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Recently, the importance of metrics on the group of rigid body motions has been
addressed in a number of works in the kinematics and robotics literature. This paper

defines new metrics on motion which are particularly easy to compute. It is shown
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1 Introduction

Means of measuring *‘distance” between motions/deforma-
tions of solid models are presented. All of the distance functions
presented here satisfy the definition of a metric:

Definition: Given aset X, a metric is a real-valued function,
d: X #x X— R, which has the following properties for all x;,
X, x5 € X

d{x,x) =0 and dlx.x)=0 iff 5 =2x
d'{z, . .1;,] — dl{.l.}. X :I
dix, %) + d(x, x) = d(x, x). (1

We refer to these as positive definiteness, symmetry, and the
triangle ineguality, respectively. The pair (X, 4) is called a
MEIric SPace.

The problem of measuring distance between rigid body mo-
tions arises in several scenarios. In mechamsm synthesis prob-
lems typically a set of frames must be reached, and error mea-
sured between actual and desired frames. In computer graphics,
both rigid-body and deformable-body motion interpolation are
important problems. Both error calculation and motion interpo-
lation require measures of distances to be defined.

A number of recent works have addressed the problem of
metrics on the group of rgid body motions. For instance, the
exponential /logarithm mappings are used in [6] for an elegant
formulation of a physically meaningful metric. In a number of
works, metrics based on matrix norms are presented [10, 11].
Yet another approach is presented in [9], in which distances
between corresponding points in a rigid body in two different
poses are measured and added together to get a measure of
distance between the poses, Most recently, interpolation of Eu-
clidean motions has been performed by a procedure analogous
to stereographic projection [13].

We introduce new metrics on the set of rigid body motions
which are related to those derived previously, but which also
extend naturally to more general matrix Lie groups which act
on Euclidean space., This is important because deformations of
this sort arise in computer vision and graphics (e.g., affine
transformations ) and in image analysis and pattern recognition/
matching. By defining metrics on sets of deformations, a means
of limiting the scope of searches in recognition problems is
established. Also ““morphing” procedures can be based on these
metrics because interpolated sequences of solid models can be
generated which are “‘equidistant’ from each other, as mea-
sured in the metrics we define.
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how these metrics are applicable to path generation for rigid body motions, and also
as a means for generating interpolated sequences of deformed solid models. In order
to address both problems in a unified framework, general metrics on Lie groups are

This paper is organized as follows. Section 2 derives metrics
on certain groups of transformations, including the group of
rigid body motions. Section 3 provides numerous explicit exam-
ples. Sections 4 applies the results of Sections 2 and 3 to motion
and deformation interpolation and path reparametrization.

2 Metrics on the Affine Group

In this section we present two general methods for generating
metrics on subgroups of the proper affine group, which is de-
fined below:

Definition: The proper affine group is the set of all pairs
of the form g = (A, b) where A € B det (A) > 0, and b
€ R". The group law is g,° g. = (4,42, A;b; + b, ), the identity
element is ¢ = ([, 0), and this group transforms each point x
£ RY as x = gox = Ax + b. This is the only kind of group,
and the only kind of group action, considered in this paper.

These groups are important in CAD, graphics, and kinematics
because many of the common transformations applied to geo-
metric models are in fact elements of this kind of group. For
instance, when A 15 resiricted to be a rotation matrix (i.e., A £
SO N, the transformation gex for all x € R is a rigid motion
of BY. The group of all rigid body motions is denoted as
SE(N).!

The basic idea behind the two classes of metrics presented
here is to use metrics on B and on function spaces on the
groups to induce metrics on the groups themselves. In Sections
2.1 and 2.2 “'type 1" and *‘type 277 metrics are introduced,

respectively.

2.1 TYPE 1: Metrics on Groups Induced by Metrics on
RY. Perhaps the most straightforward way to define metrics
on subgroups of the affine group is to take advantage of the
well-known metrics on B”. Namely, if p(x) is a continuous
real-valued function on B™ which satisfies the properties

0= p(x)<=and 0 < j el ™o X )y . . . gy =< oo,
“.ﬂ'
for all finite m = 0, then
dig,, g.) = f g — gxllpx)dx, . . . dxy
“n\'

is a metric when ||+ || is any norm for vectors in R” (in particular,
the p-normm is denoted |- ||,}. The fact that this is a metric was
observed in [9] for the case when & = SE(N). Because the
focus of this paper is to create metrics o compare the amount
of deformation or motion of a given solid model, natural choices
for o(x) are either the mass density of the object, or a function
which is equal to one on the object and zero otherwise. How-

! SE(N) stands for **Special Euclidean'” group of N-dimensional space.
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ever, it is also possible to choose a function such as p(x) =
e *** {for any nonzero @ € R) which is positive everywhere
yet decreases rapidly enough for d(g,, g2) to be finite.

The fact that this is a metric on the affine transformations
which are commonly applied 1o solid models is observed as
follows. The symmetry property dig;. g2) = d{g:, £) results
from the symmetry of vector addition and the properties of
vector norms. The triangle inequality also follows from proper-
ties of norms. Positive definiteness of this metric follows from
the fact that for affine transformations

Igiox — gz=x|| = [(A;, — A2)x + (b — by},

and because of the positive definiteness of [|-, the only time
this quantity can be zero is when

(4 — A)x = by — by,

If (A; — A:) is inventible, this only happens at one point, i.e.,
x = (A — Az) (b — by).

In any case, the set of all x for which this equation is satisfied
will have dimension less than N when g, # g;, and so the
value of the integrand at these points does not contribute 1o the
integral. Thus, because o x) satisfies the properties listed above,
and ||z, # X — g2 o xf] = 0 for g, + g; except on a set of measure
zero, the integral in the definition of the metric must satisfy
digy, g2) = 0 unless g, = g,, in which case d(g,. g,) = 0.

While this does satisfy the properties of a metric, and could
be used for CAD and robot design and path planning problems,
it has the significant drawback that the integral of a p™ root
(or absolute value) must be taken. This means that numerical
computations are required. For practical problems, devoting
computer power to the computation of the metric detracts sig-
nificantly from other aspects of the application in which the
metric is being used. Therefore, this is not a practical metric.
On the other hand, we may medify this approach slightly so as
o generate metrics which are calculated in closed form. This
yields tremendous computational advantages.

Namely, we observe that

d*(gi, g) = {lelg.ﬂx = goxXlpp(x)dx, ... dry
"

is a metric. Clearly, this is symmetric and positive definite for
all of the same reasons as the metric presented earlier. In order
to prove the trangle inequality, we must use Minkowski's, in-
equality. That is, if a;, @z, . . . a, and By, by, . . . b, are nonnega-
tive real numbers and p > 1, then

(L (o + BYYr=(F a)'r + (X M)\’ (2}

k=1 e k=1 k=l
In our case, @ = [|g,°X — gox| [(x)]'", b = [lgox —
gyoxi[ p(x)]"", summation is replaced by integration, and be-
cause ||g:°X — g2:°X||p + [|g2°% — gsoxl, = [igi°x — g3°x|;, then

d" (g1, g2) + 4782, 1)

= q(J‘ L Ulgeex — gaoxdly + llgzex — gyexlb) p(x)dy, . .. dy
o

) {{f,,!imﬂr — geoxilfp(x)dx, . . . dxy
-]
- d“"{gh Esj-
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From the above argument, we can conclude that (-, ) isa
metric. Likewise, it is easy 1o see that

-L* lgi*x = gaoxiizp(x)dx; . . . dxy

drpl:'{xh Ez} = '
J‘Mp(x)dm R, 9
"

is also a metric, since division by a positive real constant has
no effect on metric properties.

The obvious benefit of using 4'°(-, -) or (-, -) is that
the p™ root is now outside of the integral, and so the integral
can be calculated in closed form.

A particularly useful case is when p = 2. In this case it is
easy to see that all of the metrics presented in this section satisfy
the property

dlhegy, hegy) = dig, £2)

where g, and g, are arbitrary affine rransformations and A €
SE(N) is a rigid body motion. This is because if & = (R, b)
€ SE(N), then

lhegrex — hegooxil: = |R[g,°x] + b — R[g:°x] — bi
= lgiex — g.oxl

It is also interesting to note that there is a relationship between
the type 1 metric for SE(N) and the Hilbert-Schmidt norm of
N x N matrices. That is, for g € SE(N)

d¥ (g, e) = \U lgex — xiip(x)dV
¥

is the same as a weighted norm
le — ellw = Vir ({g — e)"W(g — e)),

where W = W' € R*™ and g and ¢ are expressed as 4 x 4
homogeneous transformations matrices. To show that this is
true, we begin our argument by expanding as follows (let g =
(R, b))

lg=x — x|

(Rx+b—-x)T(Rx+b - x)
=om{{Rx+b—-x)iBx+b-x)")

tr ((Rx +b = x)(x"R"+b" — x"))

r (R xx"R + Rxb”™ — Rxx™ + bx"R™ + bb™
- bx” — xx"RT — xb” + xx")

tr (xx” + Bxb” — Rxx" + Rxb" + bb"
—xb” - Rxx” — xb” + xxT)

=2t (xx" + Rxb” — Rxx" — xb” + ibb7)
=2t (/- Ryxx" + ibb" + Rxb” — xb"].

I'is the 3 ¥ 3 identity matrix. Note that

L tr [F(x)]p(x)dV =tr [L Fix)p(x)dV ].

where F{x} is any matrix function, and if we choose the coordi-
nate system at the center of mass, we get [, xp(x)dV = 0, and
so the type 1 metric is:

{dil}{Ig-‘ g:]}] =21r |:{f e, R)J. nTP{l:'dV]
W
+h'hj p(x)dVv
L
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d¥(g,e) =V2tr [(/ — R)J] + b-bM . (3)

M = [,p(x)dV is the mass and J = [,xx"p(x)dV has a
simple relationship with the moment of inertia matrix of the
rigid body:

e = [ (%0 = ) g0V = w0 (D1 = 0.
vl

Now we compare this to the weighted norm of ||g — eflw,
defined by g — e} = tr ({(g — e)Wi{g — e)7), where

W=(W:x:| U):

T
0 Wy

g —elle =tri{(g —e)Wig—e)")
tr (g — e)i(g — )W)

(" )" (% 12)

(RT — Ijh)

(RT—I(R-D)
(( o

bT(R - I)

)
K( 07wy
((R"—!j{ﬂ—!}lﬁ’_\ﬂ

bT(R — NWix

(RT = INbwy,
b b,

tr ((RT = I'(R = NWys) + wub'b
2tr ((f — R)Wys) + webb.

It is exactly in the same form as Eq. (3), with J = Wy, and
M = w.y. Therefore, we conclude that

d*g. e) = |lg — ellw.

Furthermore, we can prove that 4(g,, £.) = |lg; — g4flw. First

note that
(R B Iy — b
T 07 o
S0
g, — gl

=u((R|T—R; 0)(31_32 h|_h:)(w:-xz “))
bi—-bf 0 07 0 07wy

i ( ( (RT = RI}(R — Ry} (RT~-RI(by — hz))
(b7 = bI) (R =Ry} (by—ba)(b, —by)

Wiz 0
=t ((R] = RI)(R, = R:)Wiz) + was(by = b)"(by = by)
=t ((2/— RTR: — RIR,)Ws:) + wau(by — b2)"(by — ba).
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Note that:
tr (RIR Wis) = tr (Wia RTRy) = tr (R{R;W33).
We get:
lig: = galld = 2 &w (1 = RTR:)Waxs) + walby — baff*.
Omn the other hand, we already know that:
dig:' =g, e} = d(gi °g:. €) = d(g, £2).
Noting that:

iy =(RT —R{h:)(ﬂ'z bz)
i i 01

s (RTR: RI(b: — h:J)
LT 1 '

WeE get:

(d¥(g7" 82, €))*
= llgi'eg — ¥
=2 ((J — RIR:)Wss + wad[RT(by — by}
= 2u ((I = RIR:)Wiys + wadl(b: — b1

This is exactly identical to [|g, — ggllfu. S0 we may conclude
that for g,, g2 € SE(N)

d(n(a.'l. S::l = !|S1 el .’_-}'1"19‘1 (4}

where
J 0
W= $ :
(o )

This property of type | metrics is very convenient since we
can use many well-developed theories of matrix norms, and the
only explicit integration that is reguired to compute the metric
is the computation of moments of inertia ( which are already
tabulated for most common engineering shapes).

2.2 TYPE 2: Metrics on Groups Induced by Metrics on
Their Function Spaces. Given an arbitrary Lie group, it is
always possible o define a piecewise-continuous real-valued
function f: G — R. Furthermore, it is possible to integrate such
a function over the group provided f( g ) decays rapidly enough.
In this case the measure of the function,

pif) = J;f{g}dn{g].

is finite where du(g) is an integration measure on the group
[15, 14]. On every Lie group, one can define integration mea-
sures dp, (20 and duglg) such that

pelf) = J;f(hﬂg}dm;(g} = fﬁf{zidmm

pplf) = Lf(g%}dm(g} = Lflix}rimfg)

for fixed h € G. p(f) is called left-invariant and ue(f) is
called right-invariant. Usually, gy # pge. In cases when left and
right invariant measures are the same, we simply denote it as
. Any group which has a bi-invanant (left-right invariant)
measure 18 called unimodular. This i1s important because the
group of rigid body motions, SE(N}, 15 just such a group [7].
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Given this background, it is possible to define left or right
invariant metrics on arbitrary Lie groups in the following way:
Let f(g) be a continuous nonperiodic p-integrable function
(ie., ul |f 177 is finite for u = peor @ = ;). Then the following
are metrics:

df’ (&, &) = (L Li"'{gl'"’g}—f{Ez_'“g}l"ﬂ‘F»L{g}) '

¢ Lip
df' (g1, g2) = (J:: [flgegd = f(é'“é;’:jlpdﬁﬂg}) .

The fact that these are metrics follow easily. The triangle
inequality holds from the Minkowski inequality, symmetry
holds from the symmetry of scalar additon, and positive defi-
niteness follows from the fact that we choose f{g) to be a
nonperiodic continuous function. That is, we choose f{ g) such
that the equalities f( g} = f( g,°g) and f( g) = f( g=g ) do not
hold for g, # € except on sets of measure zero. Thus, there is
no way for the integral of the difference of shifted versions of
this function to be zero other than when g, = gz, where it must
he zero.

We prove the left-invariance of d¥'(g,, 1) below, The proof
for right-invarance for ¢if'(g5. g.) follows analogously.

d(ho g, heoga)
g
== (_L U{{ﬁﬂg:)””g}—f((hﬂg:}‘lﬂglll“dm{g))

=(L Ifi(gr eh ™ Yeg) = Filgs' =k '}°3}I”dn:,(g}).

g
=(I Iﬂg['D{h"ag‘.l}—}ng“_ﬂ(h"ﬂg)}ll"dm{g)) .
o
Because of the left-invarance of g, we then have

Lig
(.L lf{g’_"’g'}—1'{35‘-’3'}I“‘d#:,(h°s’3')

481, g2),
where the change of variables g’ = A= g has been made.

A class function on a group & is a function with the property
Fflash) = flheg) for g, h = G. If a continuous p-integrable
class function, £, exists and & is unimodular, then it is always
possible to define a bi-invariant metric on . This is clear as
follows, by illustrating the right invariance of a left-invariant
metric. ‘

df?']{£|°h1 31"}1}
Lip
(J; [f({gi=h)'eg) —f{{gzvﬁ}"“ghl"dp{g})

1]

lin
(L |f(h™agiteg) = f(h '°Ei'l°§fl|"‘r1’p(g})

For a class function f{ go(gzog)) = fl{g:°g:)2g,) for any
g g g € G, and so

di(gioh, g2oh)

- (L If(giiegeh™) —f{gi'ﬂg“fr"ll”d#(g})

]

g
(L— If(g.""g’}—f(gan"*x':ll’dmﬁ""“)

1]

df’ (g, &h
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where the substitution g* = g=k " has been made and the right
invarance of the integration has been assumed.

It is worth noting that all compact Lie groups are unimodular,
and it is always possible to define continuous square-integrable
class functions on a compact group. Therefore, by the construc-
tion above, it is always possible to define bi-invariant metrics
on compact groups. On the other hand, there are no nontrivial
square integrable class functions on SE{N), as proved in [16],
and so this construction cannot be used to generate bi-invariant
metrics on SE(N) for p = 2. This is consistent with results
reported in the literature [6]. However, it does not rule out the
existence of anomalous metrics such as the trivial metric, which
can be generated for p = 1 when f{ g) is a delia function on
SE(N).

As a practical matter, p = | is a difficult case to work with
since the integration must be performed numerically. Likewise,
p = 2 does not offer computational benefits, and so we concen-
trate on the case p = 2. In this case we get:

di(g. 82) = ﬁf Iflgr'eg) — flgz"=2) du(g) .

In the above equation, and henceforth throughout the paper, f
is assumed not to be a class function. Note that introducing the
factor of ; does not change the fact that this is a metric. Ex-

panding the square, we see

2(d (g1, &) = f FHar'eg)dulg) + f Figs'eg)dulg)
[} ]

= 2_‘. flegitog)figs'og)dulg). (5)
L

Because of the left invariance of the measure, the first two
integrals are equal. Furthermore, if we define f*(g) = f(g™")
then the last term may be written as a convolution. That is,

d¥(g, 22) = VIFIB = (F*f*)gr'=g) . (6)

where
11 = J.Ff“{g}dmgl.

In general the convolution of functions on unimodular Lie
groups is defined as [14]

(a*f)(g) = L_ al(h)G(h~"=g)dulh).

This is a straight forward extension of the definition of convelu-
tion of functions on the real line, which is of the form

(o B)(¥) =j a(xI8(—x + yhdx.
= ]

For the case when G = SE(N) this integral has significance in
workspace generation and analysis of discretely actuated manip-
ulators and propagation of kinematic errors in serial linkages
[4. 5 17].

Since the maximum value of {f*f*)(g) occures at g = ¢
and has the value | f[°, we see that d;(g,, g,) = 0, as must be
the case for it 1o be a metric. The left invariance is clearly
evident when written in the form of Eg. (6), since
(hogi)te(hegy) = gi'e(h™'=h)ogy = gi'eg:. We also rec-
ognize that unlike the class of metrics in the previous section,
this one has a bounded value. That is, when we choose f = 0,

max V|[fiF — (f*f*}gr'=g) = |flk-

EIE L

23 Modified Type 2 Metrics. While the type 2 metrics
of the previous subsection use integration in their definition,
as a practical matter, one would like to avoid explicitly com-
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puting integrals. This is achieved by choosing the functions
fig) in such a way that all the integrals have closed-form
solutions. One way to guarantee this in the case of compact
groups is by using concepts from the representation theory
of Lie groups.

Definition: A representation of a Lie group & is 2 homo-
morphism T : G = T(G) C GL(V). V is a vector space
called the representation space, and GL(V) is the group of
all invertible linear transformations of V onto itself, T(g) for
g € G is expressed in a given basis of V as an invertible
matrix, and

Tigeg:) = T(g)T(g:) Tlg'y=T"(g)
Tiey=1€ GL(V).

If the homomorphism is an isomorphism (ie., T{(g ) # T(g:)
implies g, # g;) then the representation is called faithfil. Repre-
sentations that can be expressed as unitary matrices® in an ortho-
normal basis of V are called unitary representations. Such repre-
sentations play a central role in theoretical physics and harmonic
analysis [14].

One observes that

1z
D{*(g, g2) = (‘[_ IF(gi'=g) - F(gi‘“:)ll?mdm,fz})

is a metric (for exactly the same reasons as d*) when F is an
m ¥ m complex-valued matrix function satisfying analogous
conditions to those placed on f{ g) in the previous subsection,
and [+ |lus is the Hilbert-Schmidt norm, ie.,

| Fllas = Vtr (FF*)
where ir (+) denotes the trace of a matrix.

Because of the properties of representation matrices, the
above metric can sometimes be easier to compute than
d'( g, g:). For instance, choosing F = [/ to be an m X m
faithful unitary representation matrix of the compact group G,
one uses the properties

Ulgi'eg) = UgiHU(g)
and
(g llus = Vm
to observe that
DE (g1, g2) = ¥2[m — Re(tr (U(gi' 2 22)))]

is a metric, where Re(+) denotes the real part of the complex
number. This is because all of the g-dependence of the integrand
disappears and for compact groups we may always scale the
integration measure so that [odu = 1.

Several closed form examples of type 1 and type 2 metrics
are considered in the following section. Specifically, a modifi-
cation of the approach in this subsection to the case of SE(N)
(which is not compact) is presented as an example in Sec-
tion 3.2

3 Examples of These Metrics

3.1 Examples of Type 1 Metrics. In the case of rigid
body motion of a solid model, we may choose the weighting
function g(x) to have the physical meaning of the mass density
of the solid model. For instance the following metrics on rigid
body motion ¢an be generated using ellipses and ellipsoids with
uniform mass density.

Ut = U= where * denotes the complex conjugale transpose
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Example 1: Planar rigid motion of an ellipse:
We select p(x) = 1 over the interior of an ellipse and zero

otherwise.
Let g = (R, b) € SE(2). Then?

{d‘z’lig, e)) = j [(rux + raxs + by — x,)*
A
+ (rx + rax + b — )% ldodo.
Changing to polar coordinates, {x;, x2) = (ag cos 8, bp sin #),

and performing the integration in this parametrization over 0
=p=1and 0 = # = 2w, a simple calculation yields:

d¥ g, &) = -.n'lv'_r[azlil — ) + b1 — re)] + (B + BE) .
(7)
Example 2: A Nonrigid Example
This approach is not limited to rigid body motions. For in-
stance, if we chose to deform a 2-D solid model by uniformly
stretching, shearing, dilating, and rotating (but not translating ),
then gox = Ax where 4 is a general invertible 2 x 2 matrix
with positive determinant. Using the fact that

Xl = x-x = tr (xx7)
it is easy (o see that
(A — Ag)x|* = tr [(A; — Az)xxT(A; — A;)7]
and thus
d*(gy, g2) = Vir [(A; -

A J(A; — A2)7]

where

i : J. (I2 xy)

R i o ¥ )y,
p(x, y)dzdy *® \¥X ¥ it

"’ i =

Thus, no integration is required to compute this metric other
than an initial computation of the solid model inertial properties.
Mote that in the context of this example

d?(g), &) = d¥ e, g7 82)
unless g, is a rotation.

3.2 Examples of Metrics of Type 2. In this subsection
we consider examples of type 2 metrics on SE(2), SE(3),
and GL(2, B) 1 compare to the examples of the previous
subsection.

Example 1: SE(2)
In the case of SE{2), homogeneous transforms g and & can

be parametrized as
cosf —sind x
glx,y,8)=| sinf cosfd vy
0 0 1

and
cos e —sine £
hif,na)=| sine cose 7.
0 0 1
We define a parametrized function f( x, ¥, #) by identifying

"We only calculate dfe. g) because by left-invariance dig,, g;) =
die, gi'"g2)
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flx . 0= flglx, y. ),

which leads to an explicit form of the convolution product on
SE(2):

(f*fg) = (firfolx. 3. 8) = J;mifufr‘tllﬁ(#"g}d#{h}

- [ [ ] senore-oca+o-mns.

—{x— L)see + (y — nlea, ¥ — a)dldnde,
where ¢ = cos @ and s = sin . The fact that dedyd® is a
bi-invariant integration measure for SE{2) is well known in the
literature, e.g., [14].

We choose
F(g) = e (1 + cos 6),

because f*(g) = f{g) and since it has a single maximum at
{x,y,8) ={0,0,0}) it cannot be periodic. Furthermore, we know
from previous work ([5]) that the convolution of functions on
SE(2) that are products of Hermite functions and trigonometric

functions always vield functions of the same form.
For this choice,

I = J.Eft(.?fldﬁ‘: g}

= _rj_j e~ (] + cos 0) dxdyd#
=f e-*‘dxr e""dyJ‘ {1 + cos #)*dd

= 3=
and
(F*fNg) = 722 + cos §le M,

The resulting metric is:

diP(g, e) = ™3 — (2 + cos fle (%)
Example 2: SE(3)

Using concepts from Section 2.3 we can generate a modified
type 2 metric for SE(3). Note that all the faithful unitary matrix
representations of SE(3) are infinite dimensional [14]. This
means computing D' g, g.) is not practical. However, we
can define

F(g) = f(R, x) = e *™U(R)

where L7{ -} is a faithful unitary representation of SO(3).

These finite dimensional matrices are computed explicitly in
[15]. Observing that the bi-invariant volume element for SE(3)
is the product of the volume elements for R and $003), dulg)
= dxdR, direct substitution into the metric presented in Section
2.2 yields

where it is assumed that 4R is normalized so that [go.5,dR =
1, and the unitarity and homomorphism properties of [/(R) are
used. These properties completely circumvent explicit integra-
tion on SO(3). The only remaining integrals are easily com-
puted in closed form. Note that one may simply choose U{R)
= R.
Example 3: GL{Z, )

GL(2, R) is the group of real two-dimensional nonsingular

; : ko
matrices. It can be paramertrized as g = "L awhere k, [,

m, n € R, The left-invariant integration measure for this group
is [15]

1
d k., l,om, = e el
e (8¢ m, 1)) 3o (2)

Defining the parametrized function as
flelk, l,m, )= P O (2,

we can calculate the type 2 metric on GL(2, R). Note from the
discussion in Section 2.2 that dp{g,, g:) 15 left invariant, so

di(gi, g2) = di(g7' 281, g7 °8:) = dilgi' o g, ). (9)
Welet gz'og, =handh™' = (a Z) . Therefore, substituting
€

into (5), and performing the integration, we see that
2(d(h, e))*

=1 J‘rleig]dﬂlig} -2 fﬁf{-‘l ‘og)flg)duig)

at {—(be) + ad)x?

===12 z 2 ] FJE ] 2 2
2 l+a*+b'+ct+b'c* =2abed+d° +a'd
x2 2ridet(h™h)

2l R dett (A
Therefore, the type 2 metric in this case is:

1 det(g7'=21)
d'(gug) =x |- -0 . :
B TN T T g gl + de (g 08
This contrasts the type 1 metric for the same kind of deformation
presented as the second example in the previous subsection,

{10

4 Applications to Motion and Deformation Interpo-
lation

4.1 Path Generation Between Frames. [n this section,
two-dimensional rigid-body motion path generation is studied
to illustrate the applications of type 1 metrics. The problem can
be stated as follows:

Given an initial frame g, = ¢ (because our metric is SE(N)-
invariant, we ¢an select the identity homogeneous transforma-
tion matrix without loss of generality) and a goal frame g, =
&, how can we %er]lemte. intermediate frames g1, g2 -« < Baei

which minimize £ d(g;, g, )7 This problem can be addressed

=0
by recursively bisecting two frames in such a way that the total
distance is minimized. That is, given a homogeneous transfor-
mation g, find g2, such that die, g,,2) = di{g2, g} and die,

Di(e, £1) = Jz dam {U{RJ}'I R BN g e LR U*{Rull}f g~ Wi gy
L r
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g12) + d{gy2. g) is minimized. Repeat this process until the
desired number of frames is generated. Each of these steps is
a constrained optimization problem. We can use the method of
Lagrange Multipliers to solve it. The cost function is:

C =d*(e, g1n) + AMd?(e, @12) — d* (212, £)). (11)

Let
cosd —sinf x cose =—sina W
giz=| sind cosf x|,g=| sine cosa W],
0 0 i 0 i} 1

and let d( -, -) be the metric in Eq. (7). Setting all the partial
derivatives of C with respect to x,, X», #, A to zero, one finds
the following solution to the constrained optimization problem:

I
A=

..._
L= =1
Ii
|
b | =

(12)

M
1]

MlE e VIR

&
i

This solution shows that if we use linear interpolation on
both the rotational and translational parts of the rigid body
motion, then we can minimize the type 1 metric distance along
the motion. This method for generating interpolated frames is
related to other methods recently presented in the literature [8].
Figure 1 shows an example of motion path generation using
this method.

4.2 Equal Partitioning of Frame Paths. In many cases
in computer graphics and robotics, a frame path is often known,
which is parametrized by a single real number ¢ € [0, 1]. In
this section, we seek intermediate frames which evenly segment
the path. One intuitive method is 1o display frames at equal
increments of ¢. The result in this case is not satisfactory (see
Fig. 2). In this, and following examples, the parametrization of
rotation angle is 8(1) = (#/2 )" and the parametrization of the
translation is x; (1) = 10¢r and x: (1) = 5J5(10r), where J,(1) is
the zeroth order Bessel function.

We can apply our metrics to this problem. Given the left
invariant metrics (type | and type 2) which have been derived
in this paper, we may define arc length of curves in SE(N) in
the following natural way: '

r 1
Fig. 1 Two dimensional motion interpolation. The starting frame is the

identity and the goal frame is rotated by 160° and transiated by 10 units
in the x direction and T units in the y direction.

258 / Vol. 120, JUNE 1998
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| BN

L a [l i

Fig. 2 Two dimensional path interpolation. In this figure, only linear
interpolation in t is used. The resuit is not satisfactory.

N

| QT: '\AJ)«V‘
N

® Fr]

]

Fig. 3 Curve reparametrization method is used to get the intermediate
frames along the path in this figure. The distance metric is type 1 and
a* + b* = §, which means the rotation part does not have much weight.
The result is much better than previous ones.

N

18
Fig. 4 The difference between this figure and Fig. 3 is that a® + b® =

500 in this figure. We can see clearly that the weighting of the rotation
part affects the result of the imterpolation.
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Given a trajectory g(¢) € SE(N) and given a left-invariant
metric, d(+, +), the arc length of g{¢) for r € [0, 1] is

£(1)=lim 3, d(g(i),g(%)) —lim ¥ dL(i). (13)

s = g

This becomes

dl = dig(z), g(s + d)}
= d(g(1), glr) = g(r)dr)
= dle, ¢ + g ' g(1)de)
_ };(:}dr, Fig. 5 The initial circle with a radius of 4 length units
ar 4

Lii) = fﬂ(a}d@,

where f,(¢) is a function which depends on the path g{r). We
now consider the type 1 metric on SE(2) [Eq. {7)] as a specific
example. Let

_ [ R(t) x(r)
g{r} o ( “r 1 ) ¥

g

then, Fig. 6 5L(2, H) transformation of the initial circle with § = 0, ¢ = 1
and £ = 0, The type 1 distance of this transformation from the initial
e+ g7 lg(nd configuration is d'¥(e, g) = 10.758 length units® or & "(e, g} = 1.517
length units.
Rty —RioO™it By =iy
sy E— (e)°x(1) ( li?_} (t} ”
0 1 0 0 :

(I + RT(DR{Ddt R"{:}r‘cu}xz‘:)
0" 1 '

where I is the 2 ¥ 2 identity matrix. Let # denote the rotation = 4
angle of g, then the rotation part of ¢ + g Tt is

I+ RYOR(D

(I {J) _(cosﬁ' 5in£?)(—sinﬁ —cnﬂﬁ) & =
g4 Lo coe ¢ —sin ¢ . Fig. T SL(2, ®) transformation of the initial circle with & -« 0, f = 0
and £ = 0.5, The type 1 distance of this transformation from the initial
configuration is d'¥{e, g) = 7.0898 length units® or d** e, g} - 0.9999

P ( I "Edr) lemgth units,
Bdr 1 '
Let ¢ ] z
Ly = j Jﬂ : b A a) + 2y + Bo)do. (14)
f 1 —=fdty ‘cos @ —sin o 2
ngd'f 1 J - ( S e Similarly, we can get the corresponding formula for the type

' 2 metric [Eq. (93],

d"Ne, e + g7 g{r)dr)
where @ is an infinitesimal angle. Note cos & = 1 — (x%/2) (E8 E BTl

and sin & = 0 + o, therefore the rotational contribution o (¢ 2 - i3 4 gl
Ll =‘F.‘J3—(2+I—%{&‘!’J‘)(]—ul—r_j{dﬂj)

when the metric in Eqg. (7) is used is 4

%{cx:(] —cosa) + b1 — cos a)) = Ha® + BHIHY 4.

Because rotation does not change the length of a vector, the
translation part is [%(2)([3(r)*. Therefore, for the type | metric,”  Therefore, for the type 2 metric,
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Fig. 8 SL{2, R) transformation of the initial circle with # = — /6,
t = 1and £ = 0.5. The type 1 distance of this transformation from the
initial configuration is d'*'(e, g) = 14.0530 length units® or d'* (e, g) =
1.8821 length units.

&

(a) (b)

Fig. 8 (a)is the SL({2, R) rotating transformation of the initial circle Fig.
Ewith @ = — /8, t = 0, £ = 0. (b) is the 5L(2, R} shearing transformation
of the same circle with @ = 0, f = 0, £ = (L369184. The distance of these
two kinds of transformation from the initial circle are the same under
the type 1 metric.

(13)

Lit) == ‘r \/92{5’} " 3(xt(e) + (o)) e
a 2 4

It is interesting to note that arclength calculated in this
way can be viewed as a special case of the methods pre-
sented in [&, 7], where the choice of a particular solid model
{ for type 1), or a function on the group (for type 2) fixes
constants which are free in that formulation.

Given L(t), one can reparametrize any given path by
calculating the total path length, L(1), and increasing the

value of r until values r,, ..., iy are found which satisfy
Lit;) = (i/N)L(1). Figures 3—4 show the result of this
method using type 1 and type 2 metrics, respectively. One
observes that the result is much better than the original
parametrization. g

4.3 Applications to Volume Preserving Deformations.
Transformations of B by SL{2, R) (the group of real 2 x
2 matrices with unit determinant) are more general than
rigid body rotation. Any matrix in SL({2, R) can be parame-
trized by rotating (#), stretching (¢) and shearing (£) [14].
The composition of these three parameters is:

g g &
[1F] cos — cos — (1) 4 5 Sil'.l. el e—n’z
3 2 ZE 2 e
3’ =
N2 L ﬂ 2 H M2 " =2
—e"sin—- —sin—-e&"Et+cos—e&

2 2 2

Multiplying any element of SL(2, R) by a scale factor of the
form &' for 3 € R produces an element of GL™ (2, R), which
is the group of matrices considered in example 3 of Sec-
tions 3.1 and 3.2. Alternatively, one may view any element of
SL(2, B) as an element of GL*({2, R), and so the metrics
derived earlier can be used in this case.

Figures 6—8 show the transformation of a circle (Fig. 5)
with a radios of 4 units under the action of SL{2, B). Using
the metrics derived earlier, we can compare different kinds
of distortions and motions. Figure 9 shows a rotation and a
shear transformation which have the same distance from the
identity. Figure 10 shows a shear transformation with equal
distance from the identity as a stretch transformation.

Thus, the metrics presented in this paper are a way to
guantitatively compare very different kinds of distortions
of solid models. While we have limited the scope of the
current discussion to affine transformations, type 1 metrics
also apply to some other more general deformations of solid
models such as those presented in [3].

5 Conclusions

Two classes of metrics on transformation groups of rele-
vance in kinematics and CAD are presented. We focus on
explicit examples and properties of metrics on the group of
rigid body motions, SE(N). We also show how the same
metrics can be used for combinations of motion and defor-
mation of solid models. It is illustrated how metrics derived
in this paper can be used to generate interpolated sequences
of rigid and/or deformable motions of solid models.

Fig. 10 [a) is the SL{2, &) stretching transformation of the initial circle Fig. Swith @ = 0, t = 1, £ = 0. (b) is the SL(2, &)
shearing transformation of the same circle with 8 = 0, ¢ = 0, £ = —0.758721. The distance of these two transformations from

the initial circle are the same under the type 1 metric.
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