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Abstract

In this paper, methods for generaling closed-form erpressions
for locally volume preserving deformations of general volumes in
three dimensional space are introduced. These methods potentially
have applications to computer eided geometric design, the mechan-
ics of materials, and realistic real-time simulation and animation of
physical processes. Tn mechanics, volume preserving deformations
are intimately related to the conservation of mass. The importance
of this fact manifests itself in design, and in the realistic simu-
lation of many physical systems. Whereas volume preservation is
generally written as o constraint on equalions of motion in conlin-
uwum mechanics, this paper develops a set of physically meaningful
basie deformations which are intrinsically volume preserving By
repeated application of these primitives, an infinile variety of de-
Jormations cen be written in closed form.

1 Introduction

This paper develops and ennumerates deformations of objects which
locally preserve volume Given a three dimensional object de-
scribed in Cartesian coordinates ¥ = [z, 73, 2a)7, a deformation
maps these coordinates into a new set of coordinates: X = X(z).
A volume preserving deformation is one for which the volume of
the object is kept constant after the deformation. This is written
mathematically as:

L dzydzydzy = jx’ dX dX3d X, = L deU(VX)da dzydzy. (1)

where R i i
ax, 84Xz ax
Gz dra  Ozs
v o ax; 3X; B8X;
VfX - az 8xra Ors 4 (2)
Xy 8Xy 84X,
Dz [ZE dxy

The above quantity is called the deformation gradient. Throughout
this paper the subscript Z is often dropped, and the gradient is
written simply as V when there is no ambiguity.

A locally volume preserving deformation is one for which
det(VaX) = 1. (3)

A locally volume preserving deformation is also globally volume
preserving, ie, Equation (1) is satisfled antomatically by Equa-
tion (3}, but the converse is nol generally true, Turthermore,
composilions of locally volume preserving delormations are also
locally volume preserving. That is, given two locally volume pre-
serving deformations: F(F) and G(#), the compositions FG(E)
and G(F(F)) are also locally volume preserving. This is a direct
result of the chain rule, eg.:

V= (G(3)) = VF(5)V:G(2), (4)

(where = G(£)) and the fact that the determinant of a product
of matrices is the product of the determinants, so

det{VeF(G(2))) = det(VaF()det{VG(£) =1 1= 1. (5)

Locally volume preserving deformations have significance in
solid mechanics, biomechanics, and solid geometric modeling be-
cause of their intimate relationship to the conservation of mass of
incompressible materials, For instance, in the analysis and simu-
lation of the large deflections of many nonlinear elastic and plastic
materials, Kquation (3} is incorporated as a constraint. Whether
a solution is sought using analytical techniques or numerical tech-
niques such as finite element methods, this constraint often arises
It is also the case that when one seeks to simulate the physical
world in a realistic way, such constraints must be accounted for.
Having a method of parametrizing classes of constant volume de-
formations could provide designers in mass-sensitive fields, such as
aerospace engineering, a valuable tool for enumerating changes to
current designs

Many works in the computer graphics, mechanics, and geomet-
ric design literature have dealt with the deformation of solid mod-
els. In [Ba81), angle-preserving deformations of superquadric sur.
faces where used to generate a wide variety of forms. Approximate
methods for enforcing volume preservation where also examined.
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{Ba84] extended these ideas to include generai local and global
deformations of arbitrary volumes [SeP86] developed free-form
deformations of solid models based on trivariate Bernstein polyno-
mials. [Sel'86] loaked at the particular case of volume preserving
deformations within this framework It was found that volume
preserving deformations based on cubic polynomials are limited to
simple shear and scaling, and compositions of the above. ['ree-form
deformations are also considered in [Gu090]. [P1B88] developed
methods for representing the deformations of general solids based
on continuum mechanics. In this approach, as is commonly done in
solid mechanies, volume preservation is represented as a constraint
which is imposed by using Lagrange multipliers [LaRK78,Mal9].

Other works have considered the importance of volume preser-
vation when simulating and analyzing biological systems. However,
no general framework for describing volume preserving deforma-
tions has been developed. In IMi88], the locomotion of snakes and
worms is simulated. This includes simultaneous longitudinal con-
traction and radial dilation so as to preserve volume. In [ChHP8Y]
deformable figures are defined and made to look as real as possi-
ble (including volumetric constraints on contracting muscle). In
[ArHDMRS2], locally volume preserving deformations with con-
stant deformation gradients were used to mode! cardiac mechan-
ics, In [KieS85], the importance of local volume preservation in
‘muscutar-hydrostats’ is stated, but not analyzed.

Whereas volume preservation is generally written as a con-
straint on equations of motion in continuum mechanics, this paper
develops a set of physically meaningful basic deformations which
are locally volume preserving. By repeated application of these
primitives, an infinite variety of deformations can be written in
closed form without the need for constraint equations. This opens
up the possibility for more realistic real time simulation and ani-
mation of the physical world.

In Section 2, physically intuitive ‘Cartesian’ deformations are
defined and illustrated. In Section 3, two types of bending defor-
mations based on planar offset curves are defined and used. Section
4 shows examples of how combinations of these closed form prim-
itives can be used to generate more complicated locally volume
preserving deformations.

2  Cartesian Deformations

In this section several locally volume preserving deformations which
preserve parallelism between planar sections are examined. These
are referred to here as Cartesian deformations since they are es-
sentially motions of Hat planar sections

In Subsection 2.1, pure shear deformations are examined. In
Subsection 2.2, pure ‘twist’ deformations are examined. In Sub-
section 2.3, stretching and contraction are formulated.

2.1 Simple Shear

A simple shear deformation is one for which planar segments slide
over each other without any rotation or change of their normal
(denoted by the vector 7). This deformation is expressed as :

§(5) = &+ d(7 A)(z i) (6)

where { is any vector defined such that 7 Fe0and f 0=t I
one imagines that R? is composed of an infinite number of parallel
planes, each with normal #, this deformation slides each of these
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planes a distance d in the { direction. Since i lies in the plane, the
effect is that each plane is translated within itself.
As an example, consider the shear deformation:

. zy + d(z2)
G@®=| = | )

T3

This corresponds to Equation (6) for the choice, fi = & and i=a.
By taking the partial derivatives g—f‘f for ¢ = 1,2,3, and comput-
ing the triple product of these vectors (which is the determinant
of the deformation gradient), one finds it equal to unity, no matter
what choice for d is used. Figure 1 shows an example of a square
before and after a shear deformation. In this case, d(z2) = =3.

As in all igures throughout this paper, the undeformed object is
the square defined by the Cartesian product: [—1,1]x[-1,1]. Each
of the deformed squares is viewed within a large square: [—2,2] x
[—2,2].

A useful extension of simple shear is ‘Aber’ shear. That is,
instead of a whole plane translating, lines are translated indepen-
dently of other paratlel lines. An example is:

. Ty b d(mg, 11’23)

T3

An easy way to think of this deformation is that it is like the motion
of uncooked spaghetti being removed from its box. Each strand
can translate while remaining parallel to other strands.

2.2 Twisting

This deformation is similar to the simple shear in that three di-
mensional space is viewed as an infinite cascade of parallel plane
sections In this deformation, each plane is rotated about an axis
which intersects the origin and is parallel to the normal. The plane
is thus mapped back into itself. This is written as:

T(#) = (# - 7)f + ROT[A, o(& A){(E ~ (F-7)E). (%)

The notation ROT(f, ] represents the rotation matrix which ro-
{ates vectors about the unit vector i by an angle o in accordance
with the right hand rule. In this case o is a function of the dis-
tance along the axis of rotation, so the resulting deformation is a
twist. One can verify by direct calculation that this is also a locally
volume preserving deformation.

In this case, the axis of rotation is the same for each planar
segment. It is an axis with direction 7 which passes through the
origin of the coordinate system in which £ is defined. Composi-
tions of pure twist and shear along the same axis allows arbitrary
translation and rotation of parallel planar segments.

2.3 Elongation and Contraction

This subsection again formulates deformations in which three di-
mensional space is viewed as an infinite cascade of parallel planes.
Only now, each of these planes is translated along the normal direc-
tion instead of orthogonal to it. Furthermore, 23 material elements
which occupy these planes are stretched or contracted in the nor-
mal direction, inverse operations must be performed in each of the
planes. That is, to locally conserve volume, an element which is



stretched in one direction must contract in an orthogenal direction.
A functional relationship which satisfies this eriteria is given by:

—

E(£) = f(z-7)fi+ (10)

1
TIEH
where f(-), £(),g() > 0,and {7 =0, where { -{ = 1. Otherwise,
the functions f(), g(-), and the vector ¢ are arbitrary. Note that
a ! represents differentiation of & function of a single variable.

Two special cases of the above are when g{ ) = \/F(}, and
g(') = 1. In the first case, Equation (10} reduces to:

(£ n)n

Fy(2) = f(& R + i (11
Vi@ -7)
As an illustration of the second case, when # = & and { = &, we
get:
(It)
(@)= | 785 (12)
T3
An example of this is shown in Figure 2, where f(z1) = iz} +2z;.

3 Deformations Based on Offset Curves

This section develops a class of deformations based on the geom-
etry of offset curves. Section 3.1 reviews basic properties of offset
curves. Section 3.2 introduces pure bending deformations based
on offset curves. Section 3.3 introduces the concept of oflsel shear-
bending deformations.

3.1 Some Properties of Planar Offset-Curves

The offset of a planar ‘backbone’ {or generator) curve is a curve
which is parallel to the backbone. This is intimately related to
the envelope of a circle whose center is moving along a backbene
curve. Applications of offset curves include planning the trajecto-
ries of numerically controlled milling machines [T1184,PL92}, and
the locomotion of snake-like robots [ChB91}. Properties of offset
curves have been studied in {FaN90a,FaN90b] In this subsection,
some properties of offset curves are reviewed These properties
will be used in the following subsections to define locally volume
preserving ‘offset deformations.’

In the plane, an offset curve, d(L), of a given backbone curve,
&L}, is defined as:

(L) = &L) + rofi{L)

where 7i( L} is the unit normal to the curve &L}, and rp is a constant
called the offset distance. For convenience, L iz taken to be the
arclength of the curve &(-).

The set of offsel curves of a given curve can be thought of as
curves which are all parallel to each other with different values of
5. The notion that two curves are parallel is a reflective property.
That is, if ‘A’ is parallel to ‘B, then ‘B’ is parallel to ‘A’ To
see that offsel curves are in fact parallel to each other iz straight
forward.

Suppose we take the offset of an offset curve as follows:

ALY = G(L) + rm(L)

(13)

(14)
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where ry is the offset distance of the second offset curve with respect
to the first, and (L) is the unit normal to d(L) By taking the
derivative of (13) with respect to L and using the Frenet-Serret
equations [MilP77] for the planar case, one finds that

dé

T (1 —re)t

(15)
where #{L} is the unit tangent vector to E(L) This means that
the unit tangent to (L), which is 5/|4%} js the same as the unit
tangent to & It follows trivially that they then have the same unit
normal. Thus, M(L} = fi(L), and so,

HLY = &L} + (ro +r)R(L). (16)

That is, the operation of taking an offset of an offset is the same
as taking the offset of the original curve with offset distances equal
to the sum of the individual offset distances. Likewise, some other
arithmetic operations are easily performed on a set of offset curves.

Two interesting properties of sets of planar offset curves are
presented in [FaN90a), and are restated as follows. First, the area
between two offset curves of equal but opposite distance from a
giver backbone curve is invariant under changes in curvature of
the original curve. Second, the sum of the lengths of two such
offset curves is invariant under bending of the backbone curve.

The first of the above mentioned properties is relevant to the
current discussion in thal our goal is to model volume preserving
deformalions. However, the area preserving properties of regions
enclosed by offset curves are global, not local properties. That is,
the total area is preserved, but if one looks at small elements within
an area bounded by offset curves, small area elements can change
as the backbone curve geomelry changes.

For instance, if one considers a rectangle of width w and height
h, the area is A = wh. Il the centerline of the area bends into
a circular arc, the area will be preserved, provided the area does
not overlap itself. This is observed by taking the difference in area
of two concentric circles with radii differing by w and considering
the portion of the resulting annular area which has a centerline
of length equal to the original centerline. The area ol the whole
annulus is A = wf{w + r)® — r¥]. The centerline of the annular
area is a third concentric circle with 1adius v -+ w/2 which bisects
the annulus. Such a centerline will have circumference: Zm(r +
w/2}. The portion of the centerline of equal length as the original
centerline is given by the ratio: A/m(2r + w). The arca of the
segment of the annular area of centerline length b, is then

A=hfa(2r +w) x w[(w+r)? =1 = hw.

However, the area elements on the inside of the circular arc will be
compressed, while those on the outside will be stretched. Thus, this
is not locally area preserving. As stated earlier, the area preserving
properiies associated with planar offset carves is generally a global,
not local property. However, by extending the idea of an offset
curve the following subsection develops two Lypes of locally velume
preserving deformations,

3.2 Bending Deformations which Locally Pre-
serve Volume

This section develops a closed-form intrinsic parametrization of a
class of bending deformations which are locally volume preserv-
ing. The following subsubsections develop two analylical models.
These models are planar, though there are natural extensions to



three dimensions. In Subsection 3.2.1 an analytical formulation
based on ‘variable offset’ curves and the area contained within
these geometric structures is investigated. In subsection 322, a
deformation based on bending and reparametrization of a collec-
tion of constant offset curves is developed.

3.2.1 Variable Offset Bending

For a deformation to be locally area preserving, the area of each in-
finitesimal element must remain constant during the deformation
In order for the offset curve mode! to incorporate this feature, a
generalized definition of a planar variable offset bounded area is
defined below:

O(i":) = E(.'i’:l) -+ T(&.“l, Ig)ﬁ:(ﬂ?l), (1?)
This expression has a dual meaning First, it can be considered
as a deformation of a region in =, — 7y space Second, it is of the
form of a set of offset curves with variable offset distance. Note
that the parameter z; is not only a coordinate in the reference
configuration, but also the arclength of the backbone curve. The
above definition gives the function r{z;, z;) two spatial degrees of
freedom. The first is so that the offset can vary with the back-
bone curve parameter. The second is so that any point within the
area bounded by two variable offset curves can be specified with
the coordinates (z1,2). If for instance, the initial backbone is a
straight line = z; &, and 7(21, 22} = x3, then initially (21, z7) are
the Cartesian coordinates for this slab, and they serve as referen-
tial coordinates for any continuously deformed configuration. See
[LaRK78,Mal69] for definitions and details of referential descrip-
tions of material deformation.

So that the model can incorporate the constraint of local vol-
ume (area) preservation no matter what kind of bending occurs,
the function r{zy, s} is lelt undetermined for the time being. In
order to enforce the local area preservation constraint, the follow-
ing expression is observed:

~ |80 a0
det (V0) = 5o ¥ 5m| = 1 (18)

That is, the area of each infinitesimal element defined in the Carte-
sian product of the two intervals: [zy, 7y +dzi] %[22, 22 +dzy] must
be independent of bending.

Evaluation of Equation (18} by substituting in {17), and ob-
serving:

a0 . e, 80 o,
E—{l—rn}u—i—-&c—in ) Emé};ﬂ, (19)
and using the fact that # = A =1and i 7 =0, yields
ar
(l——?fi)'a—x';— 1. (20)

This expression is integrated with respect to 2 to yield:
(21)

The arbitrary function ¢(z;) is taken to be zero. Note that a
nonzero choice of ¢(z,) corresponds to composing a shear deforma-
tion, i.e., replacing T, with z3 + c(z,) is a shear in the same way
that Equations (6} and (7) are

1
{r— é—m"z) = 3 + c{z1).
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Using the quadratic formula to solve for r(y, &), one finds
that:

il

14 (1 - 2r(zy)zs)
w(z1)
of which the negative root is used. This is used because as K{z,)
oes to zero, r(zy, £z) should converge to 1, i.e, the unbent con-
figuration should correspond to the slab parametrized with Carte-
sian coordinates {21, zz). Note also that curvature of the backbone
curve is always limited so that zak < 1 to avoid singularities.
As an example, consider the planar backbone curve:

(22)

T‘(Il, Ig) = 1

)= (w}l- sinaxy, 1(1 - €08 azl))T (23)

a
The deformed region is initially the square {~1,1] x {~1, 1] shown
in Figure 1(a). In effect, {17) and (22-23) define a deformation
which bends the T, axis into a circular arc while preserving area
locally. Figure 3 shows this for @ = 7/12.

3.2.2 Offset Shear-Bending

In this subsection, the properties of offset curves are exploited fur-
ther. It is shown how allowing shear along directions parallel to the
backbone curve preserves volume locally as the curve bends. This
deformation is shown to be locally volume preserving when each of
the collection of offset curves is parametrized by it’s own arc length
instead of the backbone curve arclength, i.e, a reparametrization
is required. Shear in this context is achieved by simply allowing
translation of each offset curve, while maintaining parallelism with
the backbone curve.

Given a set of offset curves of the form:
5(3,3:2) = &{s) + z27(3),

where the arc length measure of the backbone curve is denoted
here as s, the arc length measure along each offset curve is:
a0

ds

(24)

ds = f;(l - z25(0))do = 3 — 220(s).

(25)
This expression is rarely algebraicly invertible. That s, in gen-
eral the relationship s = 8{z;, z;) cannot be found in closed form
Nonetheless, such a relationship (even if it ia not expressible in
closed form) does exist.

If we choose the coordinates, z; and x4, and reparametrize the
set of offset curves such that

O(1,22) = O(L(s, 23), 22) = O3, 22),

xy = L(s,33) = ./0

(26)

then O(&) (viewed as a deformation) preserves local area indepen-
dent of changes in curvature of the backbone curve. Proof of this
facl is given below by direct caleulation. The chain rule yields:

90 _900L 00 90 _000L.
8z, 0Lz, Oz ds Oz, Bs
Putting Kquations (27) in matrix form, and using the fact that
%i'n w 1 — zqai(s) and gf;- = (s}, we get:
%g' i- Tak 0 aizd-"
- (28)
30 - 1 a4
dzz dzry



Inverting this equation, we find that:

(3]0 2)(8)
,Q,,Q, I - oK 01— IakK g_d )
dzg *2
One then finds that:
0 80 1 (a0 a0
E}—S_ x 35‘32 - 1o Lok 3:17; 61}2
Thus, independent of the curvature of the backbone curve, &, local
area is preserved using these deformations. Note however, that
we must restrict ourselves to conditions under which T <1 in
order to avoid the singularities which occur when 1 == k5.

As an example, consider a backbone curve in Equation {23).
In this case, x{s) = @, and (25) can be inverted to yield: s =
z3/(1 - azg). Figure 4 shows this type of deformation applied to
the same referential square as used earlier.

(29)

)mﬁxfimgg. (30)

4 Examples of Composition of Defor-
mations

This section illustrates how composition of the primitive volume
preserving deformations presented earlier in this paper can be used
to efficiently generale an infinite variety of volumetric shapes from
a single referential volume

As a first example, consider a combined stretching and bending
deformation. In this example, the stretch deformation in Equa-
tion (12} is first applied, then the bending deformation defined by
Equations (17} and {22-23} is applied. The resulting deformation
is:

C1(7) = O(Ex(%))- (31)

The choice of primitive deformations resuliing in Figure 5 are:

1.2 K
T{EI -+ ix;
T

Ez(f) = Zil._i'.:i' (32)
3
and
isinazy — r(z1,27) sinezy
G(F) = 1(1 - cosazy) + r{zr, 23} cosazy |, {(33)

I3

where r(z;, 73) = 1—‘—(1:-?«53)}-, and a = 7/12.
Figure 6 is a composition of shear and the bending deformation
based on variable offsets defined in Subsubsection 32.1. This is
written as O(5;(%)).
Figure 7 shows a composition of shear and the type of bending
described in Subsubsection 3.2.2. That is, this deformation is of
the form: O(5;(Z)) where 5,() is defined in Equation (7), and
(J(Z) was defined in Equation (33). In this figure, d(z) = Lz,

Note the diffetence between Figures § and 7.

5 Conclusion

This paper has presented methods for generating and using locally
volume preserving deformations which can be written in closed
form. A combination of classical differential geometry and para-
metric geometry were used to generate these closed-form deforma-
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tions, These deformations potentially have applications to com-
puter aided geomeiric design when mass and volume constraints
restrict design choices. Further applications may include efficient
approximations to problems in the mechanics of materials and
biomechanics. Similarly, the closed-form primitives presented here
could be used to approximate the physical universe in such diverse
areas as robotics (e g., modeling the kinematics and dynamics of
robots with flexible actuators), and even virtual reality (e.g., real-
time simulation of virtual contact with a ‘squishy’ environment).

It should be noted that a wide variety of locally volume preserv-
ing deformations can also be generated using dynamical systems
theory and/or fluid mechanics. However, closed form solutions are
relatively rare in these fields.
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Figure 1(a): A Referential (Undeformed) Square
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Figure 2: Nonuniform Stretching : Ex(#)
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Figure 3: Vardable-Offset Bending : O(%)
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Figure 7: Shear and Offset Shear-Bending : O_(gg{f))




