w). This is a direct result of the facts that—(x + y), w) = u(—x, w)u(—y, w) and
integration on the real line is translation invariant.

A representationof a groupG is a homomorphisnT : G — T(G) C GL(V). Visa
vector space called the representation spaceGand’) is the group of all invertible linear
transformations oV onto itself. T'(g) for g € G is expressed in a given basis Bfas an
invertible matrix, and

T(g1082) = T(g)T(g2) T(gH =T T(e)=1e GL(V).

Representations that can be expressed as unitary matticés= U*) in an orthonormal
basis of V are called unitary representations. The functigiv, ») is an example of a
one-dimensional unitary representation. Henceforth in this paper the representation spaces
used will be function spaces of the forgtf (P), which denotes the set of complex-valued
functions f(p) for which fP [f(p)|"du(p) < co wherep € P for some manifoldP.
du(p) is an appropriate volume element for egele P (see [31] for a precise definition).

A unitary representation af E(2) (see [29, 30] for a general definition) is defined by
the unitary operator

Ua(g) f(x) = €°* f(R"x) ™
for eachg € SE(2) of the form of equation (3). “is the scalar exponential function,
a e Rt i=+/—1, andx - y = x1y1 + x2y.. The vectorx is a unit vector { - x = 1), and
() € £3(SY where St is the unit circle. Since only one angle is required to parametrize
a vector on the unit circlex = (cosy, sing)?, and f(x) = f(cosy, siny) = ().
Henceforth we will not distinguish betweef and .

By definition, group representations observe the homomorphism property, which in this
case is seen as follows:

Ua(g1)Ua(82) f () = Ua(81)(Ua(g2) f (X)) = Ua (1) (€% (R} %))
— ela(Blf)ela(EzR{Y)f(RgR{f)
= @ PrHRPDT £ (R R)TX) = Uy(ga 0 g2) f(X).
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Any function f({) € 122(_51) can be expressed as a weighted sum of orthonormal basis
functions asf () = >, a,€"¥. Likewise, the matrix elements of the operatdr(g) are
expressed in this basis as

Unn(g, @) = (€™Y, U, (g)€"Y) Vm,neZ

where the inner produdgt, -) is defined as
2

1 _
(f1. f2) = o f1(Q) f2() dy.
T Jo

It is easy to see thal,(g) f1, U.(g) f2) = (f1, f2), and thatlU,(g) is therefore unitary with
respect to this inner product.

The matrix with elements,,, is ‘infinite-dimensional’. Furthermore, the matrix of
a unitary operator expressed in an orthonormal basis is a unitary matrix, which means
Uym = Umn-

A number of works including [17, 24, 26, 30] have shown that the matrix elements of
this representation are given by

Unn(8(r, @, 0), @) = i"~me 0=l J (ar) (8)

where J, (x) is the vth order Bessel function.
From this expression, and the fag}(g) is a unitary representation, we have

nn (870, ¢, 60), ) = u, 1 (g (r, §,0), a)
= Unm(g(r,¢,0),a)
— in—mé[m(?-&-(n—m)q&] Jm—n (ar). (9)
Henceforth no distinction will be made between the operétaig) and the corresponding
infinite-dimensional matrix with elements,, (g, a).
Unitary representations of higher-dimensional Euclidean groSggN), follow in a

similar way, although the cases of the most practical interes§ A1@) and SE(3).
Given this background we are ready for the following definition.

Definition [29]. The Fourier transform of a rapidly decreasing functighe £2(SE(2))
and the inverse transform are defined as

F(F) = F(a) = f F(9)U(g™Y du(g)
SE(2)
and

FYF)=F(g) = / ” tracg F (a)U,(g))a da.
0

Recall that the trace of a matrix € RV is the sum of the diagonal elements:
tracgA) = Z,N: 14, and the trace is invariant under transformations of the f@mQ”
where Q € SO(N). That is, traced) = trac6§ QAQT). Furthermore tracdedB) =
tracg BA).

As with the Fourier transform of functions d",

FFYNF)=F FYF(F)=F
and so we write symbolically
FFl=r1r=1

+ F(-) is rapidly decreasing if lim. ., 7" F(g(r,¢,a)) = 0 for all n € Z*. Examples include functiong'(-)
which are zero outside of a compact subsef 812) (i.e. if F(-) has compact support), arfdg) = e*“zrzf(qb, o)
where f(-) is bounded.
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where 1 is the identity operator. A proof that these identities hold is given in [29]. The

fact that the inverse transform works dependdliiig) being irreducible, and the fact that

it is unitary allows us to writel/,(g~1) = U*(g) instead of computing the inverse of an

infinite-dimensional matrix. In subsection 4.2 we show that the inversion formula works.
The matrix elements of the transform can be calculated using the matrix elements of

U,(g) defined in equation (8) as

Fun(a) = @™, F(a)d"Y) = / F()umn (g™, a) du(g).
SE(2)

Likewise, the inverse transform can be written in terms of elements as

f(g) = \/0 ﬁmn (a)unm(87 a)a da

where summation notation is used farm € [—o0, o<].

4. Properties of convolution and Fourier transforms of functions onSE(2)

In subsection 4.1 it is shown that the Fourier transform defined in section 3 possesses the
convolution property in an analogous way to the usual Fourier transform. In subsection 4.2
the inversion formula is proven. In subsection 4.3 Parseval’'s inequality is proven. In
subsection 4.4 some of the operational properties of the Fourier transform pair for functions
on SE(2) are exemplified.

4.1. The convolution theorem

Let us assume that there are real scalar-valued functioh p2(-) € L2(SE(2)). Recall
that one of the most powerful properties of the Fourier transform of functionRbris
that the Fourier transform of the convolution of two functions is the product of the Fourier
transforms of the functions. This property extends to the concept of a Fourier transform for
functions onSE(2). The proof of this fact presented here is due to Sugiura [29].

Given that

(p1 % p2)(8x) = f p1(8s)p2(g: 0 gx) duu(ge)

SE(2)

one gets

Flovspa = [ (o p0)e0Uue: ) dce
SE(2)

= / (/ p1(8¢)p2(g: ng)du(gg)> Ua(g; ™) du(gy). (10)
SE(2) SE(2)
Switching the order of integration, one gets

F(p1* p2) =/ (/ p2(g: o 8 Ua(gr ) du(gx)>p1(gs)du(gs). (11)

SE(2) SE(2)

Since qe(-) is left and right invariant

/ F(ggng)du(gx)=/ F (g0 g:)du(gy)
SE(2)

SE(2)

= f F(g:hdu(g)
SE(2)

= / F(gy) du(gy)
SE(2)
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for any function F € L£?(SE(2)). These facts allow us to write the inner integral in
equation (11) as

/ pa(g: ™ o (85 0 8 Ual(ge © 8x) ™ duu(gy) = / p2(8:)Ua(gy " 0 gc ) duu(ey).
SE(2) SE(2)

SinceU,(G) is a representation dfE(2),
Ua(g; 085" = Ua(gyHUalgs
and so

F(p1* p2) =/

SE(2)

= (/ p2(8:)Ualg; ) du(gx))(f p1(8)Ualgs ™) du(gs))
SE(2) SE(2)

= F(p2)F (p1) = p2(a)pa(a).

The order in whichU,(g;1) and Ua(ggl) appear is important because they are
representations of E(2), which is not a commutative group. As seen above, the fact
thatU, is a representation is critical for the separation required for the convolution theorem
to hold. The non-commutative nature 8 (2) expressed iU, (g) is responsible for the
reversed order of the product of the Fourier transforms. Some authors (e.g. [10, 11]) define
the Fourier transform of functions on groups differently so that the order of the product of
the transform is the same as the order of the convolved functions. We use the definition
of Fourier transform given in section 3 because it is the most analogous to the standard
Fourier transform.

( / p2(8:)Ua (g HUalgs ™) du(gx))pl(gs) du(ge)
SE(2)

4.2. Proof of the inversion formula

We now present a proof that the Fourier inversion formula for functionsSén?2)
actually works. This proof is coordinate dependent to avoid the introduction of additional
mathematical machinery. Summation notation is again used, i.e. repeated indices indicate
summation from—oo to co. A very elegant coordinate-independent proof can be found in
[29]. The proof presented here is a variant on one found in [30].

Rapidly decreasing functiong(g) € L2(SE(2)) whereg = g(r, ¢, 0) can be expressed
in a series of the form

f(@) = [fr,0) = Fy(re e

The matrix elements of the Fourier transform of this function (as defined in section 3)

are

fmn :/;f(g)umn(gfl, a) dﬂ(g)

1 T[T o )
= @ / / / (ij(r)e—ljd’e—lk(?)(in—znel[1110+(11—m)¢] Jn—n(ar))r dr de¢ do.
- J—m JO

Rearranging the integrals, this is rewritten as

00 1 T o 1 T . .
n—m . —1jo l(n—m)g —1k6 Jmo
(u /0 Fix(r)Jp—n(ar)r dr) ( /,,, e litg d¢> (Zﬂ [ﬂ e kg de)

00
= (Sk,maj,n—m <inm / ij(r)‘]m—n (ar)r dl’)
0

[
=i"" / Fn—m,m(r)-]m—n (ar)r dr.
0
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8,4 1s equal to 1 ifp = ¢ and zero otherwise, and there is no summation over indices in
the last term above.

The fact that this Fourier transform matrif,.,, is inverted using the inversion formula
to reconstructf (g) is seen as follows:

f(g) = /(; trac&f(a)Ua (g))a da = /(; ﬁnnunm (g’ a)a da

o0 o0 X
= / (i”m / Fo o (r) I (ar)r dr) (im”e'[”’9+(”m)¢] Jinen (ar))a da
0 r=0

) ) 00
= e—|[1110+(n—m)¢] f (/ Fn—m,m(r)-lm—n (ar)r dr) Jm—n (ar)a dCl.
0 r

=0
From here, the inversion is exactly the same asHhakel transform{28], i.e. if

@(a) = /‘00 o (r)J,(ar)rdr
0
then
P(r) = foo é(a)J,(ar)ada.
0

That is, the Hankel transform is its own inverse. In our caﬁ(ﬁn) = I%l_m,m(a),
¢(r) = Fy_pm(r), andv = m — n. This means that

o0
/ Fonttam (g, a)ada = e m0FT=mdlp (1) = Fy(r)e” e = f(g).
0

This last step was simply a renaming of variables= m, andn —m = j. Since the sums
overn andm are over{—oo, ..., oo} there is no problem in doing this.

4.3. Parseval’'s equality

We now present a proof of Parseval’'s equality (also called the Plancherel formula) so that we
have a mechanism for regularizing integral equations Bii2) using the Fourier transform.
The proof presented here is similar to the one found in [29].

We begin by defining

f*(e) = f(g™Y) € LASE(2)) V f e LASE(2).

Then

Mo =fx @) = [ Flef g o duten = [ fle) et o ge) duteo).
SEQ2) SE(2)

Evalulating this at the identity elemegt = e,

h(e) =f J(8¢) S (ge) duu(ge) =/ | £ (&)1 ().
SE(2) N

E(2)
The functioni(g) can also be expressed via the inversion formula as

h(g) = f Ootrace(ﬁ(a)Ua(g))a da.
0

Evaluated at the identity elemerif, (e) is the identity operator, and so

h(e) = / tracgh(a))a da = / traCE(f*(a)f(a))a da.
0 0
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But
from = F& V(g™ a) du(g) = F(@ttmn(g, @) du(g).
SE(2) SE(2)

This follows from the fact thaf E (2) is a unimodular group (possessing a volume element
which is left and right invariant) and thus for any functidhe £?(SE(2))

/ Fg™Y du(e) = / F(g) du(s).
SE(2) SE(2)

From equation (9) we can then write

—_=T

P = F(@tnm (@ L, a) (@) = From = Fom

SE(2)

(foun)*

i.e. f* = (f)* is the complex conjugate transpose of the Fourier transform matrikhis
means that

h(e) = fo trace(f)*(a) f(a))ada = /O I £ (a)ll3a da.

Equating the two expressions fbte), we get Parseval's equality f&E (2):

/ |f<g>|2du<g)=/ 1/ (@13 da.
SE(2) 0

This relationship will be extremely useful when we regularize and solve equation (1)
in section 6. But first, we examine operational properties, and a closed-form solution is
presented in section 5.

4.4. Operational properties

Recall that the Fourier transform of the derivative of a square integrable function on the
real line is defined using the inversion formula in equation (6) by differentiating under the
integral

df 1 d [~ R
du

Since 7 = iou(x, ), we get that the Fourier transform off ftx is iwf(w) Wheref(w)
is the Fourier transform of (x).

The exact same argument can be used to generate the Fourier transform matrices of
derivatives of functionsf(g) whereg € SE(2). For example, using the the inverse
transform given in section 3 we get

a 0 N a mn
r—f :I"/ ﬁ1171 uia da- (13)
ar 0 ar

Since uu,(g(r,¢,60),a) = irme 0TIl (ar), one gets duu,/or =

in—meTilnd+m-mel J' (ar)a. Integrating equation (13) by parts, and assumjiig(a)
is well behaved

r f N fom(@)J!_, (ar)a®da = — f h i(azf;m<a>)Jn_m(ar> da
0 0 da

= —/ Q2fum(@) + afl, (@) J_n(ar)ada.
0
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This means that

B o A A
rl = _/ (zfnm + afy:m)umna da
ar 0

and so
3 . df
or da
We may then use Parseval’s equality together with integration by parts to show that
A2
af |? x| d
/ r—f du(g) =f a—f ada.
SE(2) ar 0 da 5
We find that the transforms of the derivatives ffg) with respect tap andé are
af R
L) =A 15
#(55) =i (15)
and
af A R
— = fA-A 16
#(35) = in-ns (16)
where A,,, = —imé,, (no sum) is a diagonal matrix. This comes from the fact that
In /00 = (—in)i"—me 0Tm=mdly _ (ar) = —inuy, (no sum), anddu,,/d¢ =
—i(m — n)irme in0+n=mdl g (ar) = —i(m — n)uy, (NO Sum).

The transforms of other derivatives follow from these by composition.

5. A closed-form example

We will now show how equation (1) can be solved exactly in certain instances using the
Fourier transform of functions on the Euclidean group. The next section will discuss
regularization to yield well behaved approximate solutions in those cases when exact
solutions are not possible.

Taking the Fourier transform of both sides of equation (1), the original problem becomes

f@k(a) = h(a)
and thus
fla@) = h@[k@] ™
The desired function is then recovered using the inverse transform as

f(g) = F Hh(@)[k@]™).

Questions that naturally follow are: (1) How are the infinite dimensional mattigés),
U,(g™Y), f(a), k(a), andi(a) handled? (2) When is an exact solution possible, and what
can be done when an exact solution is not possible?

The answer to (2) will be provided in section 6. The answer to (1) is that for bandlimited
functionsk and# (i.e. functions with a finite frequency spectrum), the Fourier transform
matrix will be mostly zeros, with only a finite submatrix with non-zero elements.

To make the discussion concrete consider the following functioitse £2(SE(2)):

h(g) = H1(r)(Cj, + 2A;, c0SH) + 2B, Ho(r) COS¢p

17
k(g) = K1(r)(Cy + 2A; Ccosh) + ZBsz(r) COS¢ ( )
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where Ay, Ay, By, Bi, C,, Cr > 0 are given real numbers. These functions can be
considered as first-order approximations to the density functions associated with two
different halves of the discretely actuated manipulator arm discussed in section 2. When
the coordinate axis normal to the base of the manipulator (pointing in the direction of the
manipulator) is defined to be;, a plot of these density function resembles the one in
figure 2 for appropriate choices of the constants and functiéyis) and K; (r).

These functions are written in complex form as

h(g) = Hi(r)(Cy + An(€® + € %)) + B, Ha(r) (€% + &)

k(g) = K1(r)(Cr + Ac(€” + €7%)) + BiKo(r) (€7 + 7).
Hy(r), Ha(r), Kai(r) and K»(r) are rapidly decreasing, bounded, piecewise continuous
functions onR*.

Due to orthogonality, all of the elements of the Fourier transform matficesdk are
zero except the following blocks:

~

h*3(a) = / h(g)Uf“(gl)du(g):(ho,l hoo  hox
SE(2) r r

hi—1  hio  hiz

ri@ O 0

= (,31(61) Kk1(a) ﬂl(@)
0 0 n

h_y-1 h_10 h_11 )

. kg1 koo koia
k¥3(a) = f k(UP3(g Hdu(@) = | ko1 koo koa
SE@) ]21,—1 ]21,0 121,1
y2(a) 0 0
= (ﬂz(a) Kko(a) ﬂz(a)>
0 0 ya)

where
u_1-1(g7ta) u_10(gta) u_11(g7 % a)
U3 = ( uo-1(g74 a)  uoo(g™t @) uoi(gt a) )
ur—1(g7ta)  uro(gta)  uri(gta)
y1(a) = Ah/ Hy(r)Jo(ar)r dr
0
k1(a) = Ch/ Hy(r)Jo(ar)r dr
0
Pr(a) = —iB, / Ha(r) Jy(ar)r dr
0
and

ye(a) = Ak/(; K1(r)Jo(ar)r dr
ko(a) = Cy /00 Kq(r)Jo(ar)r dr
0

Bo(a) = —iBy /‘00 Ko(r)Jy(ar)r dr
0

and Jo(x) and J1(x) are respectively the zeroth- and first-order Bessel functions.
If for instance

Hir) =" H)=re" K@) =P K =re®  (18)
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for by, by, ci, cx > 0, then the identity [18]
o0 2 bv 2
e ax Jv b v+ldx — e—b /4a
/(; ( x)x (Za)erl

for a > 0 is used to give closed-form solutions for the above integrals.

While the inverse of the matrik is not defined, if we limit our search for solutions to
those functionsf (g) for which only £3<3 is non-zero, then this particular problem can be
restricted so that only & 3 matrices are considered, and

f3><3 — ﬁ3x3[]23><3] -1

This of course assumes that<3 is invertible (which is the case in this example when
and«, are nonzero). The desired function is then recovered using the inverse transform as

flg) = / wtrace(f“%a)Uj“(g))a da
0

whereU2*3(g, a) is the part of the unitary matrix representationsdf(2) that will multiply
the nonzero block of the Fourier transform matyixi.e.

u_y_1(g,a) u_10(g,a) u_11(g,a)
U>3(g) = ( uo-1(g.a)  uoo(g.a)  uoi(g.a) )
ui_1(g,a) wuio(g,a) uii(g,a)

The inverse of3*3 for this example is

2 0 0\ 1/y2 0 0
(/32 K2 52) =<-ﬂ2/)’2/€2 1/ic2 —,32/7/2K2>-

0 0 » 0 0 1y2
Therefore
) Y1/v2 0 0
f3X3=(ﬂl/l/z—(ﬁzKl)/(Vsz) K1/k2 /31/)/2—(/32161)/()/2/62))
0 0 Y1/v2
and so

tr(f2PUP3) = (11/y2) u-1,-1(g, @) + ur1(g, @) + (k1/k2)u0,0(g, @)
+_10(g,a) +u1o(g, a))(B1/y2 — (Bak1)/(y2K2)).

From the definition of the matrix elements of the unitary representatidgiEg®) given
in equation (8), we get

tr(f¥3U3) = 2 cosd Jo(ar) (y1/v2) + Jolar) (1 /x2)
+2icosp Ji(ar)(Br/v2 — (Box1)/ (vok2)).
Therefore,

f(g) = 2F1(r) cost + F>(r) + 2F3(r) cOS¢

where

Fi(r) = fo (ya(@)/va(a)) Jolar)a da
Fa(r) = fo (k1(a) /ia(@)) Joar)a da

F3(r) =i/0 (B1(a)/y2(a) — (Ba(a)k1(a))/(y2(a)ka(a))) Ji(ar)a da.
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SinceB1(a) and B2(a) are purely imaginaryFs(r) is real (as ardy (r) and Fa(r)).
As with the solution of usual Fredholm integral equations of the first kind, this solution
is not unique. Because we assumed the dimension of the non-zero blgctodie 3x 3,
this solution is not highly oscillatory, and limiting ourselves to a 3 block is in effect a
means of regularization. The next section addresses issues in the regularization of equations
of the form of equation (1) which do not have exact closed-form solutions.

6. Regularization of integral equations onSE(2)

In this section, the problem of regularizing ill-posed Fredholm integral equations of the first
kind with convolution kernel on the Euclidean motion group is addressed. That is, for given
k(g) andh(g) it may not be possible to invert the equation

(kx f)(g) = h(g)

exactly in order to findf(g). This will be the case for instance when the rank of the
Fourier transform matrix(a) is less than that of(a). In such cases, we need a method
of restating the original problem so that an approximate solution results. One such method
was illustrated in the introduction of this paper using Hermite functions. Another, less
cumbersome method is discussed now.

We can restate the original problem as that of finding the real-valued fung¢tighe
L2(SE(2)) which minimizes

c =f [k * £(g) — h(g)]2 + €[ £ ()17 dyuCe).
SE(2)

This is a generalization of the zeroth-order Tikhonov regularization [12] from the case
of functions onR to functions onSE(2). The value of the positive real numberis used
as a tradeoff between how accurate the solution is and how well behaved it is.

Since all the functions involved are real-valued anfdg)|> = [f(g)]?, Parseval's
equality can be used to transform this cost function to

c= /O (17 @k@ — h@) 2+ el (@) l3a da.

This equation can be minimized by finding the value ffz) at each value of: that
minimizes

c(f(@) = I f@k(@) — k(@3 + €l f(@)ll3. (19)
We therefore calculate:
dc A An ~n
= flk* +€l) — hk* = 0. 20
v I €l) (20)

This equation is inverted to yield
f = hk*(kk* + €Dt
As we saw in the previous section, these matrices can be treated as finite-dimensional if the

« and ¢ terms have finite frequencies. In this case it is possible to perform the inversion
above, and invert the resulting Fourier transform matrix yielding the desired result:

flg) = / traceh (@) (@) (R (@R (@) + €1) " U, (g))a da.
0

This approach will be demonstrated with an example in subsection 6.1. But first we
generalize the approach so that not only an approximate solution can be generated, but that
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one with desired smoothness properties is generated. This means changing our cost function
to account for smoothness ¢f(g).
To this end, consider the cost function

N 2 2 o\’ af af\
C—/SE(Z)[[k*f(g)—h(g)] +e[f (9] +V(r8r> +o <a¢> +n <39) ] du(g).

(21)
The last three terms can be thought of as the magnitude squared of a weighted gradient of
the functionf. Using the operational rules derived in subsection 4.4, this is transformed to

C = fo c(f(a), f'(a), a)da

where
2

+ollfA-AfI3+ nnAfn%)a.
2

“ da
One way to solve this regularized problem is to expand each element of the Fourier transform
matrix in a series with unknown coefficients, such )é,g, = vazl imnYP;mn (@), fOr an
appropriate set of basis functiofy,,,}. The result is then integrated with respectato
and the problem becomes a simple multivariable minimization in the variahlgs

Another approach is to use variational optimization (see e.g. [21]) to solve the problem
exactly. Using this approach, necessary conditions for the cost fun€timnbe minimized
are given by the set of Euler-Lagrange equations

d<8c> dc
— (5 )+ % =0
da afr af*

(a’ denoting differentiation with respect tg which yields a set of second-order differential
equations to be solved with appropriate boundary conditions. For the cost function in (21)
these equations are written explicitly as

= <||f(a)/2<a> —h@3+elf@l3+v

d/ ,d A R A A oaa,
Y L da < df> + flk* 4+ €1) + o (fAA* — AFA* — A* fA + A*AF) + nA*Af = hi*
a
(22)
The boundary conditions with which to solve these equations are
lim 3f'(a) = and lim a" f(a) =0 VneZzt. (23)

The first boundary condition is the free initial condition given zm//af'* = 0. The other

end condition is a result of the fact that acceptable functions must be rapidly decreasing.
Coupled equations of this form can be solved numerically using standard numerical

integration schemes. The inverse transform can also be inverted using numerical integration.

In subsection 6.2 a closed-form perturbation solution is examined for a special case.

6.1. An example of zeroth-order Tikhonov regularization

Let us consider the closed-form example in section 5, where@ow B, = 0. This means
that
vl 0 O
k¥3(a) = ( 0O 0 O )
0 0 yaa)
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which is singular. To compute a regularized solution, we first compute

Y2
y22+5 0 0
(k3><3)*[k3><3(k3><3)* + El]_l — 0 O 0
y:
0 0 yzzie
Assumingh as in section 5, we get
V1Y,
w0 o
f3><3 h3><3(k3><3) [k3><3(k3><3)* + 613X3] Zzlﬁ 0 Zzlﬁ
yive
0 0 y221+5

Note that by regularizing in this way, the solution is made unique because
fl3><3(]23x3)*[]€3><3(]€3><3)* +613><3]—1 — [ﬁ]%*[l’c\]’c\* +61]—1]3><3

when 4 and k only have non-zero elements in thex33 block. This also means that
zeroth-order regularization dictates that<® contains the only non-zero elements of the

regularized solution for the Fourier transforfn.
Using the Fourier inversion formula, we then get the regularized solution
* yi(a)y2(a) * pr(a)yz(a)
y2(a) +e€ yZ(a) +e€
Since g, is purely imaginary, this result is real. Note thateas> 0, f. — f where f
is the exact solution presented in section 5.

fe(g) =2 COS9[ Jo(ar)ada + 2i COS(b/ Ji(ar)a da.
0 0

6.2. An example of first-order Tikhonov regularization

Let us consider the case whénand k are as they were in subsection 6.1. Furthermore,
assume that = n = o = 0, andv is a small positive number. The resulting Euler—Lagrange
equations will be of the form

v d
" ada

which is a special case of equation (22). R
Since in this case all the entries in the matriceandk are zero except those elements
in the 3x 3 blocks/®*3 andk®*3, one finds that

39
a da ( da ) =0
for (m,n) outside of 1,1] x [—1,1]. Dividing by v/a and integrating once Yyields:
a®df,.,/da = c1. However, we have from the boundary conditions (23) at zero that this
quantity must be zero, and g9 = 0. Therefore Cfmn/da = 0, which is integrated to yield
fmn = ¢,. However, we have from the second boundary condition mat—> 0 asa — oo,
which means that, = 0, and so the only solution admitted for the Fourier transform matrix

elements outside of the:33 block is the trivial solution.
The next step is to solve the remaining matrix differential equations:

< (;f> + flkk*y = hk*

d £3x3 . R R N n
_vd( sdf 4 FRBEBB(R3x3)y  3x3 33y
a da Cda
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For this example there are three different kinds of scalar equations that result:

d d :n m r
—Ef <(13 f . ) + )/j_z(a)fm,m = ]/1(61)]/2(0)
ada da
d / sdfon A
vd (as fo ) + 2@ fom = 11(@)Ba(@)
a da da
v d 3dfm,fm 2 r _
v ") @ =0

form =1, —1 (no sum).

These uncoupled linear equations with variable coefficients are difficult to solve in closed
form. In fact, even approximate solutions are difficult because the singular perturbation
methods which are usually used for equations whose highest derivative is multiplied by a
small parameter break down when both of the highest derivatives are multiplied by this
parameter [16].

Nonetheless, it suffices to say that to zeroth ordep,irsolutions to these equations
which obey the boundary conditions are

fm.—m ~ )/2/)/1 fO,m ~ ,32/]/1 ﬁn,—m ~ O

for m = 1, —1 (no sum) assuming that the decay@fandy, is faster than that of; as
a — oo and the ratio does not blow up anywhere.

Thus, to this order, the solution is exactly the same as the answer in the previous
subsection.

7. Conclusions

The properties of the Fourier transform of scalar-valued functions on the Euclidean motion
group were used to generate exact and regularized solutions of convolution integral equations
involving functions on the Euclidean group. Because of the convolution theorem and
operational properties of the Fourier transform on the Euclidean group, exact and regularized
solutions of convolution-type equations are solved very efficiently. This is because the
Fourier transform of a given square-integrable function on the Euclidean group is a matrix
which is parametrized by a positive real scalar, and therefore solving convolution equations
in the Fourier domain for the case of the Euclidean group is much less cumbersome than
using Galerkin/least-squares techniques.

Acknowledgments

This work was made possible by the National Young Investigator Award IRI-9357738 from
the Robotics and Machine Intelligence Program at the National Science Foundation, and
Presidential Faculty Fellow Award IRI-9453373. Special thanks go to Ms Imme Ebert-
Uphoff for preparation of the figures in section 2, and to Dr Alexander Kyatkin and the
anonymous reviewers for proofreading this text.

References

[1] Blackmore D and Le M C 1992 Analysis of swept volume via Lie groups and differential equations).
Robotics Resl1 516-37



2

(3]
(4]

(5]
(6]

(7]
(8]

El
[10]
[11]
[12]

[13]
[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]
[26]
[27]
(28]
[29]
(30]

(31]

Integral equations on the Euclidean group 599

Chirikjian G S 1995 Kinematic synthesis of mechanisms and robotic manipulators with binary actuators
ASME J. Mech. Desigh17 573-80

Davis P J and Rabinowitz P 19Methods of Numerical IntegratiofNew York: Academic)

Diaconis P and Rockmore D 1990 Efficient computation of the Fourier transform on finite gdoups.
Math. Soc.3 297-332

Dooley A H 1989 A nonabelian version of the Shannon sampling theorem 88 J. Math. Anal.20
624-33

Ebert-Uphoff | and Chirikjim G S 1996 Inverse kinematics of discretely actuated hyper-redundant
manipulators using workspace densiBroc. 1996 IEEE Int. Conf. on Robotics and Automation
(Minneapolis, MN, April 1996pp 139-45

Ebert-Uphoff | and Chirikjim G S 1995 Efficient workspace generation for binary manipulators with many
actuators]). Robotic Syst383—400

Ebert-Uphoff | and Chirikjim G S 1996 Discretely actuated manipulator workspace generation by closed-form
convolutionProc. 1996 ASME Mechanisms Conf. (Irvine, CA, August 189@yess

Flanders H 198®ifferential Forms with Applications to the Physical Scien¢dew York: Dover)

Folland G B 1995A Course in Abstract Harmonic Analysidnn Arbor, MI: Chemical Rubber Company)

Fulton W and Harris J 199Representation Theory: A First Courgdew York: Springer)

Groetsth C W 1984The Theory of Tikhonov Regularization for Fredholm Equations of the First (@odton,
MA: Pitman)

Halmos P 1969Measure TheoryPrinceton, NJ: Van Nostrand)

Hanse P C 1992 Numerical tools for analysis and solution of Fredholm integral equations of the first kind
Inverse Problem$& 849-72

Hochstadt H 1973ntegral EquationgNew York: Wiley)

Kervorkian J and Ca J D 1981Perturbation Methods in Applied Mathemati@sdew York: Springer)

Kumahara K 1976 Fourier transforms on the motion grduMath. Soc. Japa28 18-32

Lebede N N 1972Special Functions and their Applicatiotranslated § R A Silverman (New York: Dover)

Lenz R 1990Group Theoretical Methods in Image Process{@grlin: Springer)

Linz P 1994 A new numerical method for ill-posed probleingerse Problem40 L1-6

Lovelock D and Rund H 198%ensors, Differential Forms, and Variational Principlédew York: Dover)

Mackey G W 1950 Functions on locally compact groupsll. Am. Math. Soc56 385-412

Maslen D K 1993 Fast transforms and sampling for compact groBp® DissertationDepartment of
Mathematics, Harvard University

Miller W 1964 Some applications of the representation theory of the Euclidean group in threecspacein.
Pure Appl. Math.17 527-40

Nachbin L 1965The Haar Integral(Princeton, NJ: Van Nostrand)

Orihara A 1961 Bessel functions and the Euclidean motion gi@iku Math. J13 6671

Rockmoe D N 1994 Efficient computation of Fourier inversion for finite grodp#ssoc. Comput. Mach.
41 31-66

Snedda | N 1995 Fourier TransformgNew York: Dover)

Sugiura M 1990Unitary Representations and Harmonic Analyisd edn (Amsterdam: North-Holland)

Vilenkin N J and Klimyk A U 1991 Representation of Lie Groups and Special Functieols 1-3 (Dordrecht:
Kluwer)

Warne F W 1983Foundations of Differentiable Manifolds and Lie Groufdéew York: Springer)



