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Abstract

The most efficient methods for representing dynamics in the litera-
ture require serial computations which are proportional to the number
of manipulator degrees-of-freedom. Furthermore, these metheds are
aot fully parallelizable. For ‘hyper-redundant’ menipulators, which
may have tens, hundreds, or thousands of actuators, these formula-
tions preclude real time implementation. This paper therefore looks at
the mechanics of hyper-redundant manipulators from the point of view
of an approximation to an ‘infinite degree-of-freedom’ {or continnum)
problem. The dynamics for this infinite dimensional case is developed.
The approximate dynamics of actual hyper-redundant manipulators
is then reduced to a problem which is Q1) in the number of serial
computations, ie., the algorithm is O(n) in the total number of com-
putations, but these computations are completely parallelizable. This
is achieved by ‘projecting’ the dynamics of the continuum model onto
the actual robotic structure. The results are compared with a fumped
mass model of & particular hyper-redundant manipulator. It is found
that the continuum model can be used io generate joint torques to
within ter percent of values computed from the lumped mass model.

1 Introduction

Hyper-redundant manipulators have a very large number of actuat-
able degrees of freedom. Applications of ‘snakelike’ hyper-redundant
manipulators include inspection in highly constrained environments,
tentacle-like grasping of cbjects, and whole-arm manipulation. Com-
putationally attractive modeling of the system kinematics and dynam-
ics is necessary for hypet-redundant manipulators to be used effectively.
Recently, the author developed an efficiert framework for the kine-
matics and motion planning of hyper-redundant manipulators {Ch92}.
That approach is based on a continuous curve {or ‘continuum') ap-
proximation which captures the manipulator’s macroscopic geometric
features. The continuum approach (which can be applied to a wide
variety of manipulators) contrasts methods developed recently for par-
ticular hyper-redundant robot morphologies {Ko5582,ReL92)

This paper extends the continuum approach previously used for
hyper-redundant manipulator kinematics to include efficient formu-
lation of approximate hyper-redundant manipulator dynamics. The
most efficient methods for representing manipuiator dynamics in the
literature require serial computations which grow linearly with the
number of degrees of freedom [Ho80,Crai86). Furthermore, these meth-
ods are not fully parallelizable because serial iterations in force and

velocity are intrinsic to their nature. For hyper-redundant manipula-
tors, which may have tens, hundreds, or thousands of actuaters, this
is not acceptable. This paper therelore looks at the dynamies problem
for hyper-redundant manipulators from the point of view of an ap-
proximation to an ‘infinite degree.of-freedom’ problem The dynamic
equations for this infinite degree-of-freedom coatinuum madel are de-
veloped. The dynamics of the continuum model is then ‘projected’
onto actnal robotic structures. Application of this method to practical
computed torque controi schemes for hyper-redundant manipulators is
demonstrated and compared with a lumped mass model.

This paper is organized as follows : Section 2 reviews previous for-
mulations of robotic manipulator dynamics, basic principles of contin.
uum mechanics, and the kinematics of hyper-redundant manipulators
Section 3 uses the principles of continuum mechanics to approximately
represent the dynamics of hyper-redundant maniptlators. Section 3
also defines a procedure for ‘projecting’ the dynamics of the continuum
model onto actual robotic structures. This approach is demonstrated
with closed form solutions applied to a spectfic manipulator morphol-
ogy: the variable-geometry-truss manipulator. Section 4 illustrates
this new dynamics algorithm with a closed.form example Section 5
compares the new algorithm with 2 lumped-mass model

2 Background and Review

This section contains a review of a broad selection of material. Tlrat,
standard techniques for formulating the dynamics of robotic manip-
ulators are reviewed, Then we review some basic laws in continuum
mechanics - an area of mechanics not commonly used in robotics -
nally, the author's previous technigues for describing hyper-redundant
manipulator kinematics are reviewed

2.1 Manipulator Dynamics and Continuum Mechanics

The manipulator dynamics problem is generally formulated using tech-
niques {rom Lagrangian mechanics or iterative Newton-Euler formula-
tions. Lagrangian mechanics results in equations of motion of the form:

M{DG+C(FH+ G =T (1)

The evaluation of the left-hand side of the above dynamical equations
for a given trajectory in joint space, q{t) € RV, requires O(N*) com.
putations for a manipulator with N degrees of freedom. This is often
referred to as the ‘inverse dynamics’ problem [AsS86). Tt has been



shown that Lagrangian formulations can be improved so as to have
greater computational efficiency {Ho80] Nonetheless, the most com-
monly used method for formulating manipulator dynamics efficiently
is the jterative Newton-Euler technique [Crai86].

In the iterative Newton-Euler method, serial iterations in velocity
are propagated forward from the manipulator base to the end-effector,
and forces are propagated backwards from the end-effector to the base.
The equations associated with this procedure ¢an be found in any one
of a number of robotics texts, e, [Craig6]

Computational aspects of these, and other, methods of formulat-
ing manipulator dynamics can be summarized by simply stating that
the best methods require O(N} serial computations As one might
expect, this can become a heavy computational burden when consid-
ering hyper.redundant manipulators, where the number of degrees-of-
freedom may be on the order of dozens or even hundreds. For this
reason, it is worth investigating ‘continuum’ approximations to hyper-
redundant manipulator dynamics,

There are three general laws of continuum mechanics whick will
be applied to the dynamics of hyper-redundant manipulators in this
paper. ‘These are the: (1) mass balance, (2) momentum balance, and
(3) angular momentum balance These are written in control volume
form respectively as:

d
mjvpdw«/;pa 7dS = 0 @)
o Ld
fszds + /;pde = Ezfv,mdv (3)
/s(fx £dS + /v(i‘ X ph)dV = %/v{i X pi)dV. (4)

The subscripts § and V denote integrals over surface and volume of
the region under consideration p is the mass density per unit vol-
ume. ¥ is the velocity of material particles. 7 is the normal to the
control valume. {is the applied surface force (called a ‘traction’} £

is the position vector to material points. b is the body force acting on
the volume (e g, gravity, magnetism, etc). Note that (2)-(4) are each
postulated separately, unlike for a system of particles where conserva-
tion of angular momentum is a direct result of conservation of linear
momentum {LaRK78,Mai69].

The next subsection reviews hyper-redundant manipulator kine-
matics, which forms the foundation for 2 continuum model of hyper-
redundant manipulator dynamics.

2.2 KXinematics of Backbone Curves

It is assumed here that regardless of mecharical implementation, the
importani macroscopic features of a hyper-redundant robotic manip-
ulator can be captured by a backbone curve and associated set of
reference frames whick evolve along the curve A backbone curve
parametrization and set of reference {rames are collectively referred
to as the backbone reference set. In this formulation, inverse kine-
matics and trajectory plaaning tasks are reduced to the determina-
tion of the proper time varying behavior of the backbone reference
set {ChBI0,Ch92]. Note that depending upon the actual mechanical
implementation of the robot, the associated backbone curve may be
ineztensible {fixed length} ar extensible (variable length).

A continuous backbone curve inverse kinematic solution (which
may be generated by a ‘modal approach’ [ChB8J), ‘optimal approach’
{ChB9?2], or any other method) can be used to directly determine the
actuator displacements of a continuous morphology robot-e.g., such
as one constructed from pnewmatic actuator bundles. For discretely
segmented modular morphologies the continuous curve solution can be
used, via a ‘fitting’ procedure, [ChB91,Ch92), to compute the actua-
tor displacements which cause the manipulator to assume the nominal
shape of the backbone curve model In other words, the actual manip-
ulator configuration is ‘algorithmically linked’ to the backbene curve
model.

Tachniques for the physically meaningful parametrization of back-

bone reference sets are now reviewed. For the sake of brevity, only
pianar exampled are used to illustrate these concepts. For more gen-
eral formulations consult [Ch92].

The position of points or a backbone curve can be parametrized in
the form:

F{a,t) = fo'{l + e{o, 2)}i(o, 1 )da, (5)

where s € [0,1] is a parameter measuring distance along the backbone
curve at time ¢, 3 need not be the classical arc length, which is de-
noted below as L. E(s,t) is a position vector from the base of the
backbone curve to the point on the backbone curve with a particular
value of the curve parameter s. #i{s,1) is the unit tangent vector to the
curve at 8. (3,1} Is the local extensibility of the manipulator. «(s,1)
physically expresses how the backbone curve, which abstractly repre-
sents important geometric aspects of the real robot, locally expands or
contracts refative to a given reference state, or ‘*home’ configuration,
of the robot. ¢(s,t) > 0 indicates local extension, while €(s,1} < 0
implies local contraction. One can also interpret the extensibility as a
measure of how the parameter s differs from dimensionless arclength

by computing arc length in the reguiar way [MilP77}, which for the
above parametrization is:

L(s,1) = /0’[1 + €0, t)}dor (6)

Using localization arguments, it is clear that the only time s is equal
to L is when e(s,t} = 0. For compactness of notation, the following is
defined: I(s,} = 6L/0s = 1 + ¢(s,1).

The parametrization of Equation (5) has the following interpreta-
tion. The backbone curve is “grown” from the base by propagating
the curve forward along the tangent vector, which is varying its direc-
tion according to #{s,t) and varying its magaitude (or ‘growth-rate’)
according to I{s,1).

In the planar case, the locus of backbone curve points can be defined
by £(s,t} = [zl(art)1 zﬂ("’rt}]T: where

z1(5,1) = fo " i(a,1) sin 8(c, t)do 0

za(s,t) = j: (e, t) cos #{a,t)do. (8)

(s, 1} is the clockwise measured angle which the tangent to the curve
at point 3 makes with the zj-axis at time ¢ Figure 1 illustrates the
physical meaning of I{s,1) and 8{s,t}.

3 Continuum Formulation of Hyper-Redundant
Manipulator Dynamics

The general equations of continuum mechanics and the kirematic rep-
resentation of hyper-redundant manipulator backbone curves reviewed
in Section 2 sre used here to formulate the approximate dynamics
of hyper-redundant manipulators in efficient form. Fach conservation
law is addressed separately in the following subsections. Subsection 3.1
addresses the mass balance, Subsection 3.2 addresses the momentum
balance, and Subsection 3.3 addresses the angular momentum balance.
Subsection 3.4 introduces methods for linking continuum mechanics to
actual hyper-redundant manipulator dynamics, ie., the dynamics of
the continuum model is *projected’ onto the actual robotic structure.
Far the case of slender ‘snakelike’ hyper-redundant manipulators, the
continuum under investigation is the backbone curve.

3.1 Inertial Properties of Backbone Beference Sets: Con-
servation of Mass

Approximate inertial properties can be incorporated into this madel
very simply. Because the description of the backbone reference set is
cast within a Lagrangian framework, manipulator inertial properties



can be approximated using models similar to solid mechanics. We
simply define the mass density per unit curve parameter as p{s}. In
practical terms, p(s) approximately captures the inertial properties of
slender ‘snakelike’ hyper-redundant manipulators. Since no transport
of mass occurs within the manipulater, the flux terms in Eguation
{2) are zero. However, if the robot is actuated with hydraulics, this
assumption may no longer be valid because significant amounts of fluid
may flow along the manipulator

Under the assumptions that the manipulator has constant mass and
no mass transport occurs, the mass density per unit curve parameter,
ps), will always reflect the manipulator’s macroscapic inertial proper-
ties no matter how it bends and extends. The key to understanding
why this is the case is that in general L(s,t) # 5. Dencte the mass of a
manipulator from its hase to a point on the manipulator at arc length
L to be M{L) = M(L(s,t)}. The mass density per unit arc length is

then; .
&M 5M§‘_9,.... sy pls) 3
{s,8) ~ 14 els,1) ©)

BL ~ @s 6L

Thus we see that if a manipulator contracts, and I(s,?) decreases, the
mass density per unit arc length will increase. Likewise, when the ma-~
nipulator stretches, and I(s,1) increases, the mass deasity per unit arc
length will decrease. However, the mass density per unit curve param-
eter s will rerain constant with respect to time, and so conservation
of mass is implicitly incorporated in this model.

3.2 Momentum Balance

The momentum equation provided by continuum mechanics takes on
a particular form when combined with the backbone model presented
earlier. Namely:

d [, 9% - I
E’Ef, p(s)%i-(s,t)ds e F(a,t)+./n](t+pb}ds (10)

The integrals over volume and surface in (3} both degenerate to one-
dimensional integrals over the curve parameter. This is because surface
forees and body forces are both represented as forces per unit of the
backbone curve parameter. Egquation {10) corresponds to the free-
body diagram in Figure 2. This diagram results from an imaginary
cut made normal to the backbone curve at the point at which s = o.
The vector F(o,t) is the internal force transmitted to the distal end
of the manipulator (s € {z,11) by the lower end of the manipulator
{selo,1])

3.3  Angular Momentum Balance

The angular momentum equation provided by continuum mechanics
{4) also has a special form for the case of hyper-redundant manipulator
backbone curves:

—%jj F(s, 1) % p{s)%?{s,t}ds = (1

i o
Mo, )+ o, t) x Flo,1) +/ F(s,t) % {{ + ph)ds
Again referring to the imaginary cut made normal to the backbone
curve at the point at which s = &, the vector M(o,1} is the internal
moment transmitted to the distal end of the manipulator
Equations {10-11) furnish all the tools needed to compute hyper-
redundant manipulator dynamics.

3.4 Projecting Dynamics onto Robotic Structures

In order to make use of the continuum model, there must be a way
to transfer the dynamical information to the actual physical structure
under consideration. In broad terms, projecting the dynamics of the
continuum model onto the actual manipulator is achieved by again
making an imaginary ‘cut’ in the continuum model Only now, the

forces and moments at the cut will be matched with the actual hyper-
redundant structure at corresponding locations along the length of the
real manipulator. Inertial forces, body forces, and surface tractions
accumulated from the distal end of the manipulator to the cross-section
under investigation will be approximated using the backbone curve
model. The resulting reaction forces are calculated in the physical
structure at the imaginary cutling plane. For example, the rules of
structural analysis are used when considering the forces on a variable
geometry truss. For manipulators with a macroscopic serial structure,
the Imaginary cutting planes are located at the interface between links
or modules. Therefore,

d 1 oF
EE“LP(S

1 e, -
(s, 8)ds - f_ (T4 pb)ds = F (12)

g'/. Fs,t) % p 3) {s )ds (13)

1
_ﬂ #(s,8) % (T4 ph)ds — £(ifn,t) x Fs = M;

Li]
where % and M; are the continuum approximation of the force and
moment exerted by the i*" module (or link} on the ¢ + 1° module of a
kyper-redundant manipulator.

Each of the above integrals can be evaluated separately for i €
0,..,n — 1], and so the dynamics problem can be completely paral-
lelized. The key to this approach is the continuum medel, without
which serial computations would have to be performed and a Newten.
Euler style algorithm would resuit. With the continuum model, closed
form solutions or quadrature approximations to the integrals can be
computed in many cases, and 50 there is no need for iteration.

Assuming that the inertial forces, body forces, and surface trac-
tions computed {rom the continuum model are represeniative of the
actual manipulator, the reactions present in the manipulator struc.
ture at the i** module are equated to the above quantities It is then
simply a matter of matching forces in the actual structure to those
generated from the continuum model. For manipulator modules like
those shown in Figure 3(a), the forces are matched as shown in Figure
3(b). The resulting forces in the members are found by inverting the
matrix equations : .

Aifi =T {14)

for i € [1,...,n}, where

N Fasq1 Fyign
o )
wf, Alifn 1), B] (6, A0, 0, Bisd [8, (8, 0), Biga)

FAS. f“
fl = A;.“ §i = -
Fryiza &3 M;

to solve for I, which is the force in the 7' member of the truss. For
this particular example, Fy; are the generalized joint torques, ie., rj.

in Equation (14}, the follcwmg notation is used: [&,5,8 = @ {F x
£). Mote that #(i/n,t) = ¥[- cusﬂ(1/n £}, sin 8(i/n,1})%, where w is
the width of the truss, The vectors Z; are the unit vectors along the
truss elements written in base frame coordinates These are written
explicitly as :

~A(ELY - £, 1) ¢ £05L.0 4 70
zat(t) |E (1 l t)+$( t)mx(' t}—n(' t}§ (15)
oy AL - s 0 4 5 g - ALY
zai-inl(t)—;]_ﬁ(-':vlnt)-i-i'{ () — (b 1y A, )| o
. —a(igh o - 53,0 + 2050 - 70
Fripa(t) = B (x;l’t),},f( t)m:zz(' Ay AL I an

The next section illustrates the formulation of this section with a
tlosed form exzmple.



4 A Closed-Form Example

In this section, the theoretical developments presented previously are
applied to a practical situation ir which hyper-redundart manipulators
could be used. It is assumed that the problem is planar, and that the
manipulator is constrained to behave as if it has two degrees-of-freedom
by the algorithmic restrictions :

(5,8} = a3 ()${s) (5,1 = ax{t)9 (s). (18}
The notation ' denotes differentiation with respect to 5. ¢(s) is a
strictly increasing function (¢'(s) > 0 for all s € [0,1]) with $(0) =
8 and ¢{1} = 1. The ‘forward kinematics’ for the backbone curve

representing this class of hyper-redundant manipulator configurations
is:

Tee = {1, 1) = /: ageﬁr{s)sin(a!rﬁ(s)]d.s = z—j(l ~cosg}  {19)

e =m0 = [ erd'(s) costmnglsllds = Lainay,  (20)
[¢] iy

with the position to points along the backbone given by:
a
z1{8,t) = E"I [1 ~ cosar1¢{s)) (21)
1

za{s, 1) = -E-j-sina;q&{s) (22)

The inverse kinematics (solution for &y and 2 as a function of end-
effector position) s

ar = 2Atan2(ee, Yoe ) (23)
_ M Yee
2= S (24)

The functions a;(i} and az{t)} are thus calculated using (23-24) to
cause the manipulator’s end-effector to traverse a desired trajectory
(Zeeslee). The manipulator inverse dynamics becomes a function of
the two variables 2 and a4z and their time derivatives when algorith-
mic constraints such as {I18) are imposed. For instance, if we take
@(s) = s and p(s} = po :

. 1
By Binajs
2 ay [5 + 1) ]a=“/“

d [ 0% d ]
= [ P grlotids = pug | ] (25)
a a1 a=ifn
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B z
I[_ 2(5,) X pls) 525, )ds = (26)
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If we assume that the hyper-redundant manipulator is being used in
an industrial process where objects such as tools, metal components,
ete., must be picked up from one lecation and placed in another, then
gravity forces must be considered. In this case, it will be assumed that
there are no exteraal surface tractions acting on the manipulator. That
is, the only external forces acting on the hyper-redundant manipulator
are body forees (in particular gravity}. The force and moment vectors
acting on the distal n — 1 modules of a hyper-redundant manipulator
due to gravity will be of the form :

[ pits = (1~ 23907 (27)

1 . 1 1
[ ey xomn (- 20 g Ve

@y ifn 3] a1 ifn

(28)

n

where 7 is the vector of gravitational acceleration, and Equations {21-
22) have been used to yield a closed form solution for Z(s,t). The total
forces {inertial and body) which must be compensated by forces in the
members of the i** bay of the truss are

- L d ! 8z
F= —_A pids + Ef/i p{s)—a%(s,t)ds (29)

Mi=- /: #{(s,t) % (p)ds + %f; (5,8} X p(s)%(s,t)ds (30}

~E(ifn,t) x Fi
where each of the above integrals has been computed in closed form in
(25-28), and #(i/n,1) is given by (21-22) for 5 = i/n. F;: and M; are
then used in (14) to compute forces in the truss.

It is interesting to note that this method can be viewed as the op-
posite of lumped mass approximations That is, instead of component
masses being lumped at discrete positions within a manipulator, the
mass is ‘smeared’ in a continuous fashion. As shown here, this provides
the opportunity to generate efficient closed form approximate solutions
to complicated problems.

5 Continuum vs. Standard Dynamics Formu-
lations

By restricting a hyper-redundant manipulator to behave as if it pos-
sesses fewer degrees of freedom than it actually does while performing
a specific task, the continuum formulation of hyper-redundant ma.
nipulator dyramics has been shown in this paper to generate simple
closed.form solutions to the inverse dynamics problem. These algorith.
mic restrictions oa a hyper-redundant manipulator’s degrees of {reedom
are wiitten symbotically in the form:

§ = f(&) {31)
where § € RV is the vector of generalized joint displacements, and
@€ BM is the vector of weightings (or ‘modal participation factors')
which specify the temporal behavior of the backbone reference set. The
function f"() contains information on the shape functions (or ‘modes*)
chagen, kinematics of the particuiar hyper-redundant manipulator un-
der consideration, and the fitting procedure used. Because M < N,
the fitting procedure (which algorithmically links the hyper-redundant
manipulator to the backbone reference set) effectively restricts the be-
havior of the manipulator to fewer degrees of freedom than it physically
possesses.

In order to formulate the Lagrangian dynamics problem for a hyper-
redundant manipulator which is algorithmically constrained by {31),
the following steps must be followed Differentiating (31) with respect
to time, one finds : ) .

7= J{a)a (32)
where J{&) is » Jacobian which relates rates of change of the modal
participation factors, &, to the generalized joint rates. Differentiating
again, . .

§= Y@+ Ka)a (30

Thus, given the mapping f{.} (which is enforced via algorithmically
linking the backbone curve and manipulator geometries), and the ma-
nipujator’s dynamical equations, (in the {orm of Equation (1)), we can
find the resulting inverse dynamics:

M(fl@)ia) + Ha)a + C(fla) J(@a) + Giiay=7  (34)

This is what the classical Lagrangian {formulation of manipulator dy-
namics looks like for this case. The iterative Newton-Buler formalation
for a hyper-redundant manipulator constrained to a backbone curve
can be formulated similarly. Thus, there is a baseline for comparison
between the continuum formulation and known models for computing
inverse dynamics

The following subsections formulate (34) for a lumped mass model
of the variable geometry truss discussed earlier in this paper. The



forces computed in the truss actuators are then compared to those
generated in the continuum model

5.1 Variable Geometry Truss Dynamics

Consider the truss shown in Figure 3. It is assumed that the mass of
this truss is concentrated, or “lumped,” at each vertex of the truss.
These masses are denoted m;;, where i € [1,..,»} denotes the module,
and j € [1,2] denotes the left or right side of the truss.

The equations of motion are formulated here using Lagrange’s equa-
tions. The kinetic and potential energies are respoctively:

1 i
T=52.3 mX; X; (35)
and

2 =
V:ﬁzzmu—.; (36)

where }'('; is the position vector to the mass m;; with respect to the
base {rame of the manipulater. The corresponding equations of motion
are:

d /8L aL
% (Ge) -3z = P 47

where [ = T'— V', F\, is the force in the k** actuatable member of the

trusg, and Ly is the length of the kth actuatable truss member.
These equations are written explicitly as :

2

I
3 =

g (% - 7) 25 L p (38)
1} bl J ack - \\;‘

1 im=1

where the chain rule can be used to generate:

PO NS

P s ¥ e £ 1

1= Lr bt 2 2 g (39)
The inverse kinematics problem for each truss module is then used

to generate each leg length as a function of a; and as [Ch92]. However,

the vectors X} and their derivatives need to be computed via the truss

forward kinematics. This is outlined in the following subsection.

5.2 Variable Geometry Truss Forward Kinematics

As exemplified earller in this paper (and dealt with in detail in the au-
thor's previous work {Ch92}) the inverse kinematics of variable geom-
etry truss manipulators is easily solved. This, coupled with previously
developed kinematic and motion planning algorithms [Ch02,ChBaG],
allows for fast parallelizable solution of hyper-redundant manipulator
inverse kinematics.

However, in arder to compare the approach to hyper-redundant
manipulator dyramics introduced in this paper with standard tech-
niques, we also need to compute the forward kirematics of the variable
geometry truss in order to have explicit representations of the vectors
X}

As has been documented in numerous werks, e g. [Ch92], the for-
ward kinematics problem for parallel manipulators is generally much
more difficult than the inverse kinematics problem . This is the reverse
of the serial manipulator case in whick the inverse kinematics is more
complicated than the forward kinematics. For manipulators suck as
the variable geometry truss, which is a cascade of parallel modules,
the complexity of the forward kinematics problem is a hybrid of the
patallel and serial cases.

Figure 3(a) shows one module of a variable geometry truss ma-
nipulator. The forward kinematics problem for each module is the
determination of the function H;_l{ﬂsi,ﬁai-}.] y Laign), which is the ho.
mogeneous transform whick maps the truss leg lengths to the position
and orientation of the end-effector relative to the base frame. This
can be calculated using trigonometric and/or geometric constructions.
Here, a simple purely graphical methed will be used

Consider the legs with lengths £; for 7 € [3{,3{ 4 1,3i + 2] Our

goal is to find the positions of *vertex 1’ and ‘vertex 2’ as a function
of leg lengths. The relative position of these vertices with respect
to a frame fixed to the left corner of the base of the i module are
denoted (71, ¥1,) and (Za,, y2,:) respectively. Finding the position and
orientation of the top plate with respect to tha hottom follow trivially
once we have this information. For a more eomplete explaination, see
{ChH93{ In that paper, the kinematics and design issues pertaining
to a variable geometry truss manipulator with binary, or ‘on-off,
actuation are examined.

With this kinematic information, the Lagrangian model of manip-

ulator dynamics is completed by simply taking the appropriale partial
derivatives.

5.3 Numerical Results

The continuum model was run together with a lumped mass model
governed by Lagrange's equations. In both models, the acceleration
of gravity and mass of the manipulator were set to § = [0, ~1}F and
M =1 respectively. It was further assumed that the mass distribution
was homogeneous in both models, so in the continuem case, p = 1, and
in the lumped parameter case, m;; = ;; A test end-effector trajectory
of the form:

11
eelt) = 5 + 7 COs(21/1000);  pee(?) = % + % sin(2r1/1000)

was used for T' € [0,1000]. This is a cyclic trajectory around a cir-
cle. Equations (23-24) convert this information into the appropriate
participation factors, which in turn specify the manipulator shape.

Results are shown in Figures 4 and 5. In Figure 4, plots of the
magnitudes of the force vectors generated by the two dynamic models
are compared over the trajectory. The measure used is:

1ga myb_ 1=
E,=§;(m ) = 5l

where £y = [Figy oo Mg, 7 In this plot a truss with ten bays was
used, i.e., n = 10. In Figure 8§, the convergence of the two models with
increasing degrees of freedom is iliustrated. Here the plotted quantity

is
oo Jo APy~ Flar

| Rldr
where the superscripts [ and ¢ denote the lumped mass and continuum
models respectively. ¢ is the normalized difference between forces gen-
erated by the continuum and lumped mass models integrated over the
trajectory.

Note the convergence of the two models between n = 2 and n =35,
Between n = 15 and n =35, the difference between the models is less
than ten percent. This is extremely encouraging, because a lumped
mass model is the worst case scenario to which the continuum approach
can be compared. It is believed that numerical round off errors in the
lumped mass model account for the divergence which begins to oecur
at very large numbers of degrees of freedom

6 Conclusions

This paper has formulated the dynamics of hyper-redundant manipu-
lators as a continuum mechanics problem  While the modeling tech-
nique is an approximation, the benefit of having expressions which can
be evaluated by a highly parallel computer without any time depen-
dence on the actual number of degrees of freedom is a pewerful result
The method was demonstrated with an exampile of 2 hyper-redundant
manipulator doing pick and place tasks in environments with gravity.
The accuracy of the method was verified by comparison with a La-
grangian formulation of lumped mass manipulator dynamics. It was
found that the actuator forces generated in these models differed from
each other by less than ten percent for truss structures with between
15 and 35 bays, or 45 and 105 actuated degrees of freedom.
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