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Abstract. In this work, methods for the solution of Fredholm equations of the first kind with
convolution kernel are presented, where all the functions in the integral equation are functions
on the Euclidean motion group, and the convolution product is defined relative to the group
operation. An application in which such equations arise is examined in detail. The properties
of the Fourier transform of scalar-valued functions on the Euclidean motion group are reviewed
and applied to an exactly solvable example. Standard regularization techniques are then adapted
and illustrated for cases in which exact solutions are not possible.

1. Introduction

Properties of the Fourier transform of scalar-valued functions on a given Lie group(G, ◦)

are used in this paper to solve equations of the form∫
G

k(gξ )f (g−1
ξ ◦ gx) dµ(gξ ) = (k ∗ f )(gx) = h(gx) (1)

wheregx, gξ ∈ G, k(·) andh(·) are given square-integrable scalar functions onG, dµ(gx)

is a volume element atgx , andf (·) is a function onG which is to be found either exactly
or approximately.

This is a generalization of the Fredholm integral equation of the first kind with
convolution kernel∫ ∞

−∞
k(ξ)f (x − ξ) dξ =

∫ ∞

−∞
k(x − ξ)f (ξ) dξ = (k ∗ f )(x) = h(x) (2)

except thatG is a Lie group with operation◦, and dµ(·) is a left-invariant volume element
on G. This contrasts the specific case ofG = R with the group operation◦ = +, and
dµ(gξ ) = dξ . For precise definitions of the terms used above see [10, 13, 22, 25, 31].

We will address the case whenG = SE(2)—the two-dimensional special Euclidean
group which describes all motions (translations and rotations) within the Euclidean plane.
A subgroup of this group consists of translations, and the theory has as a subcase the
standard theory of Fredholm integral equations of the first kind with convolution kernel.

The approach we will take is similar to the standard solution of Fredholm integral
equations of the first kind with a convolution kernel like the one in equation (2). Namely,
when possible a generalization of the Fourier transform will be used to convert this to a linear
algebraic equation, which can either be solved exactly, or if the system is rank-deficient, is
solved approximately using regularization methods.
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The reason for looking at the case whenG = SE(2) is that the mathematical problems
formulated in this paper are motivated by applications in robot kinematics and motion
planning, and group theoretical image processing and machine vision where the motion
group plays a vital role. One such application is explored in detail in section 2, and others
can be found in [1, 19].

We begin with a review of the Euclidean motion group of the plane,SE(2), and provide
motivation for exploring its unitary matrix representations, and the concept of the Fourier
transform of functions on this group.

Any elementg ∈ SE(2) and its inverseg−1 can be represented as homogeneous
transformation matrices of the form

g =
(

R b

0
T

1

)
g−1 =

(
RT −RT b

0
T

1

)
(3)

whereb ∈ R2 andR is a 2×2 proper orthogonal matrix (RRT = 1 and det(R) = +1). The
set of all matrices with the properties ofR together with matrix multiplication is a group
called the special orthogonal group,SO(2). The group operation forSE(2) is also matrix
multiplication, and the product of two elements is defined by

g1 ◦ g2 =
(

R1 b1

0
T

1

) (
R2 b2

0
T

1

)
=

(
R1R2 b1 + R1b2

0
T

1

)
.

Each element ofSE(2) is parametrized in either rectangular or polar coordinates as

g(x1, x2, θ) =
( cosθ − sinθ x1

sinθ cosθ x2

0 0 1

)
or g(r, φ, θ) =

( cosθ − sinθ r cosφ
sinθ cosθ r sinφ

0 0 1

)
.

The convolution product of square integrable functions onSE(2) is expressed in
rectangular coordinates in the form

(f1 ∗ f2)(x1, x2, θ) =
∫

SE(2)

f1(g(ξ1, ξ2, α))f2(g
−1(ξ1, ξ2, α) ◦ g(x1, x2, θ)) dµ(g(ξ1, ξ2, α))

= 1

(2π)2

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
f1(ξ1, ξ2, α)f2((x1 − ξ1)cα + (x2 − ξ2)sα

−(x1 − ξ1)sα + (x2 − ξ2)cα, θ − α) dξ1 dξ2 dα

wherecα = cosα andsα = sinα.
Using polar coordinates the convolution product has the form

(f1 ∗ f2)(r, φ, θ) =
∫

SE(2)

f1(g(ρ, γ, α))f2(g
−1(ρ, γ, α) ◦ g(r, φ, θ)) dµ(g(ρ, γ, α))

= 1

(2π)2

∫ π

−π

∫ π

−π

∫ ∞

−∞
f1(ρ, γ, α)

×f2

(√
r2 + ρ2 − 2rρc(φ − γ ), t (r, ρ, φ, α, γ ), θ − α

)
ρ dρ dγ dα

where

t (r, ρ, φ, α, γ ) = Atan2(r sin(φ − α) − ρ sin(γ − α), r cos(φ − α) − ρ cos(γ − α))

and a normalized volume element/measure with which to integrate is defined by

dµ(gξ ) = 1

(2π)2
ρ dρ dγ dα = 1

(2π)2
dξ1 dξ2 dα

wheregξ = g(ξ1, ξ2, α) = g(ρ, γ, α).
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The function Atan2(y, x) is the two-argument inverse-tangent function which is
equivalent to tan−1(y/x) when x and y are positive, and generates a result in the range
−π to π depending on the signs ofx andy.

In the above cases, notational abbreviations of the formf (g(x1, x2, θ)) = f (x1, x2, θ)

andf (g(r, φ, θ)) = f (r, φ, θ) have been made since the meaning is clear from the context.
The fact that dµ(g) as defined above forSE(2) is a left and right invariant volume

element (i.e. dµ(gξ ) = dµ(gx ◦ gξ ) = dµ(gξ ◦ gx)) gives the convolution product some
interesting and useful properties†.

In particular, equation (1) can be written in the alternative form∫
SE(2)

k(gx ◦ g−1
ξ )f (gξ ) dµ(gξ ) = (k ∗ f )(gx) = h(gx) (4)

by the change of variablesgξ → gx ◦g−1
ξ . This is true despite the fact that the groupSE(2)

is not commutative and not compact.
One way to approach the problem of findingf (gx) is to treat it as one of a more general

form: ∫
SE(2)

K(gx, gξ )f (gξ ) dµ(gξ ) = h(gx). (5)

This problem can be addressed in the usual ways that integral equations with non-self-
adjoint non-separable multidimensional kernels are dealt with. For example, we can expand
the unknown function in terms of a complete orthonormal series, and solve an associated
set of linear algebraic equations. Using rectangular coordinates, equation (5) is rewritten as∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
K(x1, x2, θ, ξ1, ξ2, α)f (ξ1, ξ2, α) dξ1 dξ2 dα = (2π)2h(x1, x2, θ)

and for the particular case of the convolution kernel in equation (4),

K(x1, x2, θ, ξ1, ξ2, α) = k(x1 − ξ1c(θ − α) + ξ2s(θ − α),

x2 − ξ1s(θ − α) + ξ2c(θ − α), θ − α).

Making the approximation

f (ξ1, ξ2, α) ≈ exp[−(ξ2
1 + ξ2

2 )/2]
N∑

i=0

N∑
j=0

N∑
k=−N

fijkHi(ξ1)Hj (ξ2)e
√−1kα

whereHi(x) is the ith normalized Hermite polynomial, the coefficientsfijk can be found
in the least squares sense in exactly the same way they would be for a standard integral
equation. Multiplying both sides byHm(x1)Hn(x2)e−(x2

1+x2
2)/2e

√−1pθ and integrating over
x1,x2, andθ means that the approximate solution of this convolution equation onSE(2) using
the Hermite–Fourier series approximation can be written as a system of linear equations of
the form

Kf = h or
∑
ijk

Kmnpijkfijk = hmnp

which is solved to findfijk.
There are two problems with this approach. First, the matrixK has [(2N+1)(N+1)2]2 =

O(N6) elements, each of which is of the form

Kmnpijk =
∫ π

−π

∫ ∞

−∞

∫ ∞

−∞

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
K(x1, x2, θ, ξ1, ξ2, α)Hm(x1)Hn(x2)Hi(ξ1)Hj (ξ2)

×e−(x2
1+x2

2)/2e−(ξ2
1 +ξ2

2 )/2e
√−1pθe

√−1kα dξ1 dξ2 dα dx1 dx2 dθ.

† One can easily derive this volume element and demonstrate its invariance using methods in [9] or [31].
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These integrals will generally not be solvable in closed form, and multidimensional
numerical integration can be time consuming and error prone [3]. Second, inverting the
(2N + 1)(N + 1)2 × (2N + 1)(N + 1)2 matrix K to find the coefficientsfijk will require
O((N3)3) = O(N9) computations. While this can be done ifN ≈ 10, if we want a good
solution,N ≈ 100 may be required.

These problems are compounded if one extends this approach to the Euclidean motion
group of three-dimensional space,SE(3). This is a six-dimensional Lie group for which
each of the O(N12) elements in the coefficient matrixK would require 12-dimensional
integrals, and thenK would have to be inverted, requiring O(N18) computations.

Alternatively, sampling techniques developed recently for functions on Lie groups (e.g.
[5, 23]) could potentially be used to approximate the integral equation at a finite number of
points. From there, finite difference approximation methods and modifications thereof (e.g.
[14, 15, 20]) could be applied as they are in the case of integral equations on the real line.
Another approach would be to use efficient transforms developed for discrete groups [4, 27].
However, it is not clear how these approaches can be adapted to noncompact groups such
as the Euclidean group since the number of points in the discretization may need to be large
in each dimension.

In order to avoid these problems, and address the case of convolution kernels in the
most natural way, the Fourier transform on the Euclidean group will be used.

The remaining sections of this paper are organized as follows. Section 2 examines a
scenario in which the inverse problem in equation (1) arises. Section 3 reviews unitary
representations ofSE(2) and the definition of the Fourier transform onSE(2). Section 4
illustrates some of the useful properties of this Fourier transform, including an analogue
to the convolution theorem and Parseval’s equality for functions on the Euclidean group.
Much of this material is a combination and restatement of that found in [29] and [30].
Section 5 provides an example in which the solution to equation (1) is generated exactly.
Section 6 extends standard regularization techniques to solve equation (1) (or equivalently
equation (4)). Section 7 is the conclusion.

2. An application in robotics

In order to motivate the need for solving the inverse problem stated in equation (1), we
examine a problem from the field of robotics in detail.

A robotic manipulator arm is a device that is used to position and orient objects in
the plane or in three-dimensional space. A manipulator is generally constructed of rigid
links and actuators, such as motors or hydraulic cylinders, which cause all motions of the
arm. If the actuators have only a finite number of states, as is the case with stepper motors
or pneumatic cylinders, then the arm has a finite number of configurations and only a
finite number of frames† are reachable by the hand. This is illustrated in figure 1 for a
manipulator composed of linear/translational actuators. This manipulator is capable of only
reaching eight positions and orientations in the plane. Such a manipulator is called a binary
manipulator [2]. The set of all reachable positions and orientations is called theworkspace.
Clearly, in the case of discrete actuation the workspace is a discrete subset ofSE(2), though
it is not a discrete subgroup.

For discretely actuated manipulators thedensity of reachable frames inSE(N)

determines how accurately a random position and orientation can be reached. This density

† A frame in space is competely determined by the position of its origin and its orientation relative to another
frame.
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Figure 1. An eight-state binary manipulator.

information is also extremely important in planning the motions of discretely actuated
manipulator arms [6]. Density is calculated directly by dividing a compact subset ofSE(N)

containing the workspace into finite but small volume elements. The number of positions
and orientations reachable by the end of the manipulator which lie in each volume element
is stored. Dividing this number by the volume element size gives the average density in
each element. An efficient method for the calculation of this density histogram is given
in [7]. A smooth density function can be used to approximate the shape of this density
histogram as in [8]. Note that the density function is always real-valued and positive.

It is an important aspect of the manipulator design problem to specify the density of
reachable frames throughout the workspace. That is, areas which must be reached with
great accuracy should have high density, and those areas of the workspace which are less
important need less density. For relatively few actuators, this is achieved by enumerating
reachable frames (positions and orientations) and using an iterative procedure as discussed
in [2]. However, to compute this workspace density function using brute force and iterating
is computationally intractable for largen. In fact, it requiresKn evaluations of the kinematic
equations relating actuator state to the resulting end frame for a manipulator withn actuators
each withK states. In figure 1,K = 2 andn = 3 so the problem is simple.

A grey scale of the density of frames reachable by a discretely actuated manipulator is
shown in figure 2 with several configurations of the arm superimposed†. This manipulator
is essentially a serial cascade of modules with the same kinematic structure as in figure 1,
only now each leg has four states instead of two. Since each leg has four states (and
thus the whole manipulator has 430 ≈ 1018 states) the workspace density cannot simply be
computed using brute force. In fact, it would take years using current computer technology
to enumerate all the positions and orientations of the frame attached to the end of the
manipulator for each discrete configuration.

The concept of convolution of real-valued functions onSE(N) provides a powerful
computational tool for computing this density efficiently [7, 8]. If we imagine that the
manipulator is divided into two connected parts, then a density functionα(g) can be
associated with those frames reachable by the end of the lower half of the manipulator, and a
density functionβ(g) can be associated with the end of the upper half of the manipulator.α

is defined relative to the base frame, andβ treats the frame at the end of the lower segment
as the base frame. That is,α(g) = β(g) when the manipulator is cut into two equal parts

† A density function onSE(2) can be written asρ(x, y, θ). What is shown is really the integral of this overθ

from −π to π so that a planar picture results.
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Figure 2. A discretely actuated manipulator with 430 states.

and there are an even number of identical modules. However,α andβ will not be the same
function in more general scenarios. By adjusting kinematic parameters such that actuator
strokes are limited or extended, the set of reachable frames (and thus the density) is altered.
This is achieved mechanically by simply inserting or removing rigid stoppers that specify
the physical actuator length corresponding to the discrete states.

While it may not be possible to calculateKn frames to compute the density function of
the workspace, it is often feasible to computeKn/2 frames for each of the two segments.
For the example discussed earlier, this would be of the order of a billion calculations, which
can be done easily in less than an hour on a not-so-sophisticated computer. The density of
the whole workspace is then generated by the convolution of these two functions:∫

SE(2)

α(g)β(g−1 ◦ h) dµ(g) = γ (h).

The geometry of why this is so follows below. Suppose there are two frames of
reference—the base frame and one attached to the middle of the manipulator. Quantities
described in the the base frame,F1, are denoted with a prime, while quantities described
in the frame in the middle of the manipulator,F2, are denoted without a prime. Let the
homogeneous transform matrixH describe the position and orientation of a third frame,
F3, with respect toF2, and letH describe the position and orientation ofF2 with respect
to F1. Then the position and orientation ofF3 with respect toF1 is

H ′ = HH

as illustrated in figure 3.
If a real-valued functionρ(H) is defined in the moving frame, then the same physical

quantity can be represented in the fixed frame asρ ′(H ′), whereρ ′(·), is a different function
from ρ(·). Knowing that the change of coordinates does not change the physical quantities
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F1

F3

F2
H'

H

Figure 3. Concatenation of homogeneous transformations.

being described, one recognizes that

ρ ′(H ′) = ρ(H).

Furthermore, because of the relationship betweenH andH ′ one finds that

ρ ′(H ′) = ρ(H−1H ′).

In other words, in order to represent the function that is defined in the moving frame in
the fixed frame coordinates, the homogeneous transform which describes the motion must
be inverted and applied to fixed frame coordinates. Thus, the natural way to think of
convolution of functions on the Euclidean group is that a functionρ1(H) is multiplied by
ρ ′

2(H) = ρ2(H−1H) and integrated over all values ofH:

(ρ1 ∗ ρ2)(H) =
∫

SE(N)

ρ1(H)ρ2(H−1H) dµ(H).

This calculation does not depend on the number of actuated modules in the manipulator,
and allows us to compute the workspace density much more efficiently than by brute
force. We can further subdivide the manipulator into smaller parts and perform multiple
convolutions for even faster workspace density function generation.

Now, suppose that one of the halves of the manipulator has been designed (α(g) is
specified), and the problem is to design the other half of the manipulator (findβ(g)) so that
the density function for the workspace of the whole manipulator comes as close as possible
to a desired density functionγ (g). One must then solve the inverse problem

(α ∗ β)(g) = γ (g)

for β(g). Once β(g) is known, the methods developed in [2] can be used to find the
appropriate kinematic parameters in the manipulator arm.

The remaining portion of this paper is devoted to the task of elegantly solving the
above-stated inverse problem. But first, material from the pure mathematics literature is
reviewed and then applied in later sections to the solution of this problem.
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3. Unitary representations and the Fourier transform

Recall that one of the most powerful properties of the usual Fourier transform is that the
Fourier transform of the convolution of two functions is the product of the Fourier transforms
of the functions. This property extends to the concept of a Fourier transform for functions
on SE(2), but some review is first required. The reader familiar with the concept of the
Fourier transform onSE(N) can go directly to section 5.

Recall that the Fourier transform pair for a suitable function,f (x), for x ∈ R is defined
as

f̂ (ω) = 1√
2π

∫ ∞

−∞
f (x)u(−x, ω) dx f (x) = 1√

2π

∫ ∞

−∞
f̂ (ω)u(x, ω) dω (6)

whereu(x, ω) = eiωx. Note thatu(x + y, ω) = eiω(x+y) = eiωxeiωy = u(x, ω)u(y, ω). This
is an example of ahomomorphism. In general, a homomorphism is a mapping between two
groupsh : (G, ◦) → (H, ◦̂) such thath(g1 ◦ g2) = h(g1)◦̂h(g2). In particular, the function
u(·, ω) maps(R, +) → (U, ·) for eachω ∈ R whereU is the set of complex numbers with
unit modulus, and· is scalar multiplication.

The convolution theoremfor functions on the real line states that:(f (x) ∗ g(x))̂ =
f̂ (ω)ĝ(ω). This is a direct result of the facts thatu(−(x + y), ω) = u(−x, ω)u(−y, ω) and
integration on the real line is translation invariant.

A representationof a groupG is a homomorphismT : G → T (G) ⊂ GL(V ). V is a
vector space called the representation space, andGL(V ) is the group of all invertible linear
transformations ofV onto itself. T (g) for g ∈ G is expressed in a given basis ofV as an
invertible matrix, and

T (g1 ◦ g2) = T (g1)T (g2) T (g−1) = T −1(g) T (e) = 1 ∈ GL(V ).

Representations that can be expressed as unitary matrices(U−1 = U ∗) in an orthonormal
basis ofV are called unitary representations. The functionu(x, ω) is an example of a
one-dimensional unitary representation. Henceforth in this paper the representation spaces
used will be function spaces of the formLn(P ), which denotes the set of complex-valued
functions f (p) for which

∫
P

|f (p)|n dµ(p) < ∞ where p ∈ P for some manifoldP .
dµ(p) is an appropriate volume element for eachp ∈ P (see [31] for a precise definition).

A unitary representation ofSE(2) (see [29, 30] for a general definition) is defined by
the unitary operator

Ua(g)f̃ (x) = eia(b·x)f̃ (RT x) (7)

for eachg ∈ SE(2) of the form of equation (3). ez is the scalar exponential function,
a ∈ R+, i = √−1, andx · y = x1y1 + x2y2. The vectorx is a unit vector (x · x = 1), and
f̃ (·) ∈ L2(S1) whereS1 is the unit circle. Since only one angle is required to parametrize
a vector on the unit circle,x = (cosψ, sinψ)T , and f̃ (x) = f̃ (cosψ, sinψ) ≡ f (ψ).
Henceforth we will not distinguish betweeñf andf .

By definition, group representations observe the homomorphism property, which in this
case is seen as follows:

Ua(g1)Ua(g2)f (x) = Ua(g1)(Ua(g2)f (x)) = Ua(g1)(e
ia(b2·x)f (RT

2 x))

= eia(b1·x)eia(b2·RT
1 x)f (RT

2 RT
1 x)

= eia(b1+R1b2)·xf ((R1R2)
T x) = Ua(g1 ◦ g2)f (x).
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Any functionf (ψ) ∈ L2(S1) can be expressed as a weighted sum of orthonormal basis
functions asf (ψ) = ∑

n aneinψ. Likewise, the matrix elements of the operatorUa(g) are
expressed in this basis as

umn(g, a) = (eimψ, Ua(g)einψ) ∀ m, n ∈ Z
where the inner product(·, ·) is defined as

(f1, f2) = 1

2π

∫ 2π

0
f1(ψ)f2(ψ) dψ.

It is easy to see that(Ua(g)f1, Ua(g)f2) = (f1, f2), and thatUa(g) is therefore unitary with
respect to this inner product.

The matrix with elementsumn is ‘infinite-dimensional’. Furthermore, the matrix of
a unitary operator expressed in an orthonormal basis is a unitary matrix, which means
u−1

nm = umn.
A number of works including [17, 24, 26, 30] have shown that the matrix elements of

this representation are given by

umn(g(r, φ, θ), a) = in−me−i[nθ+(m−n)φ]Jn−m(ar) (8)

whereJν(x) is theνth order Bessel function.
From this expression, and the factUa(g) is a unitary representation, we have

umn(g
−1(r, φ, θ), a) = u−1

mn(g(r, φ, θ), a)

= unm(g(r, φ, θ), a)

= in−mei[mθ+(n−m)φ]Jm−n(ar). (9)

Henceforth no distinction will be made between the operatorUa(g) and the corresponding
infinite-dimensional matrix with elementsumn(g, a).

Unitary representations of higher-dimensional Euclidean groups,SE(N), follow in a
similar way, although the cases of the most practical interest areSE(2) andSE(3).

Given this background we are ready for the following definition.

Definition [29]. The Fourier transform of a rapidly decreasing function† F ∈ L2(SE(2))

and the inverse transform are defined as

F(F ) = F̂ (a) =
∫

SE(2)

F (g)Ua(g
−1) dµ(g)

and

F−1(F̂ ) = F(g) =
∫ ∞

0
trace(F̂ (a)Ua(g))a da.

Recall that the trace of a matrixA ∈ RN×N is the sum of the diagonal elements:
trace(A) = ∑N

i=1 aii , and the trace is invariant under transformations of the formQAQT

where Q ∈ SO(N). That is, trace(A) = trace(QAQT ). Furthermore trace(AB) =
trace(BA).

As with the Fourier transform of functions onRN ,

FF−1(F̂ ) = F̂ F−1F(F ) = F

and so we write symbolically

FF−1 = F−1F = 1

† F(·) is rapidly decreasing if limr→∞ rnF (g(r, φ, α)) = 0 for all n ∈ Z+. Examples include functionsF(·)
which are zero outside of a compact subset ofSE(2) (i.e. if F(·) has compact support), andF(g) = e−a2r2

f (φ, α)

wheref (·) is bounded.



588 G S Chirikjian

where 1 is the identity operator. A proof that these identities hold is given in [29]. The
fact that the inverse transform works depends onUa(g) being irreducible, and the fact that
it is unitary allows us to writeUa(g

−1) = U ∗
a (g) instead of computing the inverse of an

infinite-dimensional matrix. In subsection 4.2 we show that the inversion formula works.
The matrix elements of the transform can be calculated using the matrix elements of

Ua(g) defined in equation (8) as

F̂mn(a) = (eimψ, F̂ (a)einψ) =
∫

SE(2)

F (g)umn(g
−1, a) dµ(g).

Likewise, the inverse transform can be written in terms of elements as

f (g) =
∫ ∞

0
F̂mn(a)unm(g, a)a da

where summation notation is used forn, m ∈ [−∞, ∞].

4. Properties of convolution and Fourier transforms of functions onSE(2)

In subsection 4.1 it is shown that the Fourier transform defined in section 3 possesses the
convolution property in an analogous way to the usual Fourier transform. In subsection 4.2
the inversion formula is proven. In subsection 4.3 Parseval’s inequality is proven. In
subsection 4.4 some of the operational properties of the Fourier transform pair for functions
on SE(2) are exemplified.

4.1. The convolution theorem

Let us assume that there are real scalar-valued functionsρ1(·), ρ2(·) ∈ L2(SE(2)). Recall
that one of the most powerful properties of the Fourier transform of functions onRN is
that the Fourier transform of the convolution of two functions is the product of the Fourier
transforms of the functions. This property extends to the concept of a Fourier transform for
functions onSE(2). The proof of this fact presented here is due to Sugiura [29].

Given that

(ρ1 ∗ ρ2)(gx) =
∫

SE(2)

ρ1(gξ )ρ2(g
−1
ξ ◦ gx) dµ(gξ )

one gets

F(ρ1 ∗ ρ2) =
∫

SE(2)

(ρ1 ∗ ρ2)(gx)Ua(g
−1
x ) dµ(gx)

=
∫

SE(2)

( ∫
SE(2)

ρ1(gξ )ρ2(g
−1
ξ ◦ gx) dµ(gξ )

)
Ua(g

−1
x ) dµ(gx). (10)

Switching the order of integration, one gets

F(ρ1 ∗ ρ2) =
∫

SE(2)

( ∫
SE(2)

ρ2(g
−1
ξ ◦ gx)Ua(g

−1
x ) dµ(gx)

)
ρ1(gξ ) dµ(gξ ). (11)

Since dµ(·) is left and right invariant∫
SE(2)

F (gξ ◦ gx) dµ(gx) =
∫

SE(2)

F (gx ◦ gξ ) dµ(gx)

=
∫

SE(2)

F (g−1
x ) dµ(gx)

=
∫

SE(2)

F (gx) dµ(gx)
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for any function F ∈ L2(SE(2)). These facts allow us to write the inner integral in
equation (11) as∫

SE(2)

ρ2(g
−1
ξ ◦ (gξ ◦ gx))Ua((gξ ◦ gx)

−1) dµ(gx) =
∫

SE(2)

ρ2(gx)Ua(g
−1
x ◦ g−1

ξ ) dµ(gx).

SinceUa(G) is a representation ofSE(2),

Ua(g
−1
x ◦ g−1

ξ ) = Ua(g
−1
x )Ua(g

−1
ξ )

and so

F(ρ1 ∗ ρ2) =
∫

SE(2)

( ∫
SE(2)

ρ2(gx)Ua(g
−1
x )Ua(g

−1
ξ ) dµ(gx)

)
ρ1(gξ ) dµ(gξ )

=
( ∫

SE(2)

ρ2(gx)Ua(g
−1
x ) dµ(gx)

)( ∫
SE(2)

ρ1(gξ )Ua(g
−1
ξ ) dµ(gξ )

)
= F(ρ2)F(ρ1) = ρ̂2(a)ρ̂1(a).

The order in whichUa(g
−1
x ) and Ua(g

−1
ξ ) appear is important because they are

representations ofSE(2), which is not a commutative group. As seen above, the fact
thatUa is a representation is critical for the separation required for the convolution theorem
to hold. The non-commutative nature ofSE(2) expressed inUa(g) is responsible for the
reversed order of the product of the Fourier transforms. Some authors (e.g. [10, 11]) define
the Fourier transform of functions on groups differently so that the order of the product of
the transform is the same as the order of the convolved functions. We use the definition
of Fourier transform given in section 3 because it is the most analogous to the standard
Fourier transform.

4.2. Proof of the inversion formula

We now present a proof that the Fourier inversion formula for functions onSE(2)

actually works. This proof is coordinate dependent to avoid the introduction of additional
mathematical machinery. Summation notation is again used, i.e. repeated indices indicate
summation from−∞ to ∞. A very elegant coordinate-independent proof can be found in
[29]. The proof presented here is a variant on one found in [30].

Rapidly decreasing functionsf (g) ∈ L2(SE(2)) whereg = g(r, φ, θ) can be expressed
in a series of the form

f (g) = f (r, φ, θ) = Fjk(r)e
−ijφe−ikθ .

The matrix elements of the Fourier transform of this function (as defined in section 3)
are

f̂mn =
∫

G

f (g)umn(g
−1, a) dµ(g)

= 1

(2π)2

∫ π

−π

∫ π

−π

∫ ∞

0
(Fjk(r)e

−ijφe−ikθ )(in−mei[mθ+(n−m)φ]Jm−n(ar))r dr dφ dθ.

Rearranging the integrals, this is rewritten as(
in−m

∫ ∞

0
Fjk(r)Jm−n(ar)r dr

)(
1

2π

∫ π

−π

e−ijφei(n−m)φ dφ

)(
1

2π

∫ π

−π

e−ikθeimθ dθ

)
= δk,mδj,n−m

(
in−m

∫ ∞

0
Fjk(r)Jm−n(ar)r dr

)
= in−m

∫ ∞

0
Fn−m,m(r)Jm−n(ar)r dr.
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δp,q is equal to 1 ifp = q and zero otherwise, and there is no summation over indices in
the last term above.

The fact that this Fourier transform matrix,̂fmn, is inverted using the inversion formula
to reconstructf (g) is seen as follows:

f (g) =
∫ ∞

0
trace(f̂ (a)Ua(g))a da =

∫ ∞

0
f̂mnunm(g, a)a da

=
∫ ∞

0

(
in−m

∫ ∞

r=0
Fn−m,m(r)Jm−n(ar)r dr

)(
im−ne−i[mθ+(n−m)φ]Jm−n(ar)

)
a da

= e−i[mθ+(n−m)φ]
∫ ∞

0

( ∫ ∞

r=0
Fn−m,m(r)Jm−n(ar)r dr

)
Jm−n(ar)a da.

From here, the inversion is exactly the same as theHankel transform[28], i.e. if

φ̂(a) =
∫ ∞

0
φ(r)Jν(ar)r dr

then

φ(r) =
∫ ∞

0
φ̂(a)Jν(ar)a da.

That is, the Hankel transform is its own inverse. In our case,φ̂(a) = F̂n−m,m(a),
φ(r) = Fn−m,m(r), andν = m − n. This means that∫ ∞

0
f̂mnunm(g, a)a da = e−i[mθ+(n−m)φ]Fn−m,m(r) = Fjk(r)e

−ijφe−kθ = f (g).

This last step was simply a renaming of variables:k = m, andn − m = j . Since the sums
over n andm are over{−∞, . . . ,∞} there is no problem in doing this.

4.3. Parseval’s equality

We now present a proof of Parseval’s equality (also called the Plancherel formula) so that we
have a mechanism for regularizing integral equations onSE(2) using the Fourier transform.
The proof presented here is similar to the one found in [29].

We begin by defining

f ∗(g) = f (g−1) ∈ L2(SE(2)) ∀ f ∈ L2(SE(2)).

Then

h(gx) = f ∗ f ∗(gx) =
∫

SE(2)

f (gξ )f
∗(g−1

ξ ◦ gx) dµ(gξ ) =
∫

SE(2)

f (gξ )f (g−1
x ◦ gξ ) dµ(gξ ).

Evalulating this at the identity elementgx = e,

h(e) =
∫

SE(2)

f (gξ )f (gξ ) dµ(gξ ) =
∫

SE(2)

|f (g)|2 dµ(g).

The functionh(g) can also be expressed via the inversion formula as

h(g) =
∫ ∞

0
trace(ĥ(a)Ua(g))a da.

Evaluated at the identity element,Ua(e) is the identity operator, and so

h(e) =
∫ ∞

0
trace(ĥ(a))a da =

∫ ∞

0
trace(f̂ ∗(a)f̂ (a))a da.



Integral equations on the Euclidean group 591

But

f̂ ∗
mn =

∫
SE(2)

f (g−1)umn(g
−1, a) dµ(g) =

∫
SE(2)

f (g)umn(g, a) dµ(g).

This follows from the fact thatSE(2) is a unimodular group (possessing a volume element
which is left and right invariant) and thus for any functionF ∈ L2(SE(2))∫

SE(2)

F (g−1) dµ(g) =
∫

SE(2)

F (g) dµ(g).

From equation (9) we can then write

f̂ ∗
mn =

∫
SE(2)

f (g)unm(g−1, a) dµ(g) = f̂ nm = f̂
T

mn = (f̂mn)
∗

i.e. f̂ ∗ = (f̂ )∗ is the complex conjugate transpose of the Fourier transform matrixf̂ . This
means that

h(e) =
∫ ∞

0
trace((f̂ )∗(a)f̂ (a))a da =

∫ ∞

0
‖f̂ (a)‖2

2a da.

Equating the two expressions forh(e), we get Parseval’s equality forSE(2):∫
SE(2)

|f (g)|2 dµ(g) =
∫ ∞

0
‖f̂ (a)‖2

2a da.

This relationship will be extremely useful when we regularize and solve equation (1)
in section 6. But first, we examine operational properties, and a closed-form solution is
presented in section 5.

4.4. Operational properties

Recall that the Fourier transform of the derivative of a square integrable function on the
real line is defined using the inversion formula in equation (6) by differentiating under the
integral

df

dx
= 1√

2π

d

dx

∫ ∞

−∞
f̂ (ω)u(x, ω) dω = 1√

2π

∫ ∞

−∞
f̂ (ω)

∂u

∂x
dω. (12)

Since ∂u
∂x

= iωu(x, ω), we get that the Fourier transform of df/dx is iωf̂ (ω) wheref̂ (ω)

is the Fourier transform off (x).
The exact same argument can be used to generate the Fourier transform matrices of

derivatives of functionsf (g) where g ∈ SE(2). For example, using the the inverse
transform given in section 3 we get

r
∂f

∂r
= r

∫ ∞

0
f̂nm

∂umn

∂r
a da. (13)

Since umn(g(r, φ, θ), a) = in−me−i[nθ+(m−n)φ]Jn−m(ar), one gets ∂umn/∂r =
in−me−i[nθ+(m−n)φ] J ′

n−m(ar)a. Integrating equation (13) by parts, and assumingf̂nm(a)

is well behaved

r

∫ ∞

0
f̂nm(a)J ′

n−m(ar)a2 da = −
∫ ∞

0

d

da
(a2f̂nm(a))Jn−m(ar) da

= −
∫ ∞

0
(2f̂nm(a) + af̂ ′

nm(a))Jn−m(ar)a da.
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This means that

r
∂f

∂r
= −

∫ ∞

0
(2f̂nm + af̂ ′

nm)umna da

and so

F
(

r
∂f

∂r

)
= −

(
2f̂ + a

df̂

da

)
. (14)

We may then use Parseval’s equality together with integration by parts to show that∫
SE(2)

∣∣∣∣r ∂f

∂r

∣∣∣∣2

dµ(g) =
∫ ∞

0

∥∥∥∥∥a
df̂

da

∥∥∥∥∥
2

2

a da.

We find that the transforms of the derivatives off (g) with respect toφ andθ are

F
(

∂f

∂θ

)
= Af̂ (15)

and

F
(

∂f

∂φ

)
= f̂ A − Af̂ (16)

where Amn = −imδmn (no sum) is a diagonal matrix. This comes from the fact that
∂umn/∂θ = (−in)in−me−i[nθ+(m−n)φ]Jn−m(ar) = −inumn (no sum), and∂umn/∂φ =
−i(m − n)in−me−i[nθ+(m−n)φ]Jn−m(ar) = −i(m − n)umn (no sum).

The transforms of other derivatives follow from these by composition.

5. A closed-form example

We will now show how equation (1) can be solved exactly in certain instances using the
Fourier transform of functions on the Euclidean group. The next section will discuss
regularization to yield well behaved approximate solutions in those cases when exact
solutions are not possible.

Taking the Fourier transform of both sides of equation (1), the original problem becomes

f̂ (a)k̂(a) = ĥ(a)

and thus

f̂ (a) = ĥ(a)[k̂(a)]−1.

The desired function is then recovered using the inverse transform as

f (g) = F−1(ĥ(a)[k̂(a)]−1).

Questions that naturally follow are: (1) How are the infinite dimensional matricesUa(g),
Ua(g

−1), f̂ (a), k̂(a), and ĥ(a) handled? (2) When is an exact solution possible, and what
can be done when an exact solution is not possible?

The answer to (2) will be provided in section 6. The answer to (1) is that for bandlimited
functionsk and h (i.e. functions with a finite frequency spectrum), the Fourier transform
matrix will be mostly zeros, with only a finite submatrix with non-zero elements.

To make the discussion concrete consider the following functionsh, k ∈ L2(SE(2)):

h(g) = H1(r)(Ch + 2Ah cosθ) + 2BhH2(r) cosφ

k(g) = K1(r)(Ck + 2Ak cosθ) + 2BkK2(r) cosφ
(17)
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where Ah, Ak, Bh, Bk, Ch, Ck > 0 are given real numbers. These functions can be
considered as first-order approximations to the density functions associated with two
different halves of the discretely actuated manipulator arm discussed in section 2. When
the coordinate axis normal to the base of the manipulator (pointing in the direction of the
manipulator) is defined to bex1, a plot of these density function resembles the one in
figure 2 for appropriate choices of the constants and functionsHi(r) andKi(r).

These functions are written in complex form as

h(g) = H1(r)(Ch + Ah(e
iθ + e−iθ )) + BhH2(r)(e

iφ + e−iφ)

k(g) = K1(r)(Ck + Ak(e
iθ + e−iθ )) + BkK2(r)(e

iφ + e−iφ).

H1(r), H2(r), K1(r) and K2(r) are rapidly decreasing, bounded, piecewise continuous
functions onR+.

Due to orthogonality, all of the elements of the Fourier transform matricesĥ and k̂ are
zero except the following blocks:

ĥ3×3(a) =
∫

SE(2)

h(g)U3×3
a (g−1) dµ(g) =

 ĥ−1,−1 ĥ−1,0 ĥ−1,1

ĥ0,−1 ĥ0,0 ĥ0,1

ĥ1,−1 ĥ1,0 ĥ1,1


=

( γ1(a) 0 0
β1(a) κ1(a) β1(a)

0 0 γ1(a)

)

k̂3×3(a) =
∫

SE(2)

k(g)U3×3
a (g−1) dµ(g) =

 k̂−1,−1 k̂−1,0 k̂−1,1

k̂0,−1 k̂0,0 k̂0,1

k̂1,−1 k̂1,0 k̂1,1


=

( γ2(a) 0 0
β2(a) κ2(a) β2(a)

0 0 γ2(a)

)
where

U3×3
a (g−1) =

( u−1,−1(g
−1, a) u−1,0(g

−1, a) u−1,1(g
−1, a)

u0,−1(g
−1, a) u0,0(g

−1, a) u0,1(g
−1, a)

u1,−1(g
−1, a) u1,0(g

−1, a) u1,1(g
−1, a)

)
γ1(a) = Ah

∫ ∞

0
H1(r)J0(ar)r dr

κ1(a) = Ch

∫ ∞

0
H1(r)J0(ar)r dr

β1(a) = −iBh

∫ ∞

0
H2(r)J1(ar)r dr

and

γ2(a) = Ak

∫ ∞

0
K1(r)J0(ar)r dr

κ2(a) = Ck

∫ ∞

0
K1(r)J0(ar)r dr

β2(a) = −iBk

∫ ∞

0
K2(r)J1(ar)r dr

andJ0(x) andJ1(x) are respectively the zeroth- and first-order Bessel functions.
If for instance

H1(r) = e−bhr
2

H2(r) = re−chr
2

K1(r) = e−bkr
2

K2(r) = re−ckr
2

(18)
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for bh, bk, ch, ck > 0, then the identity [18]∫ ∞

0
e−ax2

Jν(bx)xν+1 dx = bν

(2a)ν+1
e−b2/4a

for a > 0 is used to give closed-form solutions for the above integrals.
While the inverse of the matrix̂k is not defined, if we limit our search for solutions to

those functionsf (g) for which only f̂ 3×3 is non-zero, then this particular problem can be
restricted so that only 3× 3 matrices are considered, and

f̂ 3×3 = ĥ3×3[k̂3×3]−1.

This of course assumes thatk̂3×3 is invertible (which is the case in this example whenγ2

andκ2 are nonzero). The desired function is then recovered using the inverse transform as

f (g) =
∫ ∞

0
trace(f̂ 3×3(a)U3×3

a (g))a da

whereU3×3
a (g, a) is the part of the unitary matrix representation ofSE(2) that will multiply

the nonzero block of the Fourier transform matrixf̂ , i.e.

U3×3
a (g) =

( u−1,−1(g, a) u−1,0(g, a) u−1,1(g, a)

u0,−1(g, a) u0,0(g, a) u0,1(g, a)

u1,−1(g, a) u1,0(g, a) u1,1(g, a)

)
.

The inverse of̂k3×3 for this example is( γ2 0 0
β2 κ2 β2

0 0 γ2

)−1

=
( 1/γ2 0 0

−β2/γ2κ2 1/κ2 −β2/γ2κ2

0 0 1/γ2

)
.

Therefore

f̂ 3×3 =
( γ1/γ2 0 0

β1/γ2 − (β2κ1)/(γ2κ2) κ1/κ2 β1/γ2 − (β2κ1)/(γ2κ2)

0 0 γ1/γ2

)
and so

tr(f̂ 3×3U3×3
a ) = (γ1/γ2)(u−1,−1(g, a) + u1,1(g, a)) + (κ1/κ2)u0,0(g, a)

+(u−1,0(g, a) + u1,0(g, a))(β1/γ2 − (β2κ1)/(γ2κ2)).

From the definition of the matrix elements of the unitary representation ofSE(2) given
in equation (8), we get

tr(f̂ 3×3U3×3
a ) = 2 cosθJ0(ar)(γ1/γ2) + J0(ar)(κ1/κ2)

+2i cosφJ1(ar)(β1/γ2 − (β2κ1)/(γ2κ2)).

Therefore,

f (g) = 2F1(r) cosθ + F2(r) + 2F3(r) cosφ

where

F1(r) =
∫ ∞

0
(γ1(a)/γ2(a))J0(ar)a da

F2(r) =
∫ ∞

0
(κ1(a)/κ2(a))J0(ar)a da

F3(r) = i
∫ ∞

0
(β1(a)/γ2(a) − (β2(a)κ1(a))/(γ2(a)κ2(a)))J1(ar)a da.
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Sinceβ1(a) andβ2(a) are purely imaginary,F3(r) is real (as areF1(r) andF2(r)).
As with the solution of usual Fredholm integral equations of the first kind, this solution

is not unique. Because we assumed the dimension of the non-zero block off̂ to be 3× 3,
this solution is not highly oscillatory, and limiting ourselves to a 3× 3 block is in effect a
means of regularization. The next section addresses issues in the regularization of equations
of the form of equation (1) which do not have exact closed-form solutions.

6. Regularization of integral equations onSE(2)

In this section, the problem of regularizing ill-posed Fredholm integral equations of the first
kind with convolution kernel on the Euclidean motion group is addressed. That is, for given
k(g) andh(g) it may not be possible to invert the equation

(k ∗ f )(g) = h(g)

exactly in order to findf (g). This will be the case for instance when the rank of the
Fourier transform matrix̂k(a) is less than that of̂h(a). In such cases, we need a method
of restating the original problem so that an approximate solution results. One such method
was illustrated in the introduction of this paper using Hermite functions. Another, less
cumbersome method is discussed now.

We can restate the original problem as that of finding the real-valued functionf (g) ∈
L2(SE(2)) which minimizes

C =
∫

SE(2)

{[k ∗ f (g) − h(g)]2 + ε[f (g)]2} dµ(g).

This is a generalization of the zeroth-order Tikhonov regularization [12] from the case
of functions onR to functions onSE(2). The value of the positive real numberε is used
as a tradeoff between how accurate the solution is and how well behaved it is.

Since all the functions involved are real-valued and|f (g)|2 = [f (g)]2, Parseval’s
equality can be used to transform this cost function to

C =
∫ ∞

0
{‖f̂ (a)k̂(a) − ĥ(a)‖2

2 + ε‖f̂ (a)‖2
2}a da.

This equation can be minimized by finding the value off̂ (a) at each value ofa that
minimizes

c(f̂ (a)) = ‖f̂ (a)k̂(a) − ĥ(a)‖2
2 + ε‖f̂ (a)‖2

2. (19)

We therefore calculate:
∂c

∂f̂ ∗ = f̂ (k̂k̂∗ + ε1) − ĥk̂∗ = 0. (20)

This equation is inverted to yield

f̂ = ĥk̂∗(k̂k̂∗ + ε1)−1.

As we saw in the previous section, these matrices can be treated as finite-dimensional if the
α andφ terms have finite frequencies. In this case it is possible to perform the inversion
above, and invert the resulting Fourier transform matrix yielding the desired result:

f (g) =
∫ ∞

0
trace(ĥ(a)k̂∗(a)(k̂(a)k̂∗(a) + ε1)−1Ua(g))a da.

This approach will be demonstrated with an example in subsection 6.1. But first we
generalize the approach so that not only an approximate solution can be generated, but that
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one with desired smoothness properties is generated. This means changing our cost function
to account for smoothness off (g).

To this end, consider the cost function

C =
∫

SE(2)

{
[k ∗ f (g) − h(g)]2 + ε[f (g)]2 + ν

(
r
∂f

∂r

)2

+ σ

(
∂f

∂φ

)2

+ η

(
∂f

∂θ

)2
}

dµ(g).

(21)

The last three terms can be thought of as the magnitude squared of a weighted gradient of
the functionf . Using the operational rules derived in subsection 4.4, this is transformed to

C =
∫ ∞

0
c(f̂ (a), f̂ ′(a), a) da

where

c =
(

‖f̂ (a)k̂(a) − ĥ(a)‖2
2 + ε‖f̂ (a)‖2

2 + ν

∥∥∥∥∥a
df̂

da

∥∥∥∥∥
2

2

+ σ‖f̂ A − Af̂ ‖2
2 + η‖Af̂ ‖2

2

)
a.

One way to solve this regularized problem is to expand each element of the Fourier transform
matrix in a series with unknown coefficients, such asf̂mn = ∑N

i=1 αimnψimn(a), for an
appropriate set of basis functions{ψimn}. The result is then integrated with respect toa,
and the problem becomes a simple multivariable minimization in the variablesαimn.

Another approach is to use variational optimization (see e.g. [21]) to solve the problem
exactly. Using this approach, necessary conditions for the cost functionC to be minimized
are given by the set of Euler–Lagrange equations

− d

da

(
∂c

∂f̂ ′∗

)
+ ∂c

∂f̂ ∗ = 0

(a ′ denoting differentiation with respect toa) which yields a set of second-order differential
equations to be solved with appropriate boundary conditions. For the cost function in (21)
these equations are written explicitly as

−ν

a

d

da

(
a3 df̂

da

)
+ f̂ (k̂k̂∗ + ε1) + σ(f̂ AA ∗ − Af̂ A∗ − A∗f̂ A + A∗Af̂ ) + ηA∗Af̂ = ĥk̂∗.

(22)

The boundary conditions with which to solve these equations are

lim
a→0

a3f̂ ′(a) = 0 and lim
a→∞ anf̂ (a) = 0 ∀ n ∈ Z+. (23)

The first boundary condition is the free initial condition given by∂c/∂f̂ ′∗ = 0. The other
end condition is a result of the fact that acceptable functions must be rapidly decreasing.

Coupled equations of this form can be solved numerically using standard numerical
integration schemes. The inverse transform can also be inverted using numerical integration.
In subsection 6.2 a closed-form perturbation solution is examined for a special case.

6.1. An example of zeroth-order Tikhonov regularization

Let us consider the closed-form example in section 5, where nowCk = Bk = 0. This means
that

k̂3×3(a) =
( γ2(a) 0 0

0 0 0
0 0 γ2(a)

)
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which is singular. To compute a regularized solution, we first compute

(k̂3×3)∗[k̂3×3(k̂3×3)∗ + ε1]−1 =
 γ2

γ 2
2 +ε

0 0

0 0 0
0 0 γ2

γ 2
2 +ε

 .

Assumingĥ as in section 5, we get

f̂ 3×3
ε = ĥ3×3(k̂3×3)∗[k̂3×3(k̂3×3)∗ + ε13×3]−1 =


γ1γ2

γ 2
2 +ε

0 0

β1γ2

γ 2
2 +ε

0 β1γ2

γ 2
2 +ε

0 0 γ1γ2

γ 2
2 +ε

 .

Note that by regularizing in this way, the solution is made unique because

ĥ3×3(k̂3×3)∗[k̂3×3(k̂3×3)∗ + ε13×3]−1 = [ĥk̂∗[k̂k̂∗ + ε1]−1]3×3

when ĥ and k̂ only have non-zero elements in the 3× 3 block. This also means that
zeroth-order regularization dictates thatf 3×3

ε contains the only non-zero elements of the
regularized solution for the Fourier transform̂fε .

Using the Fourier inversion formula, we then get the regularized solution

fε(g) = 2 cosθ
∫ ∞

0

γ1(a)γ2(a)

γ 2
2 (a) + ε

J0(ar)ada + 2i cosφ
∫ ∞

0

β1(a)γ2(a)

γ 2
2 (a) + ε

J1(ar)a da.

Sinceβ1 is purely imaginary, this result is real. Note that asε → 0, fε → f wheref

is the exact solution presented in section 5.

6.2. An example of first-order Tikhonov regularization

Let us consider the case whenĥ and k̂ are as they were in subsection 6.1. Furthermore,
assume thatε = η = σ = 0, andν is a small positive number. The resulting Euler–Lagrange
equations will be of the form

−ν

a

d

da

(
a3 df̂

da

)
+ f̂ (k̂k̂∗) = ĥk̂∗

which is a special case of equation (22).
Since in this case all the entries in the matricesĥ and k̂ are zero except those elements

in the 3× 3 blocksĥ3×3 and k̂3×3, one finds that

ν

a

d

da

(
a3 df̂mn

da

)
= 0

for (m, n) outside of [−1, 1] × [−1, 1]. Dividing by ν/a and integrating once yields:
a3 df̂mn/da = c1. However, we have from the boundary conditions (23) at zero that this
quantity must be zero, and soc1 = 0. Therefore d̂fmn/da = 0, which is integrated to yield
f̂mn = c2. However, we have from the second boundary condition thatf̂mn → 0 asa → ∞,
which means thatc2 = 0, and so the only solution admitted for the Fourier transform matrix
elements outside of the 3× 3 block is the trivial solution.

The next step is to solve the remaining matrix differential equations:

−ν

a

d

da

(
a3 df̂ 3×3

da

)
+ f̂ 3×3(k̂3×3(k̂3×3)∗) = ĥ3×3(k̂3×3)∗.
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For this example there are three different kinds of scalar equations that result:

−ν

a

d

da

(
a3 df̂m,m

da

)
+ γ 2

1 (a)f̂m,m = γ1(a)γ2(a)

−ν

a

d

da

(
a3 df̂0,m

da

)
+ γ 2

1 (a)f̂0,m = γ1(a)β2(a)

−ν

a

d

da

(
a3 df̂m,−m

da

)
+ γ 2

1 (a)f̂m,−m = 0

for m = 1, −1 (no sum).
These uncoupled linear equations with variable coefficients are difficult to solve in closed

form. In fact, even approximate solutions are difficult because the singular perturbation
methods which are usually used for equations whose highest derivative is multiplied by a
small parameter break down when both of the highest derivatives are multiplied by this
parameter [16].

Nonetheless, it suffices to say that to zeroth order inν, solutions to these equations
which obey the boundary conditions are

f̂m.−m ≈ γ2/γ1 f̂0,m ≈ β2/γ1 f̂m,−m ≈ 0

for m = 1, −1 (no sum) assuming that the decay ofβ2 andγ2 is faster than that ofγ1 as
a → ∞ and the ratio does not blow up anywhere.

Thus, to this order, the solution is exactly the same as the answer in the previous
subsection.

7. Conclusions

The properties of the Fourier transform of scalar-valued functions on the Euclidean motion
group were used to generate exact and regularized solutions of convolution integral equations
involving functions on the Euclidean group. Because of the convolution theorem and
operational properties of the Fourier transform on the Euclidean group, exact and regularized
solutions of convolution-type equations are solved very efficiently. This is because the
Fourier transform of a given square-integrable function on the Euclidean group is a matrix
which is parametrized by a positive real scalar, and therefore solving convolution equations
in the Fourier domain for the case of the Euclidean group is much less cumbersome than
using Galerkin/least-squares techniques.
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