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In this article we examine the problem of dynamic self-reconfiguration of a class of 
modular robotic systems referred to as metumorpkic systems. A metamorphic robotic 
system is a collection of mechatronic modules, each of which has the ability to connect, 
disconnect, and climb over adjacent modules. A change in the macroscopic morphology 
results from the locomotion of each module over its neighbors. Metamorphic systems 
can therefore be viewed as a large swarm of physically connected robotic modules 
that collectively act as a single entity. What distinguishes metamorphic systems from 
other reconfigurable robots is that they possess all of the following properties: (1) a 
large number of homogeneous modules; (2) a geometry such that modules fit within 
a regular lattice; (3) self-reconfigurability without outside help; (4) physical constraints 
which ensure contact between modules. In this article, the kinematic constraints gov- 
erning metamorphic robot self-reconfiguration are addressed, and lower and upper 
bounds are established for the minimal number of moves needed to change such 
systems from any initial to any final specified configuration. These bounds are functions 
of initial and final configuration geometry and can be computed very quickly, while 
it appears that solving for the precise number of minimal moves cannot be done in 
polynomial time. It is then shown how the bounds developed here are useful in 
evaluating the performance of heuristic motion planning/reconfiguration algorithms 
for metamorphic systems. 0 2996 Iohn Wiky 6 Sons, rnc. 
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1. INTRODUCTION 

A metamorphic robotic system is a collection of inde- 
pendently controlled mechatronic modules, each of 
which has the ability to connect, disconnect, and 
climb over adjacent modules. Each module allows 
power and information to flow through itself and to 
its neighbors. A change in the metamorphic manipu- 
lator morphology (i.e., a change in the relative loca- 
tion of modules within the collection) results from 
the locomotion of each module over its neighbors. 
Thus a metamorphic system has the ability to dy- 
namically self-reconfigure. Changes in configuration 
within a given morphology are achieved by changing 
joint angles, as is the case for standard (fixed-mor- 
phology) robotic manipulators. 

Metamorphic systems can therefore be viewed 
as a large swarm (or colony) of connected robots that 
collectively act as a single entity. What distinguishes 
metamorphic systems from other reconfigurable ro- 
bots is that they possess all of the following prop- 
erties: 

1. All modules have the same physical struc- 
ture, and each must have complete computa- 
tional and communications functionality. In 
this way uniform treatment of modules in the 
planning problem is possible. 

2. Symmetries in the mechanical structure of the 
modules must be such that they fill planar 
and spatial regions with minimal gaps. In this 
way, a lattice of modules is formed for any 
task. 

3. 

4. 

The modules must each be kinematically suf- 
ficient with respect to the task of locomotion, 
i.e., they must have enough degrees of free- 
dom to be able to "walk" over adjacent mod- 
ules so that they can reconfigure without out- 
side help. 
Modules must adhere to adjacent modules, 
e.g., there must be electromechanical or elec- 
tromagnetic connectors between modules 
that can carry load. In this way the collection 
of modules becomes a single physical object. 

Although a wide variety of module designs sat- 
isfy the above conditions, one particular class is dis- 
cussed here. These modules are mechanisms that 
can be represented as polyhedra, e.g., certain kinds 
of platform manipulators in the spatial case, or closed 
linkages in the plane. Figures 1 and 2 show a planar 
example where the modules are six bar linkages. 
Hardware implementations constructed by other au- 
thors that satisfy the above conditions can be found 
in the literat~re.l-~ We have built metamorphic robot 
modules capable of self-reconfiguration as shown in 
the sequence of hardware photographs in Figure 
2(b). For details regarding the connector mechanism 
design and other aspects of the hardware implemen- 
tation, see Pamecha et aL4 and Pamecha and Chiri- 
kjian.5 

To satisfy condition (1) above, regular polyhe- 
dral module designs are assumed, e.g., closed loop 
mechanisms with uniform link lengths,6 although 
other designs do fit within this framework. In this 
way, the modules are not only uniform, but also 
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Figure 1. Examples of metamorphic robot applications. 

possess a multiplicity of rotational symmetries. Con- 
dition (2) is then reduced to selecting regular polyhe- 
dra that close-pack (or nearly close-pack) space. 

Potential applications of metamorphic systems 
include: (1) obstacle avoidance in highly constrained 
and unstructured environments; (2) "growing" 
structures composed of modules to form bridges, 
buttresses, and other civil structures in times of 
emergency; (3) envelopment of objects, such as re- 
covering satellites from space. Some of these applica- 
tions are shown in Figure 1. 

This article addresses issues in the kinematics 
and motion planning of metamorphic systems with 
a fixed base, i.e., "manipulators," as opposed to 
"mobile robots." No distinction is made between 
"motion planning" and "self-reconfiguration" of 
these systems-these words are synonymous in the 
context of metamorphic systems. In section 2, a brief 
review of the related literature is presented. In sec- 
tion 3, the kinematic and metric properties associated 
with metamorphic systems are examined for the gen- 
eral case. In section 4, we formalize the motion plan- 
ning/reconfiguration problem and establish lower 
and upper bounds on the number of moves required 
to reconfigure between any given initial and final 
configurations. Section 5 presents a method for im- 
proving the performance of a given move sequence 
based on the bounds developed in section 4. Section 
6 presents examples of this general formulation. 

2. LITERATURE REVIEW 

The idea of a metamorphic robotic system differs 
from related concepts presented in the literature. 
Three types of modular reconfigurable robotic sys- 

tems have been proposed in the literature: (1) robots 
in which modules are reconfigured using external 
intervention7-''; (2) cellular robotic systems in which 
a heterogeneous collection of independent special- 
ized modules are c~ordinatedl~-'~; and (3) swarm 
intelligence in which there are generally no physical 
connections between Most recently, 
two other types of modular reconfigurable robotic 
systems have been considered. Yim2r3 considers 
modular robots composed of a few basic elements 
that can be composed into complex systems and 
used for various modes of locomotion. Murata et al.' 
examine a "fractal" system composed of modules 
with zero kinematic mobility, but that can "walk" 
over each other in discrete quanta due to changes 
in the polarity of magnetic fields. A valuable tool 
for defining equivalence classes of modular robot 
configurations with the same shape and morphologi- 
cal function is provided in Chen and Burdick" and 
Chen.22 Configurations within each of these classes 
are said to be isomorphic to each other. 

The concept of a metamorphic system differs 
from concepts in the related works mentioned above 
because modules are homogeneous in form and 
function, physical contact between modules must 
always occur, self-reconfiguration is possible, and 
the resulting structures have the ability to act as 
manipulators because each module has full kine- 
matic mobility. Nonetheless, the methods developed 
in this article are applicable to other types of self- 
reconfigurable systems. For instance, the "fractal" 
modules introduced in Murata et al.' exhibit all but 
the mobility requirement, and thus many of the 
methods developed in this article for kinematics and 
motion planning apply. 

As the number of modules in a metamorphic 
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Figure 2. The reconfiguration process: (a) illustration; (b) hardware demonstration. 
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Figure 3. An amoeba. 

system becomes very large, the manipulator could 
be viewed as a "mechatronic amoeba" because the 
manipulator takes on a continuous appearance. Fig- 
ure 3 illustrates an amoeba. Figure 4 shows how a 
slime mold can reconfigure itself. Thus, the idea of 
metamorphic structures is not foreign to the natural 
world. For further reading on these subjects see 
JeonlD S~haef fer ,~~  and Banner.= 

In the next section we formalize the kinematic 
issues pertaining to metamorphic robots. 

3. LATTICE KINEMATICS 

This section addresses issues in the lattice kinematics 
of metamorphic robotic systems. There are three sep- 
arate issues pertaining to the kinematics of a meta- 
morphic system. First, there is the continuous motion 
problem of module kinematics, which is the time- 
evolution of joint angles required to execute the loco- 
motion of a module from any given position to an 
adjacent one. This is illustrated in Figure 2 for the 
planar case with hexagonal modules, and analyzed 
in Chirikjian.6 Second, there is the description of 
macroscopic configuration. This is a discrete problem 
that we call the lattice kinematics problem, and that 
is the focus of this section. Third, there are forward 
and inverse kinematics issues pertaining to each 
metamorphic robot configuration when it is being 
used as a fixed morphology manipulator, which can 
be addressed using existing redundancy resolution 
or motion planning techniques, e.g., ChirikjianZ6 
(and references therein). 

In subsection 3.1 a general lattice coordinate sys- 
tem for describing macroscopic configurations is pre- 
sented and associated metric properties are enumer- 
ated. That is, useful methods of measuring distance 
between modules within a lattice are discussed. In 
subsection 3.2, the metric properties of the set of 
all connected combinations of modules fixed to a 

common base are examined, i.e., we develop con- 
cepts of how distant two configurations with the same 
number of modules are within the space of all con- 
figurations. 

3.1. Defining Distance Between Modules 

Consider RN where N = 2 or 3. A lattice is a discrete 
subset of RN defined by a set of N linearly indepen- 
dent unit vectors, Ci E RN, as follows: 

kiZi : k,  , k2, . . . , kN E z}. 
i= I 

A vast body of literature deals with the symmetry 
groups associated with lattices (which are simply 
discrete subgroups of E(N)-the Euclidean Group), 
and the decomposition of space into polyhedra 
whose centers form regular lattices, e.g., G e r i ~ k e ~ ~  
and Miller. 28 

In our problem, elements of the lattice (individ- 
ual polyhedral cells) are either filled with robotic 
modules or obstacles or remain empty. RN is then 
viewed as a lattice of regular polyhedra that are either 
empty or filled. One way to coordinatize the lattice 
and represent the relative positions of the centers 
of each polyhedral cell is to use the Miller-Bravais 
framework used in materials science and crystallog- 
r a ~ h y . ~ ~  In this framework, a redundant set of coor- 
dinates are often used to describe the position of 
each point. An alternate framework is simply to use 
the vectors {Zi} to define coordinate axes. This is 
illustrated in Figure 5(a) for a hezagonal lattice. By 
denoting the origin as the vector 0 E RN centered at 
the fixed base module, and defining unit vectors 
along any N independent directions that contain at 
least two lattice points (module centers), every point 
in the lattice is given a unique set of coordinates with 
the above described unit vectors defining coordinate 
axes. While this coordinate system will generally be 
skewed, it is much more convenient than an orthogo- 
nal system for describing the relative location of 
modules within the lattice. 

i t 

Figure 4. A slime mold. 
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which we refer to as positive definiteness, symme- 
try, and the triangle inequality, respectively. The 
original set, together with a metric function defined 
on that set is called a metric space. 

Since the sets we will be dealing with are lattices 
in RN, each module center will be represented by N 
independent integers, and we will make no distinc- 
tion between a point in a lattice, and the coordinates 
that describe the point. This is, if 2 represents po,int 
a then a = ii = (aA, . . . , Likewise, b = b = 
(bl, . . . , b,)T if b represents the point b. Since the 
point set we will be using is the set of all the centers of 
given polyhedra that form a close-packed (or nearly 
close-packed) lattice, this is a discrete subset of RN, 
and so any metric defined in RN will be a metric on 
this set. We will call elements of this set lattice points. 

One commonly used metric for RN when using 
Cartesian coordinates is the "Taxicab'31 (also called 
the Manhattan3') metric: 

a 

N 

61(a, b) = Sl(2, 5) = la, - 41, (2) 
t=1 

where 1 . 1  is the absolute value of a real number. This 
metric gets its name from the distance that one must 
travel in an ideal city in which every block is the 
same size and every street is perpendicular to every 
other. Note that the minimally distant paths between 
two points using this metric are generally not 
unique, with the exception of points that lie on a 
line parallel to a coordinate axis. This will also be 
the case for the metric to be discussed shortly, which 
is a generalization of the taxicab metric to nonrectan- 
gular lattices. 

Another commonly used metric for RN when 
using Cartesian coordinates is the Euclidean metric: 

b 

Figure 5. (a) Coordinate axes in a hexagonal lattice; (b) 
generating patch. 

Figure 5(b) shows how coordinates of neighboring 
lattice points can be generated iteratively by translat- 
ing a discrete coordinate patch. 

For the kinematics of the lattice to be complete, 
the most important geometric quantity of all must 
be defined in our coordinate system, namely: dis- 
tance. A proper distance (or metric) function be- 
tween points u and b in any given set will satisfy the 
following properties3': 

6(a, b) 2 0 and 6(a, b) = 0 iff a = b 

6(a, b) = 6(b,  a) (1) 
6(a, b) + 6(b, c) 2 6(u, c), 

This metric defines the length of the unique straight 
line segment connecting two points in RN. 

While the commonly used metrics in Equations 
(2) and (3) are perfectly valid for use on a lattice 
(since a lattice is a subset of RN), they are not the 
best possible metrics for our purposes because: (1) 
we seek a metric that has a simple representation in 
general lattice coordinate systems; (2) we seek a met- 
ric that reflects the minimal distance a module is able 
to travel while staying within the lattice. 

As an example of how 6, and 6, do not satisfy 
condition (1) above, consider what happens if the 
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unit vectors defining the skewed axes of a lattice 
coordinate system are expressed in an orthonormal 
basis for RN. The vectors form the columns of a ma- 
trix V = [;,, . . . , i;,] € GL(N) (the group of all 
invertible N X N matrices). In this case, the Euclidean 
metric is written as 

where {ai} and {bi} are the coordinates of the points 
a and b measured along the skewed lattice coordinate 
axes, Vii are the elements of V, and the superscript 
s indicates the skewed coordinate system. This su- 
perscript will be dropped when there is no ambi- 
guity. Clearly, this computation is much more cum- 
bersome than when dealing with orthogonal coordi- 
nate axes. 

As an example of how the Euclidean metric does 
not satisfy condition (2) given above, consider the 
shortest path the center of a hexagonal module can 
make while staying within a hexagonal lattice. It will 
generally have to “zigzag” back and forth from one 
lattice point to another, instead of following a 
straight line. The 6, metric is even worse in terms 
of being cumbersome and not reflecting the least 
distance between lattice points, because it is intrinsi- 
cally related to orthogonal coordinates. Thus, stan- 
dard metrics are not particularly useful for this 
problem. 

If we construct a lattice connectivity graph, i.e., a 
graph with vertices at lattice points, and edges that 
are straight lines connecting all neighboring vertices 
(of length given by the Euclidean metric), the lattice 
metric can be defined as the distance measured along 
shortest paths in this graph. More precisely, the lattice 
metric function, 8,(a, b), is defined for a given lattice 
to be the length of the shortest path in the lattice 
connectivity graph that connects lattice points a and 
b. As is the case with module kinematics, this is best 
developed on a case by case basis. In section 4, lattice 
metrics are very important in establishing a lower 
bound on the number of module motions required 
to reconfigure a metamorphic system. We now illus- 
trate the concept of a lattice metric with a hexagonal 
lattice in the plane. 

Within the coordinate system shown in Figure 
5(a), the Euclidean metric is 

8i(a, b) = ((Ai)’ + (A$ - AiAj)1’2, 

where a = a = ( I , ,  ]JT, b = b = (i,, jJT, h i  = i, - i,, 
and Aj = jl - j,. 

+ -. . .  

The extra term added to the usual “((Ai)’ + 
(Aj)z)l’z’’ (inside the square root) results from the fact 
that one of the coordinate axes is skewed so that 
there is not a 90” angle between the axes. The above 
formula for SS, is calculated easily from trigonometry, 
or from Equation 4, where in this case = ( V 5 / 2 ,  
- 1/2)T, and Z, = (0, 1)*. The skewed axes are indi- 
cated by the solid lines in Figure 5(a). The taxicab 
norm is exceedingly complicated in this coordinate 
system. However, we would like to have an analo- 
gous system that will measure the true distance a 
module must travel within the regular lattice formed 
by all other modules if it is to roll from one lattice 
space to another. 

This is achieved quite simply by taking the differ- 
ence between the lattice coordinates of the two 
points and treating the difference as a vector cen- 
tered at the origin of Figure 5(a). For the hexagonal 
lattice, a different representation of the distance 
function is used depending on which sextant this 
vector falls in, as stated below: 

a,(;, 6) = [Ail when - 6 in 1 ,4  

a,(;, 6) = lAjl when - 6 in 2, 5. 

8,(;, 6) = lAil + IAjl when - 6 in 3, 6. 

It is conceptually trivial to show that these satisfy 
the definition of a metric given previously by direct 
calculation for each case. Furthermore, it is easy 
to see that this metric is bounded below by the 
Euclidean metric as demonstrated for sextant 1 (in 
which -Ai 5 Aj - Ai 5 0 and Aj 2 0): 

8; = lAiI2 + IAjl’ - AiAj 

= lAiI2 + Aj(Aj - Ai) 5 lAiI2 = 8:. 

Furthermore, if we compare the minimal value 
of the Euclidean metric with the lattice metric in 
sextant 1 presented above for any fixed Ai,  we see 
that 

as: 
W i )  
-..... - 2Aj - Ai = 0, 

indicating that 

min (8;) = - 3 (Ai)’ = - 3 (8,)‘. 
Ai 4 4 
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Thus, it is clear that in sextant 1, the new metric is 
bounded below and above as follows: 

L 8, I 8L 5 - 8,. v5 
Furthermore, it can be reasoned from symmetry that 
this holds in the other five sextants of the plane. 
Note that these bounds are much closer than those 
between Euclidean and Manhattan metrics in the 
plane (8,s 8, I ~ ‘ 2 8 ~ .  

As an example of the above relationship between 
Euclidean and Lattice metrics for the hexagonal case, 
consider the distance between the lattice points with 
coordinates (0, 0) and 2, 3). The Euclidean metric 

yields 3. Clearly the above inequalities hold: fi < 
3 < 22/7 /3 .  Note that the lattice distance will always 
be an integer. Also, there is generally not a unique 
minimal length path between arbitrary points in the 
lattice when using the lattice metric. For example, 
the line segments connecting the following coordi- 
nates are all ”geodesics” in the lattice metric: 

yields the distance J 7, while the Lattice metric 

((0, O), (0, I), (1, 3, (2, 3)L ((0, O), (1, 111 (2, 2), 
(2, 3)h ((0, 01, (1, I), (1, 21, (2, 3)). 

3.2. Defining Distance Between Configurations 

In the previous subsection, we defined the concept 
of a lattice metric-a measure of distance between 
modules in a lattice. In this subsection, we define 
a measure of distance between Configurations of a 
metamorphic system. Each configuration of n mod- 
ules is defined by the collection of n connected lattice 
spaces that it fills. That is, we do not distinguish 
between different modules, and any permutation of 
labels has no effect on configuration. Therefore, two 
configurations with the same shape and relative po- 
sition in space are said to be the same. One metric 
on the set of all configurations, containing elements 
A and B, is given by 

a graph. But this is not possible due to the computa- 
tional complexity of this approach. 

There are two reasons why this problem is com- 
putationally intractable. First, consider the problem 
of enumerating all possible connected configurations 
of n modules with fixed base. This problem is related 
to the cell growth problem in graph theory and combi- 
natorics. The cell growth problem deals with finding 
the number of ”animals” (configurations) that can 
be formed with n cells. To the best of our knowledge, 
this general problem is still an unsolved problem 
in combinat~rics.~~ However, to get an idea of the 
complexity involved, let’s consider the specific case 
of planar configurations in a hexagonal lattice. In 
L ~ n n o n ~ ~  an algorithm which is a modification of 
brute force enumeration is used to count the number 
of such configurations (referred to as polyominoes in 
some r e ~ e a r c h ~ ~ , ~ ~ )  that form an equivalence class 
under translation (fixed polyominoes). Harary and 
Palmer33 tried to simplify the problem and came up 
with a recurrence relationship for configurations 
without peri-connexions, i.e., no three hexagons hav- 
ing a common point and no rings formed. 

Even with these simplifying assumptions, the 
number of configurations grows dramatically with 
the number of modules. In L ~ n n o n ~ ~  the following 
results for the number of configurations, C(n) ,  form- 
ing an equivalence class under translation consisting 
of n modules are presented in Table I. 

In the simplified case dealt with in Harary and 
Read,36 the results are asymptotic to 

(2n - l)! 

Table 1. 
Growth of number of 
configurations with 
number of modules. 

where Mmin is defined as the fewest moves needed to 
reconfigure while observing locomotion constraints 
(which are described in detail in subsection 4.1). 

Unfortunately, this metric has no representation 
other than explicitly solving a computationally explo- 
sive problem, and recording the number of moves 
which is minimal. If in fact we could do this in a 
reasonable amount of computational time, there 
would be no need for the formulations of section 
4, and the optimal reconfiguration problem could 
simply be formulated as a shortest path problem on 

1 1 
2 3 
3 11 
4 44 
5 186 
6 814 
7 3652 
8 16689 
9 77359 

10 362671 
11 1716033 
12 8182213 

n = number of modules. 
C(n)  = number of configurations. 

(5) 
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The above illustrations suggest a very rapid 
(nonpolynomial) growth in the number of different 
configurations as a function of the number of mod- 
ules. However, establishing the number of different 
configurations consisting of n modules is just the 
first part of the problem. The second part of the 
problem is to represent configurations as nodes of 
a network, or vertices of a graph, i.e., each vertex 
representing a different configuration. In this graph, 
edges exist between two vertices if and only if the 
corresponding configurations are one move apart. 
That is, one module motion along the exterior of a 
configuration defines a new configuration, and the 
vertices corresponding to these two configurations 
are connected with an edge of the graph. 

Thus, the minimal number of moves could be 
formulated as a shortest path problem on this graph 
(See Gibbons,37 or any good book on graph theory). 
The problem with this approach is: (1) there does 
not currently exist an effective method for enumerat- 
ing all possible connected configurations (which is 
even more explosive than enumerating all noniso- 
morphic configurations); and (2) even if (1) could be 
solved, the solution of the shortest path problem 
(while only being O(m2) where m is the number of 
vertices3*) is computationally intractable in this case 
because the number of vertices grows exponentially 
in the number of modules. 

Therefore, our only hope for solving this prob- 
lem is to define and use heuristic algorithms. How- 
ever, we would still like to make sure that these 
heuristics are in some sense "efficient," even though 
there is no practical way of even determining the 
actual fewest number of module motions required 
to reconfigure between desired configurations com- 
posed of large numbers of modules. 

The next section establishes lower and upper 
bounds on the fewest number of moves, which will 
give us the ability to reject heuristic solutions that 
lie outside the upper bound, and will allow us to 
characterize how many moves are required for a heu- 
ristic in comparison with the lower bound. 

4. GENERAL FORMULATION OF THE MOTION 
PLANNING/RECONFIGURATION PROBLEM 

In this section we formalize the motion planning 
problem for metamorphic robotic systems using the 
kinematidmetric properties derived in the previous 
section. The formulation presented here is not con- 
structive in the sense that it does not define any 
particular motion planning heuristic. Rather, it is an 
evaluation tool that can be used to rate the perfor- 
mance of any heuristic. 

Subsection 4.1 states the constraints on module 
motion. These are, in a sense, discrete rolling con- 
straints (as exemplified in Fig. 2). In subsections 4.2 
and 4.3, respectively, we establish lower and upper 
bounds on the fewest number of moves required to 
reconfigure a general metamorphic system between 
arbitrary configurations. Section 5 will illustrate the 
general methodology presented here with examples. 

4.1. Motion Constraints 

The kinematic constraints governing the motion of 
one module over the surface of a collection of other 
modules are: 

Modules can only move into spaces that are 
not already occupied by other modules. 
Every module must remain connected to at 
least one other module, and at least one of the 
modules must stay connected to the fixed base 
from which the collection of modules origi- 
nated. 
Only a single module may move one lattice 
space per timestep, and it achieves this motion 
by mating faces to faces (or in the planar case, 
edges to edges). 

The first two constraints above are given by 
physical properties of the system. The third property 
is an artificial restriction imposed to make the prob- 
lem tractable. It should also be noted that to date 
we have only demonstrated single module motions 
with hardware. 

Under these constraints, the motion planning/ 
self-reconfiguration problem becomes: determination 
of the sequence of module motions from any given initial 
configuration to any given final configuration in a reason- 
able (preferably minimal) number of moves. Factors that 
complicate this are (1) module motions do not com- 
mute; and (2) modules are very restricted in their 
movements, to the extent that composition of mo- 
tions is not always possible, i.e., the motion of one 
module may prevent allowable motion of a neighbor- 
ing module. Examples of these situations are shown 
in Figure 6 .  Therefore, the powerful tools of group 
theory and commutative algebras cannot be applied 
in any obvious way. 

As was seen in the previous section, achieve- 
ment of our motion planning/self-reconfiguration 
goal cannot be guaranteed in the "fewest" moves 
because the computational complexity is too great 
for large numbers of modules. Therefore, we desire 
to bound from below and above the minimal number 
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A l c  = one move by A clockwise 
Bic  = one move by B clockwise 

AicBlc exists, but BlcAlc does not exist 

Figure 6. Examples of noncommutative module motions. 

of moves required to get from any connected con- 
figuration to any other with the same number of 
modules. We also desire that these bounds have the 
following properties: 

They can be computed quickly. 
They are a function of geometric parameters 
of the initial and final configurations, e.g., pe- 
rimeter, area, moments of area, intersections, 
unions, etc. 
They should couple our concepts of distance 
between modules/lattice points and distance 
between configurations. 
They should be as tight as possible. 

The next two subsections establish bounds that 
satisfy the above conditions. 

4.2. Lower Bounds on the Minimal Number of 
Module Motions 

A good lower bound on the minimal number of 
moves required to reconfigure a metamorphic robot 
is obtained by using the lattice metric and concepts 
of optimal assignment. The lower bound presented 
here is based on the fact that the minimal number 
of moves required for a single module motion in a 
lattice will be no less than the lattice distance be- 
tween the initial and final spaces. Furthermore, if it 
were possible to track the sequence of motions of 
an optimally reconfiguring metamorphic robot, we 
could compute the lattice distance between each 

module in its initial and final lattice spaces, and the 
sum of all these distances would be a lower bound 
on the total number of module motions. Since this 
is not possible, we will assign modules in two con- 
figurations in such a way that the sum of the lattice 
distances between matched modules is minimized 
over all possible matchings. This minimal sum will 
be at most the aforementioned lower bound. Since 
this is something that can be computed relatively 
efficiently (in at most O(n3) computations, see a pre- 
vious for details), this is the lower bound we 
will use. The basic approach is summarized below. 

Let the present configuration of the robot be 
described by the set of modules A, where ai E A 
represents a module in the configuration for i = 1, 
. . . , n, and Zi is its corresponding position vector. 
Let the new configuration be defined by the set B, 
where bi E B for j = 1, . . . , n+represents a module 
in the new configuration, and bj is its corresponding 
position vector. A lower bound on the total number 
of moves required to go from A to B (or vice versa) 
is given by an optimal assignment of each element 
ai in A to an element bi in B, f : A + B ,  such that the 
sum of the distances (as defined by the lattice metric) 
for the assignment is minimized. This lower bound 
is written as: 

-b 

where 7~ represents a permutation of module labels 
and I1, is the set of all permutations of a set with n 
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elements. Equivalently, this can also be treated as 
finding a perfect matching in a weighted bipartite 
graph G = (A, B),37 such that the sum of the weights 
of the matching is minimized. In a previous 
we show that L,(A, B) and variants of it are metrics 
on the set of all configurations of modules that can 
be used together with optimization techniques to 
define heuristic reconfiguration strategies. 

In cases where the overlap of the two configura- 
tions is on the same order as the number of modules, 
it is worth noting that L,(A, B )  can be computed by 
matching overlapping modules in two configura- 
tions to each other. In effect this means the matching 
need only be performed between modules not in the 
overlap of two configurations, since the contribution 
to L,(A, B) from the overlapping parts is zero. The 
proof of this fact is given in a previous 

The complexity of optimal assignment algo- 
rithms is order O(n3) where n is the number of mod- 
u l e ~ . ~ ~  A simpler but less "tight" lower bound having 
complexity O(n) is described below. 

Recall that a lattice is a discrete subspace of the 
vector space RN. Furthermore, all of the metrics used 
in this article to define distance between lattice points 
can be extended to arbitrary points in RN by evaluat- 
ing the metric functions with vectors of real numbers 
instead of integers. These extended metrics are used 
to define norms on RN, and we can write for any 
given 2, ij E RN, 112 - 311 = a(?, G). Useful properties 
that result from the above identification include: 

where c E R', and 6 is the position vector of the 
base module. We will use these facts shortly. 

Let us define the centroid of a collection of mod- 
ules that define a configuration, A, to be 

where iii is the position vector to the center of the 
module ai of configuration A with respect to a coordi- 
nate system at the fixed base module. This coordi- 
nate system can be either a skewed lattice coordinate 
system, or an orthogonal one. In the former, we will 
denote vectors with the superscript L,  and in the 
latter with superscript 0. Thus, i$' = VZ;, and be- 
cause of linearity, 2: = VZ;, where the elements of 

the matrix V were used in Equation (4). A nice prop- 
erty of the centroid is that it can be used to generate 
a lower bound on the quantity we seek. Namely, if 
we are given two configurations, A = {ai} and B = 
{bi}, and if the modules are matched in any arbitrary 
way: ai * bi for i = 1, . . . , n, we see that 

n n 

The above inequality resulted from the triangle in- 
equality and Equation 6. Thus, if we find the distance 
between centroids of each configuration, and multi- 
ply by the number of modules in each, this will be 
less than or equal to the sum of distances computed 
using any matching (including the minimal one). 
Therefore, the distance between centroids multiplied 
by the number of modules can be used as a lower 
bound on the minimal number of module motions 
required to reconfigure between A and B .  This is 
written as 

where 6(a, b) can be either a lattice or Euclidean 
metric, and the greatest integer function 1.1 is used 
because the minimal number of moves must be an in- 
teger. * 

This approach will yield good results when the 
two configurations are diametrically opposed, i.e., 
when the configurations are very different and the 
centers of mass of the two configurations are not 
close. However, it is possible for the centers of mass 
to be close and the configurations to be very differ- 
ent. In this case L2(., .) will be a gross underestimate 
of the required number of moves. For instance, two 
serial configurations with an overlap at their center 
of mass, but rotated by an arbitrary nonzero angle, 
will need a very large number of moves O(n2) to 
reconfigure from one to the other. However, the 
centroid approximation will yield a lower bound of 
zero. On the other hand, if two serial configurations 
protrude from opposing sides of their overlap, then 
the centroid approximation to the lower bound will 
be very good, and it can be used to save some compu- 

*In fact, n S,(;;f, @) will always be an integer, but nsz(iiP, @) will 
generally not be. 
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tational effort since it can be computed with O(n) cal- 
culations. 

4.3. Upper Bounds on the Minimal Number of 
Module Motions 

In this subsection, we derive two closed-form upper 
bounds on the minimal number of module moves 
required to reconfigure between arbitrary configura- 
tions. These upper bounds are functions of the initial 
and final “perimeters” of the configurations, and the 
largest possible perimeter that a connected configu- 
ration of n modules can have. In addition, these 
bounds are functions of the number of modules in 
the largest simply connected overlap between the 
two configurations, I k B .  We begin by formalizing 
some intuitive concepts. 

Definition: The ”exterior” of a configuration (collec- 
tion of modules) is the union of all lattice spaces not 
within the configuration of modules, but at most one 
space distant from a module in the configuration. 

Definition: A ”partial perimeter” of a configuration 
is the number of moves required for an imaginary 
module to visit every lattice space in a connected 
component of the exterior while generating a closed 
path. The ”perimeter,” P(n),  of a configuration is 
the sum of all partial perimeters. 

Definition: A “movable module” is a module that 
can move from its current lattice space to an adjacent 
space in the exterior of the current configuration 
without disconnecting itself or any other modules 
in the process. 

Robot 
Configuration 

Ex te r to r  

Definition: A “maximal simply-connected overlap,” 
of two configurations A and B is any simply con- 
nected (i.e., has no loops or voids) subset of modules 
contained in A r l  B that has the greatest number of 
modules and contains the base module. (This set 
need not be unique, but the number of modules in 
this set, denoted l k B ,  is unique.) 

In the case of planar modules, the above defini- 
tion of perimeter reduces to simply the sum of the 
minimal number of empty spaces that surround the 
collection of modules, together with the number of 
empty spaces in the interior of each “hole” in contact 
with modules if the configuration has loops. For pla- 
nar illustrations of each of the above definitions, see 
Figures 7 and 8. 

We are now armed with the major definitions 
needed to derive an upper bound on the minimal 
number of moves required to reconfigure from any 
configuration to any other with the same number 
of modules. 

There are three perimeters that will be of particu- 
lar interest to us for a connected configuration con- 
sisting of n modules: (1) the perimeter of a connected 
subset of the initial configuration containing n - 
1 modules (where one movable module has been 
removed such that the resulting perimeter is mini- 
mized): Pi(n - 1); (2) the perimeter of a connected 
subset of the final configuration containing n - 1 
modules (where one movable module has been re- 
moved such that the resulting perimeter is mini- 
mized): Pf(n - 1); and (3) the maximal perimeter that 
a connected configuration of n - 1 modules can have: 
Pmax(n - 1). The Appendix proves that for systems 

Movable 
Modules 

NOn-Movable 
Modules 

Figure 7. Exterior and movable modules. 
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Overlap 

Maxinal Simply-Connected 
Overlap 

Figure 8. Maximal simple-connected overlap. 

composed of planar hexagonal modules, P,,,,,(k) = 
2(k + 2), and that this value occurs for serial configu- 
rations without branches or loops. For the sake of 
notational compactness, we will refer to the above 
functions without their arguments when there is 
no ambiguity. 

Theorem: An upper bound on the minimal number of 
moves, M,,,i,,(A, B) ,  required to reconfigure between any 
two configurations A and B with n modules and maximal 
simply connected overlap with l k B  modules is: U,(A, B )  
= (n  - r A B ) ( p n ~ ~ x ( n  - 1))/2* 

Proof: When a given module moves, it is not counted 
in the perimeter it must traverse. By definition, there 
is no longer a path that a module can take in the 
exterior of a configuration than the full perimeter. 
Thus, if a module takes a path to, and returns from, 
any arbitrary lattice space in the exterior of the con- 
figuration, it will take at most Pllrnu(n - 1) moves 
because it is traversing a configuration with n - 1 
modules. Any minimal length path connecting two 
different points will thus be at most half of this 
length, because either the circuit has equal length 
on outgoing and return paths, or else we can always 
choose the smaller one. This process is repeated the 
fewest number of times needed to reconfigure (for 
the tightest bound). This number is the number of 
modules not in a maximal simply connected overlap 
of the two configurations (which is n - I i B ) .  The 
other modules can simply remain fixed. 

We impose the restriction that only the largest 
simply connected overlapping region including the 
base (as opposed to the whole overlap) need not 
move for the following reason. If the overlap is not 
simply connected, modules from one configuration 
might be inside a "hole," while modules of the other 

configuration could be on the outside. Similarly, if 
the overlap is not connected at all, there may be no 
way to reconfigure without moving the overlap- 
ping modules. 

While U,(A, B) is a valid upper bound, it can be 
made tighter by incorporating information that is 
readily available, i.e., the initial and final perimeters. 
Let us define the maximal amount of change that 
the motion of one module can make to the perimeter 
of a configuration to be M. Furthermore, let us 
choose the initial and final perimeters traversable by 
a module to be the smallest of all possible perimeters 
of n - 1 connected modules contained in the initial 
and final configurations, respectively. We can do 
this without loss of generality by examining all mod- 
ules that are able to move in the initial and final 
configurations, and choosing the first and last mod- 
ules so that the perimeter created by excluding these 
modules is minimal. The following theorem incorpo- 
rates all this information: 

Theorem: A tighter upper bound on the minimal number 
of moves required to reconfigure between any two configu- 
rations with n modules, maximal simply connected overlap 
consisting 0flkB modules, and initial, final, and maximal 
possible perimeters P i ,  Pf, and P,,, is: 

U,(A, B) = min{U;(A, B), U:(A, B)}, 

where 

U;(A, B) = [Pii, + Mil(il - 1)/2 + Pmax(i2 - il) * 

+ (n - 1;B - i,)(Pf + nM - IABM) 

+ Mi,(& - 1)/2]/2 (7) 
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and 

&'(A, B )  = [Pii, + Mi3(i3 - 1) /2  

where i, and i, are integers defined by the expressions: 

Pi + i,M = P,,, 

P,,,,, = Pf + (n  - I i B  - i,)M 

Pi + i3M = Pf + (n - ZiB - i3)M. 

M is the largest amount by which the perimeter of a con- 
figuration can change (increase or decrease) by the motion 
of one module. 

Proof: The half perimeter that the first module tra- 
verses is bounded from above by p(0) = Pi/2, the 
second will be bounded from above by p(1) = (Pi + 
M ) / 2 ,  and the j + 1'' will be bounded from above 
by p ( j )  = (Pi + j M ) / 2 ,  until j is large enough that 
either Pi + ilM = P,,,, or Pi + i3M = Pf + (n - 
I i B  - i3)M for some integers j = i, or j = i,. That is, 
until the perimeter reaches its maximal possible 
value, or it reaches such a value that the perimeter 
must start to decrease to attain the perimeter of the 
final configuration with moves of the remaining 
modules. The above conditions have the geometric 

meaning of the position where the lines defined by 
p ( j )  = Pi + j M ,  p ( j >  = P,,,, and p ( j )  = Pf + ( n  - 
Iis - j )M intersect in the plane whose independent 
coordinate is j and dependent coordinate is p .  In 
other words, the lines with slope +M will intersect 
each other either above or below the line with zero 
slope, depending on the initial and final perimeters 
(the intercepts of the lines) and M (the slope of the 
lines). Since the moves associated with each half 
perimeter are added to the total, and we seek a 
bound on the minimal total moves, we seek the pla- 
nar figure that will have the least area bounded by 
these three lines and the j axis. This will either be a 
triangle with peak below P,,,,, or a trapezoid with 
P,,, as the top line. The expressions in the statement 
of the theorem correspond to these cases, and are 
derived below, and the two cases are depicted in 
Figure 9. 

(Case 1) Triangle: Suppose that the lines given by 
the equations p ( j )  = Pi + jM and p ( j )  = Pi + (n  - 
I kB  - j )M (which are upper bounds on the perimeter) 
intersect each other below the line p ( j )  = P,,,,,. By 
denoting the value of j where these lines intersect 
as i,, the perimeters will be summed using the first 
line until i,, and then we will switch to the second 
line. The result of this summation is: 

-IAB- 1 

I I 
I '  I 

0 i3 n -  I;B 0 i l  i2 n- ~k~ 
j j 

case 1 case 2 

Figure 9. Graphical derivation of upper bounds. 
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These summations sjmplify using the formulas: 
Xi=, 1 = r - k + I, X i = ~ j  = r(r + 1)/2 - k(k - 1)/2. 

(Case 2) Trapezoid: By definition, i, is where the line 
with slope + M intersects the horizontal line at P,,,,, . 
Starting at j = i,, the half perimeter traversed will 
be at most P,,,,/2 (since this is the maximal value 
possible). This is true until P,,,,, = Pf + M ( n  - IkB - 
i,), for some integer j = i,. This is where the line 
with slope -M intersects the horizontal line at P,,,,, . 
From j = i, on, the perimeter must decrease in the 
steepest way possible to be able to reach Pf using the 
unmoved modules. The perimeter for the remaining 
moves will be bounded from above by p ( j )  = P, + 
M ( n  - Ikb - j) for it to be possible to attain the final 
perimeter. If we sum up all three contributions from 
j = 0 to n - I i B  - 1, Case 2 is proved. In other words, 
the upper bound is: 

which is simplified using the same formulas as 
case 1. 

The benefit of the two upper bounds discussed 
so far in this section is that they can be computed 
in O(1) calculations, and they tell us right away that 
there will be at most O(nP,,,,,) moves required to 
reconfigure no matter what module design is chosen. In 
the case of planar modules this will be O(n2). In 
addition to these easily computed bounds, we will 
often want to have constructive upper bounds on the 
minimal number of moves. That is, instead of conser- 
vatively assuming that half of the largest perimeter 
is traversed each time a single module moves to fill 
a space in the new configuration, we can construct 
intermediate configurations by having modules 
move along the perimeter (clockwise or counter- 
clockwise) until they stop at a suitable place in the 
desired configuration. This will, by definition, re- 
quire a fewer number of moves than the noncon- 
structive upper bounds presented above, but in the 
worst case will run to O(n2) calculations in the pla- 
nar case. 

While a number of constructive algorithms can 
be imagined, the simplest (although not necessarily 
most efficient) one for simply connected initial and 
final configurations is for a module to stop at the 

first space reached in the final configuration. The 
upper bound generated by counting the number of 
moves in this case is denoted UJA, B ) .  This will 
suffice for the purposes of illustration in the follow- 
ing sections. 

5. APPLICATION TO MOTION PLANNING 

This section introduces an application of the lower 
and upper bounds developed earlier in this article. 
Namely, the improvement, or refinement, of an exist- 
ing sub-optimal move sequence is considered. As a 
general rule, heuristics can generate a sequence of 
moves that reconfigure a metamorphic system from 
one configuration to another. The application of the 
bounds presented in this article is to detect and im- 
prove inefficient spots in a heurustic move sequence. 
To formulate a refinement procedure based on lower 
and upper bounds on the number of required mod- 
ule motions, a few defintions are needed. 

Suppose we are given an initial configuration I ,  
and final configuration F. A reconfiguration sequence 
is defined as an ordered set of connected configura- 
tions {Ao, . . . , AI,IU~PF} for which (i) &(A,, I )  = 0, 
Gc(Anluueq, F) = 0, and (ii) &(A,,  A,+J = 1 for i E [0, 
. . . , moves - 11. where 6,(., .) is any configuration 
metric. A reconfiguration Subsequence is a subset of a 
reconfiguration sequence: { A l ,  . . . , A,} for which 
i 2 0 and k 5 moves, and in which all elements 
between A, and A, in the reconfiguration sequence 
are contained in the subsequence in their original 
order. A reconfiguration subsequence will be called 
proper if the above inequalities are strict inequalities. 

Using these definitions, a refinement of a given 
reconfiguration sequence with initial and final con- 
figurations I and F that contains moves + 1 configura- 
tions is a reconfiguration sequence for which the first 
and last elements are I and F and the number of 
elements is moves' + 1 where moves > moves'. 

Using the methods developed in this article, 
there are two easy ways to refine a given move se- 
quence, {Ao,  . . . , A,,,,,,}. These methods are re- 
ferred to as contraction and filtering. 

Contraction is defined as follows: For each i E 
[0, moves - 11, check whether or not &(A,, A,) = 0 
for all j > i. If one or more subsequences of the form 
{A l ,  , . . , A,} exist such that &(A,,  A,) = 0 ,  then 
remove each subsequence { A , + l ,  . . . , A]}, and re- 
number the configurations numbered j + 1 to moves 
in the original sequence with the numbering i + 1 
to moves + i - j in the contracted sequence. This 
procedure is O(nwoves2)  because the intersection of 
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two configurations can be computed in O(M) ,  and 
there are O(moves2) comparisons. This procedure is 
referred to as a contraction because it takes one or 
more subsequences and reduces it to a single con- 
figuration, A,, thus reducing (contracting) the size 
of the original sequence. 

Filtering is defined as follows: Assume that a 
reconfiguration sequence is given. If rnoves(1, F) > 
U,(I, F), then we know the reconfiguration sequence 
can be improved since any constructive algorithm 
that rolls modules at most half way around the exte- 
rior of the configuration can be used to generate 
an upper bound. These bounds are then applied 
recursively for smaller and smaller reconfiguration 
subsequences until subsequences containing only 
two configurations are generated. If a subsequence 
is found for which this inequality does not hold, 
either: (i) run the heuristic a number of times until 
a subsequence can be generated for which the in- 
equality holds (in particular, if the heuristic has sto- 
chastic properties, such as simulated annealing,39 an 
indeterminate number of trial runs are needed), or 
(ii) substitute a subsequence generated using a con- 
structive upper bound, such as the one described at 
the end of the previous section. Note that the tighter 
the upper bounds are, the “finer” the filter will be. 

Using the contraction and filtering techniques 
above, reconfiguration sequences that are efficient 
enough to fall within the upper bounds are refined 
by ”filtering out” those subsequences that detract 
from overall efficiency. While there is no guarantee 
to what extent these algorithms will improve a given 
reconfiguration sequence, they certainly do not de- 
tract performance, and run fast enough that they 
are not a computational burden. The next section 
considers examples. 

6. EXAMPLES 

In this section, a planar metamorphic system with 
hexagonal modules is used to demonstrate the meth- 

ods developed in the previous sections. It is then 
demonstrated how the bounds established pre- 
viously in this article are useful for: (1) evaluating 
the performance of heuristic algorithms, (2) “weed- 
ing out” inefficient reconfiguration procedures, and 
(3 )  improving the performance of a given reconfigu- 
ration procedure. 

6.1. An Example of lower and Upper Bounds 

As an illustration of the lower bounds on the minimal 
number of moves, consider the following example. 
Figure 10(a) shows the initial configuration, Figure 
10(b) shows the final configuration, and Figure lO(c) 
shows an arbitrary labeling of the modules in the 
two configurations. If we choose all possible match- 
ings of the labels (1, 2, 3, 4) with {1’, 2‘, 3’, 4’) (of 
which there are 4!), we choose one for which the sum 
of the lattice distances between matched modules is 
minimized. The reader is encouraged to verify this 
by trying all possibilities. The optimal assignment 
in this case results from matching like numbered 
modules in Figure 1O(c), i.e., i --f if, and summing 
the lattice distances between all of them. In this case 
it is easy to see that L,(A, B )  = 8. It should be noted 
that enumerating all possible matching is very inef- 
ficient (O(n!)). O(n3) algorithms for optimal assign- 
ment are used in practice.39 If we observe the posi- 
tions of each module in the lattice coordinate system 
attached to the base module (which is labeled as 
module 1) the centroid vectors for the tw? configura- 
tions are respectively Z, = 4(-5, 1) and b, = 32, 0). 
Using the lattice metric we find that &(A, B )  = 
4S,(Z,, EC) = SL(4Zic, 45,) = 8, which is the same as 
the value calculated using L,(A, B ) .  

Now let us consider the upper bounds on the 
minimal number of moves computed for this con- 
figuration. In this particular case, Pf(3) = P,(3) = 
PnlaX(3) = 10, and so no savings is gained by the 
second closed-form upper bound presented in sec- 
tion 4. The closed-form upper bounds are computed 
simply as: UI(A, B )  = U2(A, B )  = 3 * 5 = 15. Construc- 

a b 

& C 

Figure 10. (a) Present configuration; (b) new configuration; (c) module labeling. 
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p 

Figure 11. An optimal reconfiguration sequence. 

tively computing an upper bound by rolling 4 to 4', 
3 to 3', and 2 to 2', one gets 9, thus, 8 5 M,,,,,, 5 

9 < 15 for this example. In fact, for such a small 
number of modules, it is easy to test all possible 
combinations of moves by hand, and one finds that 
M,,,,, = 9. Figure 11 explicitly represents one possible 
strategy for optimal reconfiguration. The initial la- 
bels have been retained so that motions are easy 
to track. 

6.2. Using Bounds to Improve Performance 

As an example of the refinement procedure pre- 
sented in section 5, consider the reconfiguration se- 
quence presented in Figure 12. The lower bound is 
given by .Ll(I, F )  = 4. The closed-form upper bounds 
both give 8. Thus, this sequence is within bounds 
since 4 4 8 5 8, and is not rejected. Although the 
reader is no doubt aware by looking at the initial 

n n 

Figure 12. A suboptimal reconfiguration sequence. 
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Figure 13. (a) A contracted sequence; (b) a filtered sequence. 

and final configurations that an optimal s,equence 
can be generated using fewer moves, we ignore this 
fact for the purpose of illustration. 

Using the contraction algorithm, the resulting 
sequence is shown in Figure 13(a), where the subse- 
quence {A5,  A,, A7} was contracted from the original 
sequence, because it formed a loop in the configura- 
tion space of the metamorphic robot. The result is an 
improved sequence with 6 moves. Using the filtering 
algorithm we find that the whole sequence {Al, A,, 
A,, A4} can be replaced with a two move sequence 
as shown in Figure 13(b) by using the constructive 
upper bounds outlined at the end of subsection 4.3. 
This is clear because Ll(Al, A4) = 2 = U,(A,, A4), 

and since lower and upper bounds are equal, this 
must be the minimal number of moves. Of course, 
the filtering algorithm could have been run first, 
but this would have precluded the illustration of 
contraction for this example. 

7. CONCLUSIONS 

The concept and kinematics of a metamorphic ro- 
botic system were developed in this article. Bounds 
on the fewest moves required to reconfigure from 
one configuration to another were established. These 
bounds are important because explicit solution for 
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the minimal number of moves becomes computa- 
tionally infeasible when the number of modules is 
more than 15-20. It was illustrated how these 
bounds can be used to "weed-out" and improve 
inefficient motion planning strategies. Furthermore, 
the concepts developed here provide a framework 
from which efficient heuristics can be constructed. 

Much work still remains in the development of 
motion planning/reconfiguration algorithms for 
metamorphic systems, and challenging issues re- 
main in terms of mechatronic design and hardware 
implementation. 

This work was made possible by National Young In- 
vestigator Award IRI-9357738 from the Robotics and 
Machine Intelligence Program at the National Science 
Foundation, and a Presidential Faculty Fellows 
Award. 

(i) When the new module has only one neigh- 
bor, the perimeter increases by 2 as shown 
in Figure A-3(a). 

(ii) When the new module has two neighbors, 
the perimeter increases by 1 as shown in 
Figure A-3(b). 

(iii) When the new module has three neighbors, 
the perimeter remains the same as shown 
in Figure A-3(c). 

(iv) When the new module has four neighbors, 
the perimeter decreases by 1 as shown in 
Figure A-3(d). 

(v) When the new module has five neighbors, 
the perimeter decreases by 2 as shown in 
Figure A-3(e). 

(vi) When the new module 'has six neighbors, 
the perimeter does not change as shown in 
Figure A-3(f). 

The maximum change in perimeter, AP, is 2 
when the new module is connected to only one 
neighbor. By IHOP, a serial structure with n modules 
has the maximum perimeter, say, P, . Add one more 
module to form a serial structure with n + 1 modules. 
The new module can only be added at the ends and 
has one neighbor, increasing the perimeter by 2, i.e. 

APPENDIX: MAXIMUM PERIMETER OF 
METAMORPHIC ROBOT CONFIGURATIONS 

Theorem: For a given number ofmodules, n, a serial struc- 
ture has the maximum perimeter. 

Proof: By induction on the number of modules. 

can be formed. For IZ = 3, three distinct nonisomor- 
phic configurations are possible, as shown in Figure 
A-1, along with their perimeters. The serial structure 
has the maximum perimeter among them. 

Basis: For IZ = 1 and n = 2 only serial configurations P, + 2 2 P + AP (1) 

Case 2: The addition of the new module leads to the 
formation of a new loop in the configuration. The 
perimeter is then defined as the sum of the partial 
perimeters. Three distinct possibilities exist (other 
cases are not possible). Induction Hypothesis (IHOP): Let's assume that among 

all configurations with n modules, the serial struc- 
ture has the maximum perimeter. 

Consider a configuration of n modules with a 
perimeter P. Add one more module to this configu- 
ration. There are two distinct possibilities: 

(i) When the new module has two neighbors, 
the perimeter decreases by 2 as shown in 
Figure A-4(a). 

(ii) When the new module has three or four 
Case 1: The addition of the new module does not 
form any new loops. There are six possibilities for the 
position of the new module in the simply connected 
case, as show in Figure A-2. 

neighbors and only one loop is formed in 
the new configuration, the perimeter de- 
creases by 3 and 4, respectively, as shown 
in Figure A-4(b). 

p = 10 p = 9  p = 10 
Figure A-I . Three distinct configurations for n = 3. 
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...... ....... ........ ....... ........ C I )  ....... 

q # # p  ....... ....... ....... 0 ........ ........ ....... ....... ....... ....... 

Figure A-2. The different neighbors possible for the new module. 

m m .tf9qy-+& ........ 

(a) Change in perimeter with one neighbor. 

m m @ & C p  ....... ....... ....... 

(c) Change in perimeter with three neighbors. 

@ & ....... 

(e) Change in perimeter with five neighbors. 

m 

(b) Change in perimeter with two neighbors. 

(d) Change in perimeter with four neighbors. 

0 ....... ....... ....... ....... 0 ....... 

(f)  Change in perimeter with six neighbors. 

Figure A-3. Change in perimeter with different number of neighbors. The modules in 
black represent part of the pre-existing configuration, the hatched module is the new 
module added, and the white spaces represent part of the perimeter in the lattice. 
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n 

a & @  . . . . . . . 

b 

Figure A-4. Change in perimeter with two, three, and four neighbors. The modules in 
black represent part of the pre-existing configuration, the hatched module is the new 
module added, and the white spaces represent part of the perimeter in the lattice. (a) 
Change in perimeter (AP = 1,2 respectively) with two neighbors. (b) Change in perimeter 
with 3 and 4 modules, respectively. 

Figure A-5. Change in perimeter with formation of 3 loops. 

It is easily observed that when the addition of 
the new module creates more than one loop, no 
increase in perimeter takes place, as shown by one 
example in Figure A-5. 

Hence, no increase in perimeter takes place by 
the addition of a new module in case 2, i.e. 

AP 5 0 (2) 

Hence from (1) and (2), for a given M, a serial 
structure has the maximum perimeter. 
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