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Metrics on Motion and
Deformation of Solid Models

Recently, the importance of metrics on the group of rigid body motions has been
addressed in a number of works in the kinematics and robotics literature. This paper

defines new metrics on motion which are particularly easy to compute. It is shown
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1 Introduction

Means of measuring *‘distance” between motions/deforma-
tions of solid models are presented. All of the distance functions
presented here satisfy the definition of a metric:

Definition: Given aset X, a metric is a real-valued function,
d: X #x X— R, which has the following properties for all x;,
X, x5 € X

d{x,x) =0 and dlx.x)=0 iff 5 =2x
d'{z, . .1;,] — dl{.l.}. X :I
dix, %) + d(x, x) = d(x, x). (1

We refer to these as positive definiteness, symmetry, and the
triangle ineguality, respectively. The pair (X, 4) is called a
MEIric SPace.

The problem of measuring distance between rigid body mo-
tions arises in several scenarios. In mechamsm synthesis prob-
lems typically a set of frames must be reached, and error mea-
sured between actual and desired frames. In computer graphics,
both rigid-body and deformable-body motion interpolation are
important problems. Both error calculation and motion interpo-
lation require measures of distances to be defined.

A number of recent works have addressed the problem of
metrics on the group of rgid body motions. For instance, the
exponential /logarithm mappings are used in [6] for an elegant
formulation of a physically meaningful metric. In a number of
works, metrics based on matrix norms are presented [10, 11].
Yet another approach is presented in [9], in which distances
between corresponding points in a rigid body in two different
poses are measured and added together to get a measure of
distance between the poses, Most recently, interpolation of Eu-
clidean motions has been performed by a procedure analogous
to stereographic projection [13].

We introduce new metrics on the set of rigid body motions
which are related to those derived previously, but which also
extend naturally to more general matrix Lie groups which act
on Euclidean space., This is important because deformations of
this sort arise in computer vision and graphics (e.g., affine
transformations ) and in image analysis and pattern recognition/
matching. By defining metrics on sets of deformations, a means
of limiting the scope of searches in recognition problems is
established. Also ““morphing” procedures can be based on these
metrics because interpolated sequences of solid models can be
generated which are “‘equidistant’ from each other, as mea-
sured in the metrics we define.
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how these metrics are applicable to path generation for rigid body motions, and also
as a means for generating interpolated sequences of deformed solid models. In order
to address both problems in a unified framework, general metrics on Lie groups are

This paper is organized as follows. Section 2 derives metrics
on certain groups of transformations, including the group of
rigid body motions. Section 3 provides numerous explicit exam-
ples. Sections 4 applies the results of Sections 2 and 3 to motion
and deformation interpolation and path reparametrization.

2 Metrics on the Affine Group

In this section we present two general methods for generating
metrics on subgroups of the proper affine group, which is de-
fined below:

Definition: The proper affine group is the set of all pairs
of the form g = (A, b) where A € B det (A) > 0, and b
€ R". The group law is g,° g. = (4,42, A;b; + b, ), the identity
element is ¢ = ([, 0), and this group transforms each point x
£ RY as x = gox = Ax + b. This is the only kind of group,
and the only kind of group action, considered in this paper.

These groups are important in CAD, graphics, and kinematics
because many of the common transformations applied to geo-
metric models are in fact elements of this kind of group. For
instance, when A 15 resiricted to be a rotation matrix (i.e., A £
SO N, the transformation gex for all x € R is a rigid motion
of BY. The group of all rigid body motions is denoted as
SE(N).!

The basic idea behind the two classes of metrics presented
here is to use metrics on B and on function spaces on the
groups to induce metrics on the groups themselves. In Sections
2.1 and 2.2 “'type 1" and *‘type 277 metrics are introduced,

respectively.

2.1 TYPE 1: Metrics on Groups Induced by Metrics on
RY. Perhaps the most straightforward way to define metrics
on subgroups of the affine group is to take advantage of the
well-known metrics on B”. Namely, if p(x) is a continuous
real-valued function on B™ which satisfies the properties

0= p(x)<=and 0 < j el ™o X )y . . . gy =< oo,
“.ﬂ'
for all finite m = 0, then
dig,, g.) = f g — gxllpx)dx, . . . dxy
“n\'

is a metric when ||+ || is any norm for vectors in R” (in particular,
the p-normm is denoted |- ||,}. The fact that this is a metric was
observed in [9] for the case when & = SE(N). Because the
focus of this paper is to create metrics o compare the amount
of deformation or motion of a given solid model, natural choices
for o(x) are either the mass density of the object, or a function
which is equal to one on the object and zero otherwise. How-

! SE(N) stands for **Special Euclidean'” group of N-dimensional space.
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ever, it is also possible to choose a function such as p(x) =
e *** {for any nonzero @ € R) which is positive everywhere
yet decreases rapidly enough for d(g,, g2) to be finite.

The fact that this is a metric on the affine transformations
which are commonly applied 1o solid models is observed as
follows. The symmetry property dig;. g2) = d{g:, £) results
from the symmetry of vector addition and the properties of
vector norms. The triangle inequality also follows from proper-
ties of norms. Positive definiteness of this metric follows from
the fact that for affine transformations

Igiox — gz=x|| = [(A;, — A2)x + (b — by},

and because of the positive definiteness of [|-, the only time
this quantity can be zero is when

(4 — A)x = by — by,

If (A; — A:) is inventible, this only happens at one point, i.e.,
x = (A — Az) (b — by).

In any case, the set of all x for which this equation is satisfied
will have dimension less than N when g, # g;, and so the
value of the integrand at these points does not contribute 1o the
integral. Thus, because o x) satisfies the properties listed above,
and ||z, # X — g2 o xf] = 0 for g, + g; except on a set of measure
zero, the integral in the definition of the metric must satisfy
digy, g2) = 0 unless g, = g,, in which case d(g,. g,) = 0.

While this does satisfy the properties of a metric, and could
be used for CAD and robot design and path planning problems,
it has the significant drawback that the integral of a p™ root
(or absolute value) must be taken. This means that numerical
computations are required. For practical problems, devoting
computer power to the computation of the metric detracts sig-
nificantly from other aspects of the application in which the
metric is being used. Therefore, this is not a practical metric.
On the other hand, we may medify this approach slightly so as
o generate metrics which are calculated in closed form. This
yields tremendous computational advantages.

Namely, we observe that

d*(gi, g) = {lelg.ﬂx = goxXlpp(x)dx, ... dry
"

is a metric. Clearly, this is symmetric and positive definite for
all of the same reasons as the metric presented earlier. In order
to prove the trangle inequality, we must use Minkowski's, in-
equality. That is, if a;, @z, . . . a, and By, by, . . . b, are nonnega-
tive real numbers and p > 1, then

(L (o + BYYr=(F a)'r + (X M)\’ (2}

k=1 e k=1 k=l
In our case, @ = [|g,°X — gox| [(x)]'", b = [lgox —
gyoxi[ p(x)]"", summation is replaced by integration, and be-
cause ||g:°X — g2:°X||p + [|g2°% — gsoxl, = [igi°x — g3°x|;, then

d" (g1, g2) + 4782, 1)

= q(J‘ L Ulgeex — gaoxdly + llgzex — gyexlb) p(x)dy, . .. dy
o

) {{f,,!imﬂr — geoxilfp(x)dx, . . . dxy
-]
- d“"{gh Esj-
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From the above argument, we can conclude that (-, ) isa
metric. Likewise, it is easy 1o see that

-L* lgi*x = gaoxiizp(x)dx; . . . dxy

drpl:'{xh Ez} = '
J‘Mp(x)dm R, 9
"

is also a metric, since division by a positive real constant has
no effect on metric properties.

The obvious benefit of using 4'°(-, -) or (-, -) is that
the p™ root is now outside of the integral, and so the integral
can be calculated in closed form.

A particularly useful case is when p = 2. In this case it is
easy to see that all of the metrics presented in this section satisfy
the property

dlhegy, hegy) = dig, £2)

where g, and g, are arbitrary affine rransformations and A €
SE(N) is a rigid body motion. This is because if & = (R, b)
€ SE(N), then

lhegrex — hegooxil: = |R[g,°x] + b — R[g:°x] — bi
= lgiex — g.oxl

It is also interesting to note that there is a relationship between
the type 1 metric for SE(N) and the Hilbert-Schmidt norm of
N x N matrices. That is, for g € SE(N)

d¥ (g, e) = \U lgex — xiip(x)dV
¥

is the same as a weighted norm
le — ellw = Vir ({g — e)"W(g — e)),

where W = W' € R*™ and g and ¢ are expressed as 4 x 4
homogeneous transformations matrices. To show that this is
true, we begin our argument by expanding as follows (let g =
(R, b))

lg=x — x|

(Rx+b—-x)T(Rx+b - x)
=om{{Rx+b—-x)iBx+b-x)")

tr ((Rx +b = x)(x"R"+b" — x"))

r (R xx"R + Rxb”™ — Rxx™ + bx"R™ + bb™
- bx” — xx"RT — xb” + xx")

tr (xx” + Bxb” — Rxx" + Rxb" + bb"
—xb” - Rxx” — xb” + xxT)

=2t (xx" + Rxb” — Rxx" — xb” + ibb7)
=2t (/- Ryxx" + ibb" + Rxb” — xb"].

I'is the 3 ¥ 3 identity matrix. Note that

L tr [F(x)]p(x)dV =tr [L Fix)p(x)dV ].

where F{x} is any matrix function, and if we choose the coordi-
nate system at the center of mass, we get [, xp(x)dV = 0, and
so the type 1 metric is:

{dil}{Ig-‘ g:]}] =21r |:{f e, R)J. nTP{l:'dV]
W
+h'hj p(x)dVv
L
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d¥(g,e) =V2tr [(/ — R)J] + b-bM . (3)

M = [,p(x)dV is the mass and J = [,xx"p(x)dV has a
simple relationship with the moment of inertia matrix of the
rigid body:

e = [ (%0 = ) g0V = w0 (D1 = 0.
vl

Now we compare this to the weighted norm of ||g — eflw,
defined by g — e} = tr ({(g — e)Wi{g — e)7), where

W=(W:x:| U):

T
0 Wy

g —elle =tri{(g —e)Wig—e)")
tr (g — e)i(g — )W)

(" )" (% 12)

(RT — Ijh)

(RT—I(R-D)
(( o

bT(R - I)

)
K( 07wy
((R"—!j{ﬂ—!}lﬁ’_\ﬂ

bT(R — NWix

(RT = INbwy,
b b,

tr ((RT = I'(R = NWys) + wub'b
2tr ((f — R)Wys) + webb.

It is exactly in the same form as Eq. (3), with J = Wy, and
M = w.y. Therefore, we conclude that

d*g. e) = |lg — ellw.

Furthermore, we can prove that 4(g,, £.) = |lg; — g4flw. First

note that
(R B Iy — b
T 07 o
S0
g, — gl

=u((R|T—R; 0)(31_32 h|_h:)(w:-xz “))
bi—-bf 0 07 0 07wy

i ( ( (RT = RI}(R — Ry} (RT~-RI(by — hz))
(b7 = bI) (R =Ry} (by—ba)(b, —by)

Wiz 0
=t ((R] = RI)(R, = R:)Wiz) + was(by = b)"(by = by)
=t ((2/— RTR: — RIR,)Ws:) + wau(by — b2)"(by — ba).
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Note that:
tr (RIR Wis) = tr (Wia RTRy) = tr (R{R;W33).
We get:
lig: = galld = 2 &w (1 = RTR:)Waxs) + walby — baff*.
Omn the other hand, we already know that:
dig:' =g, e} = d(gi °g:. €) = d(g, £2).
Noting that:

iy =(RT —R{h:)(ﬂ'z bz)
i i 01

s (RTR: RI(b: — h:J)
LT 1 '

WeE get:

(d¥(g7" 82, €))*
= llgi'eg — ¥
=2 ((J — RIR:)Wss + wad[RT(by — by}
= 2u ((I = RIR:)Wiys + wadl(b: — b1

This is exactly identical to [|g, — ggllfu. S0 we may conclude
that for g,, g2 € SE(N)

d(n(a.'l. S::l = !|S1 el .’_-}'1"19‘1 (4}

where
J 0
W= $ :
(o )

This property of type | metrics is very convenient since we
can use many well-developed theories of matrix norms, and the
only explicit integration that is reguired to compute the metric
is the computation of moments of inertia ( which are already
tabulated for most common engineering shapes).

2.2 TYPE 2: Metrics on Groups Induced by Metrics on
Their Function Spaces. Given an arbitrary Lie group, it is
always possible o define a piecewise-continuous real-valued
function f: G — R. Furthermore, it is possible to integrate such
a function over the group provided f( g ) decays rapidly enough.
In this case the measure of the function,

pif) = J;f{g}dn{g].

is finite where du(g) is an integration measure on the group
[15, 14]. On every Lie group, one can define integration mea-
sures dp, (20 and duglg) such that

pelf) = J;f(hﬂg}dm;(g} = fﬁf{zidmm

pplf) = Lf(g%}dm(g} = Lflix}rimfg)

for fixed h € G. p(f) is called left-invariant and ue(f) is
called right-invariant. Usually, gy # pge. In cases when left and
right invariant measures are the same, we simply denote it as
. Any group which has a bi-invanant (left-right invariant)
measure 18 called unimodular. This i1s important because the
group of rigid body motions, SE(N}, 15 just such a group [7].
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