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Abstract

Hypes-redundant, or ‘snakelike’, manipulators have a very laige
number of actuatable degrees of Ireedom This paper develops an
efficient formulation of approximate hyper-redundant maaipula-
tor dynamics: The most efficient methods for repiesenting ma-
nipulator dynamics in the literalure require serial computations
proportional to the number of degrees-of-freedom. Fuitheimore,
these methods are not fully parallelizable Tor hypei-vedundant
manipulators, which may have tens, hundreds, or thousands of
actuators, these formulations preclude real {ime implementation.
This paper therefore locks at the mechanics of hyper-redundant
manipulators from the point of view of an approximation to an
‘infinite degree-of-freedom’ problem. The dynamics for this infi-
nite dimensional case is developed. The approximate dynamics of
actual hyper-redundant manipulators is then reduced to a proh-
lem which is (1) in the number of serial computations, i e, the
algorithm is O(n) in the total number of computations, but these
computations are completely paraliclizable This is achieved by
‘projecling’ the dynamics of the continuum model anto the aclual
robotic structure. Applications of this method to practical com-
puted torque control schemes for hyper-redundant manipulators
is demonstrated.

1 Introduction'

Hyper-redundant menipulators have a very laige number of ac-
tuatable degrees of freedom. Applications of ‘snakelike' hypes-
redundant manipulalors include inspeclion in highly constrained
envitonments, tentacle-like grasping of objeets, and whole-arm
manipulation. Computationally attractive modeling of the system
kinematics and dynamics is necessary for hyper-redundant ma-
nipulators to be used effectively. Recently, the author developed
an efficient {ramework for the kinematics and molion planning of
hyper-redundant manipulators [Ch92]. That approach is based
on a continuous curve (or ‘conlinuum’) approximation which cap-
tures the manipulaiol’s macroscopic geometiic featwes. The con-
linuwm approach {which can be applied Lo a wide variety ol ma-
nipulators) contrasts methods developed recently for paiticular
hyper-redundant robot morphologies [KoS592,Rel.02}.

This paper extends the continuum approach previously used
for hyper-redundani manipulator kinematics to include efficient
formulation of approximate hypei-redundant manipulater dynam-
ics. The most efficient methods for 1epresenting manipulator dy-
namics in the literature require serial computations which grow
linearly with the number of degrees of freedam {Ho80,Crai36]
Furthermore, these metheds aie not fully paralielizable because
serial iterations in force and velocity are intrinsic to theh natuie
For hyper-redundant manipulatois, which may have tens, hun-
dreds, or thousands of actualors, this is not acceptable. This pa-
per therefore looks at the dynamics problem for hyper-iedundant
manipulators from the point of view of an appoximalion to an
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‘infinite degree-of-freedom’ probiem  The dynamic equations for
this infinite degree-ol-fieedom conlinuum model ae developed.
The dynamics of the continuum model is then ‘projected’ onto
actual robotic stiuctures. Application of this method to practical
computed torque control schemes for hyper-redundant manipula-
lors is demonstrated

This paper is oiganized as follows : Section 2 reviews previous
formulations of robolic manipulator dynamics, basic principles of
continuum mechanics, and the kinematics of hyper-redundant ma-
nipulators. Section 3 uses the principles of continuum mechanics
to approximately represent the dynamics of hyper-redundant ma-
nipulators Section 3 also defines a procedure for ‘projecting’ the
dynamics of the tontinuum model onto actual robotic structuies.
This approach is demonstrated with closed form solutions applied
Lo a specific manipulator morphology: the variable-geometry-Lruss
manipulator. Section 4 iliustrates this new dynamics algorithm
witl a closed form example

2 Background and Review

This section conlains a review of a bioad selection of malerial,
Subscction 2 1 briefly reviews standazd techniques for formulaling
the dynamics of robotic manipulators. Subsection 22 reviews
some hasic laws in continuum mechanics - an area of mechanics not
commonly used in robotics Subsection 2.3 reviews the author’s
previous techniques for describing hyper-redundant manipulator
kinematics. Subsection 2.1 is presented primatily as a literatule
review, while Subsections 2 2 and 2.3 lay the analytical foundation
for subsequent sections

Standard Formulations of Manipulator Dy-
narnics

The manipulator dynamics problem is generally formulated using
techniques from Lagiangian mechanics or iterative Newton-Euler
[ormulations. Lagraagian mechanics results in equations of mo-
Lion of the form:

M{‘;“}fi‘i é(‘?af.}')-i-é'(q = ¥, 1)

The evaluation of the lefi-hand side of the above dynamical equa-
tions for a given Liajectory in joint space, §{t) € RY, requires
(V) computalions for a manipulator with NV degices of {reedom
This is often referved Lo as the inverse dynamics’ problem [AsS86].
It has been shown that Lagiangian [ormulations can be improved
50 a8 Lo have greater computational efficiency {HoS80]. Nonethe-
less, the most commonly used method for formulating manipula-
tor dynamics efficiently is the iterative Newton-Euler technique
[C1ai86). }

In the jterative Newton-Euler method, serial iteiations in ve-
locily ae propagated forward fiom the manipulater base to the
end-effector, and {orces are propagated backwards from the end-
efleclor Lo the base The equations associated with this pocedure
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are given in [Crai86), and enumerated below. Outward {velocity)
iteralions for i € [0, ., N — 1] are:

‘D:ﬁ R +‘I««1~1L;+1
“ifl

[ = t I-
Wipr = RIM'G, + BT x (G 8} s+ f?=+1&.3:11

[T 3 z
.
U = RIF (w X g @ x {8 % rl+')~l~v)
I S S PV PR S TP il i+1 i+l
UGipq = Gy ¥ 1034 + @i X (Sl x 72 + Ui

+1
i1
Fih = m=+1UC.+1

ES =i 241
N = In+1‘*’;+1 + “’:-;-1 X I:+1‘-"’:+1

The inward {force) iterations for 1 € [V, 1] are
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Most of the quantities in the iterative Newton-Euler scheme
have one subscript and one superseript. The subseript indicates
which link the quantity describes, while the superscript indicates
in which link frame the quantity is described. For instance, Rf,-" is
the rotation matrix which describes the arientation of link j + 1
with respect to j represented in the frame fixed to link &. d}_:-" is
the angular velocity of link j represented in the frame attached
to link k. ¢; is the #** joinl angle, ie, ¢ = § - & Ej‘ is vector
representing the axis of joint 7 in the frame attached to fink k. f';'
and r’éf are respectively the relative position vectors of joint 7 and
the mass center of link 7, both written in the link % coordinate
system. & is the velocity of link j. m; and IS are respectively the
mass and momenl of inertia of link j represented in link j's frame.
The subseripts *C” denote quantities associated with the center of
mass of links f’j‘ and 1\7]* are respectively the force and toique
exerted on link 7 f} and ﬁff are the force and torque vectors
exerted by link § on link 7 4 1.

The Lagrangian and iterative Newton-Euler formulation pro-
duce the same resuits That is, torques are computed based
on the desired joint trajectory. The difference is that the La-
grangian technique computes the vector of torques, and the itera-
tive Newton-Euler approach generates components of the torque
vector sequentially, e, ¥ from (1) and 7; from above are related
by the equation: 1; = ¥ . & where & is the i natural basis vector
for AV,

Computational aspects of these, and other, methods of formu-
lating manipulator dynamics can be summarized by simply stat-
ing that the best methods require O(N) serial computations. As
one might expect, this can become a heavy computational burden
when considering hyper-redundant manipulators, where the num-
bet of degrees-of-freedom may be on the order of dozens or even
hundreds. For this reason, it is worth investigating ‘continuum’
approximations to hyper-redundant manipulator dynamics.

2.2 Review of Continuum Mechanics

There are three general laws of continuum mechanics which will be
applied to the dynamics of hyper-redundant manipulators in this
paper. These are the: {1) mass balance, (2) momentum balance,
and (3) angular momentum balance These are written in control
volume form respeclively as:

dtfpi’-i—[{m"it? (2)

, o d
v S — idV
Lidﬁ +'/Vpbdl = ./V pid} {3)
3 d fo. 0 .
/s(f x [)dS + /v(f x phydV = m]v(x x pE)dV.  (4)

The subsciipts S and V denote integrals over surface and volume
of the region under consideralion. p is the mass density per unit
# is the velocity of maierial particles. i is the normal
{ is the applied surface force (called a

volume.
te the control volume. .
“traction’). ¥ is the position vector to material points. b is the
body force acting on the volume (e g., gravity, magnetism, etc).
Tlese equations have analogs in the dynamics of systems of
particles. For instance, given a sysiem of N paiticles, each with
mass m;, Lhe conservalion of mass states that
N d N‘
Zm; = M, or "&**Zm,‘ =10,
= t i=1

where M is the total system mass.

This is the discrete analog to the first term in Equation (2)
The second lerm in Equation (2) is the mass flux which may
enter or leave the contral volume under consideration Tor our
purposes, this term will be zero, and the continuum and discrete
mass balance equations are directly analogous,

Equation (3} is the momentum balance. This is the conlintous
analog to the disciete equation:

wheze FU*) and #; are respectively the external force acting on the
i** particle and its position vector The right-hand term is equiv-
alent to the product of the total system mass, Af, and the accel-
eration of the system center of mass. The momentum balance in
the continuum mechanics formulation distinguishes between forces
acting on the volume and the surface, whereas in the dynamics
of a system of particles there is no such distinction Nenetheless,
one can see the similarities between the discrete and continuous
versions of this principle

Finally, the angular momentum balance for a system of parti-
cles is given by:

N
Zf X m,dm'

{"32

1]
—-

This follows directly [rom the momeatum balance for each par-
ticle by taking cross products on both sides, summing over the
particles, and using the principle of action and reaction.

Note that (2)-{4} are each postulated separately, uniike for &
system of particles whete conservation of angular momentum is a
direct result of conservation of linear momentum [LaRK78,Mal69)
In continwum mechanics, Equalions (2)-(4} are generally trans-
formed using the divergence and transport theorems, along with
localization arguments and assumpiions about applied surface
forces Lo yield :

dp = =

I} PV - G=0 {3)

= - dE

V T4 ph == o (6)
=T%, (7)

where T is the stress tensot defined such that I = TA. However,
we will use the control volume form ((2)-(4)) because it will lead
Lo the very efficient formulation of approximate hyper-tedundant
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dynamics which is sought The next subsection reviews hyper-
redundant manipulator kinematics, which lorms the foundation
for a continuum model of hyper-redundant manipulator dynamics.

2.3 Kinematics of Hyper-Redundant Manip-
ulator Backbone Curves

It is assumed here that regardless of mechanical implementation,
the important macroscopic features of a hyper-redundant robotic
manipulator can be captured by a backbone curve and associated
set of reference frames which evolve along the curve. A backbone
curve parametiization and set of reference Irames are collectively
veferred to as the backbone reference sef. In this formulation, in-
verse kinemalics and trajeciory planning tasks are reduced to the
determination of the proper time varying behavior of the backhone
reference set [ChB8D,Ch92]. Note that depending upon the actual
mechanical implementation of Lthe robot, the associated backbone
curve may be inexfensible (fixed length) or extensible {variable
length).

A continuous backbone curve inverse kinemaltic solution (which
may he genetated by a ‘modal approach’ [ChB90], ‘optimal ap-
proaci’ {ChB92], ar any other method) can be used to directly
determine the actualor displacements of a continuous morphol-
oy robot-e.g ., one constructed from pneumalic actuator bundles
For discretely segmented modular morphologies, such as the one
shown in Figure !, the continuous curve solution can be used, via
a ‘Atting’ procedure, {ChB91,Ch92], to compute the actuator dis-
placements which cause the manipulator to assume the nominal
shape of the backbone curve model. In other words, the actual
manipulator configuration is ‘algorithmically linked’ to the back-
bone curve model.

Techniques for the physically meaningful parametrization of
backbone reference sels are reviewed in Subsection 23 1 Subsec-
tion 23 2 reviews how actual manipulators are ‘fit’ to the curve
model. For the sake of brevity, only planar examples are used to
ilfustsate these concepts For mote general formulations consult
{ChBY0,Cho2]

2.3.1 Kinematics of Backbone Reference Sets

The position of points on a backbone curve can be parametrized
in the form:

#(s,0) = .[0’[1 + ¢(o, V]ita(, )do, (s)

wheve s € [0,1] is a parameter measuring distance along the back-
hone curve al time {. s need not be the classical arc length, which
is denoted below as L. (s, 1) is a posilion veclor from the base of
the backbone curve to the point on the backbone curve denoted by
curve parameler & #a{5,1) is the unit tangent vector to the curve
al s €e[s,0) is the local exlensibility of the manipulator. ¢{s.1)
physically expresses how the backbone curve, which abstractly
represents imporiant geometiic aspects of the real robot, locally
expands o1 contracts relative to a given reflerence state, or home’
configuration, of the robstl. &(s,1} > 0 indicates local extension,
while e(s,1) < 0 impiies local contraction. One can also interprel
the extensibility as a measure of how Lhe parameter s differs from
dimensionless arclength by computing arc length in the regular
way [MiP77] :

L4
L(s,t) = /U [l 4+ e{o.O)}de (9)
Using localization arguments, it is clear that the only time ¢ is

crual to L is when e(s,1) = 0 For compaciness of notation, the
following is defined: I{s,1} = OL/8s = 1 + ¢{s,1).

The parametrization of Equation (§) has the following inter-
pretation. The backbone curve is “grown” from the base by prop-
agating the curve forward along the tangent vector, which is vary-
ing its direction according fo #;(s,1) and varying its magnitude
{0 ‘growth-rate’) according to I(s,1).

In the planar case, the locus of backbone curve points is defined
by F(s,t) = [1y(5,1), zo(5, 0], where

z1{5,1) = /n’ (o, )sinB(a,l}da (10}

(s, 1) = /D o, 1) cos B{c, )dar (11)

0(s,1) is the clockwise measured angle which the tangent to the
curve al peint § makes with the zy-axis at time t. Figure 2 il-
lustrates the physical meaning of I{s, 1) and 8(s,1). A simple 1e-
lationship exists between the classical cutvature function of the
cuive and the funclions 8, and [

Ry

AL 138s

A frame can be assigned to every point on a planar curve defined
by 05,1} This frame is denoled by

Qs 1) = ( cos @

o gin 0

sind .
‘ (12)
cosf
For consislency, the second column of Q is chosen to be the back-
hone curve tangent veclor, ify.

All the information contained in the planar backbone curve
model is conveniently expressed as a parametiized sel of 3 x 3
homogeneous transforms:

Q(s, 1} (s,1)
His, 8) e . (13)
o7 1

I summary, the kinematics of a backbone reference set, which
uniguely describes a hyper-redundant manipulator backbone curve
canfiguration, can be described by a set of physicaily meaning-
ful geometric functions, which in the planar case are 0(s,1}, and
¢{5,1). This general formulation contrasts recent work in which
a continuous curve model was used stricily for the kinematics of
inextensible revolute-jointed kinematic chains [Halk92].

A fitting procedure uses the sel of frames defined by H{s,{) to
cause a hyper-redundant manipulator to adhere to the backbone
curve. Thus, the curve together with z set of reference frames and
a fitling procedure define the macroscopic geometry of Lhe manip-
uiator. The next section details a parallelizable fitting procedure

2.3.2 Inverse Kinematics in Parallel via ‘Fitting’

A patallel algorithm developed in [ChB91}, which is based on the
lormutation of the pievious subsubsection, is reviewed here. Ma-
nipulators with a modular architecture a1e considered  For exam-
ple, the modules of an extensible spatial byper-redundant manip-
ulator might be Stewart platforms. Tt is assumed for simplicity
that the modules are uniform in structuie and size.

The backhone reference sel can be used to generate inveise
kinemalic solutions for modular manipulators as follews. Consider
the i* module in the manipulator chain consisting of n modules.
Attach a frame, Hi~1, to the “inpul,” or hase, of the module,
and a frame, H', Lo the “outpul,” or top, of the module. For
the discretely segmented modular manipulator configuration to
conform Lo the continuous curve geometry, Lthe frames H'™! and
H' a1e chosen to coincide with the backbone reference frames at
points given by s = {i —1}/» and s = i/n respectively (See Figure
3} That is, equate H' Lo H(i/n,t), which was defined in Equa-
ltion (13} Recall that equal partitioning of the curve parameter
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need not imply equal spacing along the curve because in general
L(s,1) s s. Thus we retain control over how the modules extend,
contract, and bend.

The frame H' measured relative to frame H*? is denoted Hi_,.
This consists of the relative translation, i_,, and rotation, R!_,:

1-1( -‘\f.)

07 1

; 1(‘1"')
1(_'”') =

(14)

§* € R™ is the vector of joint dispiacements which determine the
geometry of the i* module In the plane, m = 3, while in space
m = 6. The total number of manipulator degrees of freedom is
then N = mm. It is assumed that the inverse kinematics of each
medule, which relates FI' to HI'=7, can be solved in a closed or effi-
cient form {whick is commonly the case for platform manipulator
modules) for i € [1, ,n].

The manipulator configuration will conform to the hackhone
reference set if:

Hi_, (#"(1)) = (’_%—1:) H (i—z) (15)
In the planay case, Dquation (15} is written as:
Ri (") = Pl (1) (16)
and
(@) = Aoy (), {17)
where
S s 1) sinfO(s, 1) — (52, 0]ds
Pl = f; (s,1) coslf(s, 1) — B(:=L, 1)}ds (18]
and R
SRR G M) B

L) =0 (%, i) .y ('—:—‘-, t) is the relative angle of rotation of the
frame al s = i with respect to the one at s = =L
\ssume that the functions {¢(s,¢),8(s, 1)} have been specified
Eack Ri_; and 7L, can then be computed in parallel as a function
of the backbone relerence sel geometry. For example, in the planar

case, if we specify that §(s, 1) = a;{t)s and {{s,{) = ey(t}, then:

E‘:“{‘:“} [1 -~ cosa{t)s] cosapfl)s  sinay{t)s
Fls,1) = Qs t) =
a: :;Si““l(‘)s ~sina{l)s cosa;{t)s
{20)
and
; %{:} [1 - Cos n_lrf'ﬂ] ) cos "‘n-——tﬂ sin 2 mil)
Pioi () = Pl (1) =
E‘m sin _Ll - gin 2 "‘m cos i’—’;‘—‘l
{21)

This provides the kinemalic inputs for each module in Equations
{16-17). The inverse kinematics of each module can be performed
in paraile! Lo yield 7" as n function of the curve geometry for each
i. In this case the curve geometry is specified by values of a; and
az. Therefore, o, and a; determine manipulator configuration
Aa example illustrates this below

Figure 4{a) shows one module of the planar truss manipulator
In this case, one segment of the truss is compaosed of side members
and a cross element. The vectors representing the legs of the #**
truss module defined in the llame at the center of the i — 1¥ {ace
are denoted Xy, Xam, Xaigs

These vectors are determined from the continuous curve model

as follows:

Xai = Pl — i + Pl (22)
X:h‘-;—l e 131.:_1 - ﬁ;z + P. 1"'2 (23)
XSM? = ]?.:..1 - ﬁ;_l + P:'Msﬁ'm (24)

where 77} are the vectors to the j™ vertex of the i** platform in
the frame affixed to that platform For this specific example,
% = [~wi/2,075 7 = foif2,0)7,
where w; is the width of each horizontal face of the truss, as de-
noted in Figure 4{a}
The controlied degrees of freedom are the tengths

L= Al (25)

for & = 1,..,3n Thus, Equations {22-23) provide the inverse
kinematics solution for Lthis moduie geometry based on the back-
bone curve information provided in (18-21}. A sample configu-
ration is shown in Figure 4(b) for @) = a; = 0.8, In general,
restricting the configuration of a hyper-redundant manipulator to
act as if it has fewer degrees of freedom than it actually doees in
order to perform a task is called ‘hyper-redundancy resolution’

[Ch92)

3 Continuum Formulation of Hyper-
Redundant Manipulator Dynamics

The general equations ol continuum mechanics and the kinematic
tepresentation of hyper-redundant manipulator backbone curves
reviewed in Section 2 are used here Lo formulate the approximate
dynamics of hyper-redundarit manipulaters in efficient form. Each
conservation law is addressed separately in the following subsec-
tions. Subsection 3.1 addresses the mass balance, Subsection 3.2
addresses the momentum balance, and Subsection 3.3 addresses
the angular momentum balance. Subsection 3 4 introduces meth-
ods for linking continuum mechanics to actual hyper-redundant
manipulator dynamics, Le., the dynamics of the continuum model
is ‘projected’ onto the actual robotic structure. For the case of
slender ‘snakelike’ hyper-redundant manipulators, the continuum
under investigation is the backbone curve

3.1 Inertial Properties of Backbone Reference

Sets : Conservation of Mass

Approximate inertial properties can be incorporated into this model
very simply. Because the description of the backbone reference
set is cast within a Legrangian framework, manipulator inertial
propeities can be approximated using models similar to solid me-
chanics We simply define the mass density per unit curve param-
eler as p(s). In practical terms, p(s) approximately captures the
inertial properties of slender ‘snakelike’ hyper-redundant manipu-
iators. Since no transport of mass cccurs within the manipulator,
ihe flux terms in Equation (2) are zero. However, if the robot is
acluated with hydraulics, this assumption may ne longer be valid
hecause significant amounts of fluid may flow along the manipu-
lator.

Under the assumption that the manipulator has constant mass,
the mass densily per unit curve paramater, p(s}, will always reflect
the manipulalor’s macroscopic inertial propertics no matier how it
bends and extends The key to understanding why this is the case
is that in general L{s,{) # 5. Denote the mass of a manipulator
from its hase Lo a point on the manipulator at arc length L to be
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ML)y = M(L(s,t)) The mass density per unit arc length is then:

aM M ds  p(s)

BT = D5 9L " s b (26)
Thus we see that if a manipulator contracts, and I{s,¢) decieases,
the mass density per unit arc length will increase. Likewise, when
the manipulator stretches, and {(s,1) increases, the mass den-
sity per unit arc length will decrease. However, the mass density
per unit curve parameter s will remain constant with respect to
time, and so conservation of mass is implicitly incorporated in this
model

3.2 Momentum Balance

The momentum equation provided by continuum mechanics takes
on a particular form when combined with the backbone model
piesented earlier. Namely:

d

A (s} (Jt(q t)ds = F(a,t) vi-/ (T + phds

(27)
The integrals over volume and surface in (3) hoth degenerate to
one-dimensional integrals over the curve parameler. This is be-
cause surface forces and body forces are both represented as forces
per unit of the backbone curve parameter. Equation (27) corre-
sponds to the free-bocdy diagram in Figure 5{a). This diagram
1esults from an unagnmry cut made normal to Lhe backbone curve
al the point al which s = o. The vector Flo,1) is the internal
force transmitted Lo the distal end of the manipulator (s € {o,1])
by the lower end of the manipulator (s € [¢,1])

3.3 Angular Momentum Balance

The anguiar momentum equation provided by cantinuum mechan-
ies {4) also has a special ferm for the case of hyper-redundant
manipulator backbone curves:

[ #0) % ol5) 928, 1 = (25)

MWQ+ﬂmﬂxﬂmﬂ+ffﬁﬂxﬁ+ﬁMs

Again referring to the imaginary cut made normal 1o Lthe backbone
curve at the point at which s = o, the vector M (e, 1) is the internal
moment transmitted to the distal end of the manipulator,

Equations {27-28) furnish all the tools needed to compute
kyper-redundant manipulator dynamics

3.4 Projecting Dynamics onto Robotic Struc-
tures

In order to make use of the continuum model, there must be a
way to transfer the dynamical information to Lhe actual physi-
cal structure under consideration. In broad lerms, projecting the
dynamics of the conlinuum model onto the actual manipulator
is achieved by again making an imaginary ‘cut’ in the contin-
unm model. Only now, the forces and moments at the cul will
be matched with the actual hyper-redundant structure at core-
sponding locations along the length of the manipulator. Inertial
forces, body forces, and surface tractions accumulated flrom the
distal end of the manipulator to the cross-section under investiga-
tion wilf be approximated using the backbone curve medel. The
tesulting reaction forces are caleulated in the physical structure at
the imaginany cutting plane. For example, the rules of structural

analysis are used when considering the forces on a variable geoin-
elry truss For manipuiators with a macroscopic serial slruclure,
the imaginary cutling planes are located at the interface between
links or medules. Therelore,

”gf/: P{S)%?{S,t)ds - ];{f+ ,,E)ds - F (20)
%/ s, ) x p(s}m( s,0)ds (30)

mﬁﬂmMG}@$¢WMMxﬁ=ﬂ

where £ and #]; are the continnum approximation of the foice
and moment exerted by the i module (or link) on the 1 + i
module of a hyper-redundant manipulator

Each of the above integrals can be evalualed sepatately for
i €[0,...,n—1], and so the dynamics problem can be completely
paallelized. The key Lo this approach is the continuum model,
without which serial computations would have to be perfoimed
and a Newton-Euler style algorithm would resuit With the con.
tinuum model, closed form solutions or quadrature approxima-
tions to the integrals can be computed in many cases, and so
theie is no need for iteration.

Assuming that the inertial foices, body foices, and surface
tractions computed from the continutm model are representative
of the actual manipulator, Lhe reactions present in the manipula-
tor structuie al the i module are equated Lo the above quantities
It is then simply a matler of matching forces in the actual struc-
ture to those generated from the continuum niodel, as shown in
Figure 3(b}. The resulting forces in the membeis aie found by
inverting the matrix equation :

Aifi= & (31)
where

Ai _ ( -3
—[&a, Aili/n.t}, %]

T

Jigd “Ji2 )
[€a, f0i/n, ). Tiga] &5, A /n0t), Faign] !

R Fuy F;
fi=| Fon 3= )
F‘,\_.‘l'._*2 53 A‘U,‘

to solve for Fy , which is the force in the j* member of the truss.
For this parlicular example, Fy, ate the geneialized joint torques,
i.e., ;. This information can be used in a computed toique control
scheme as shown in Figure 0

In Equation {31), the following notation is used: §E,5,E:‘] =
@ {b x £). Note that i{ifn,t) = Q(i/n, )%, The vectors & are
the unit vectors along the tiuss elements written in base frame
coordinates. That is, # = _Q{:m:_‘

,I)%L. These are writien ex-
plicitly as :

-] - 7S + FEZD) 4 ()

R e e T I
L~ Ed) T - )
S e ey - ag e
L ) - e ¢ R - () |
R O R E e

Because tiuss stiuctures absorb the vast majouity of the load
axially in its members, there are no significant bending moments
in these members

The next section illustrates the formulation of this section with
a closed form example
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4 A Closed-Form Example

In this section, ke theoretical developments presented previously
are applied 1o a praclical situation in which hyper-redundant ma-
nipulators could be used 1t is assumed that Lhe problem is planay,
and that the manipulator is constrained Lo behave as il it has Lwo
degices-ol-frecdom by the aigotithmic restrictions :

0(s) = ad(s) U(3) = exf ) () (35)

‘Tlie notation * denotes diflerentiation with tespect lo s @(s) is
a strictly increasing function (¢'(s) > 0 for all s & [6,1]) with
0} = 0 and $(3) = 1. The forward kinemalics' for the back-
hone curs e representing Lhis class of hyper-redundant nsanipulator
configurations is:

Tee = 2 (1, {) = /Ul (12¢J’(S)5i12(ﬂ|<f1(5)}d5 = E—?(l ~cosap)  (36)

Yoo = (1, 1) == /0] a-‘,nf:'(.s)cos(a,rﬁ(s))r[s = :—fsin ), {37)
with Lhe posilion to points along the hackbone given by:

nifsit) = 21~ cosarg(s)] (38)

3ﬂgﬂ=§%mmﬂﬂ. (39)

Tlie inverse kinemalics (solulion fo1 a; and @z as a Tunction of
end-cllector position} is:

ap = 2AAnH{Teq, Yee b {40}

= S (1)
sing

The functions a,(t) and ag(t} are thus caleulated using {10-11)
to cause Lhe manipulator'’s end-effector Lo Liaverse a desired tia-
jeclory {T.ye) The manipulator inverse dynamics becones a
function of the two variables a; and «; and their lime deiva-
tives when algorithmic constraints such as (33) are hnposed. Fo
instance, if we take ¢(s) = = and p(s) = pg

. )
m - sltiapy
o d?fm [5-[ ay l.;:i/n
i i

" ﬂ{ )az (s, 0)ds = pors " [m ’]i D))

ay ay s=ifn

amd - Py

;ﬁ. f F(s, 1) x p(s)ﬁ%{s,l};l: = (43)

a’ 1 ssinms  cosags]’ .
_{“ - 32 e +- WH_Q_E E:‘
(H 2 @ Ith .
szeffn

Il we assume tha.k the byper-redundant manipulalors is being used
in an industrial process where objecls such as tools, melal com-
ponents, etc., must be picked up from one location and placed i
another, then gravity forces must be considered. In 1his case, it
will e assumed that there are no external swiface L actions acling
on the manipulator That is, the only exteinal forces acting on
the hyper-redundant mmupulalm are body forces (in particular
gravity). The force and moment veclots acling on the dislal n — 7
modules of a hyper-redundant manipulator due (o gravity will he
of the foim :

1 R 1 _
1 _ . . ‘
[ Fe, )= (pg)ds = (g?ﬂ [s _ s fLI:S] " 9133 [cos als] ) &
w @y m i/ i LA ifn
(15)

where g is Lhe vector of gravitational acceleration, and Equations
(38-39) have been uset to yield a closed fotin solution for &(s,1).
The total Torces (inettial and body} which must be compensated
by forces in the members of the i bay of the truss are

Lo

t ! gl F
. _]L F(s,0) % {pi)ds + (‘1—1/_ (s, 1) x p(s)%(s,a)ds (47

(s tYds {46G)

—&(ifn,1) x B
where cach ol the above integiaks has been computed i closed
form i (42-15), and F(3/n,t) is given by (38-39} o1 s = ifn £}
and A7; ate then used in {31} ta compute forces in the truss,

It is insteresiing to nole thal Llis method can be viewed as
the opposite of lumped nass approximations. Thal is, instead
of cotnponent masses being lumped at discrete positions within a
manipulator, the mass is ‘smeared’ in a conlinuous fashion. As
shown hieie, s provides the opportunily lo generale efficient
closed forin approximale solulions to complicaled problems.

5 Conclusions

This paper has fonmulated the dynamics ol hypet-redundant wa-
nipulators as a continuum mechanics problem. While the mad-
eling technigue is an approximation, the benefit of having ex.
pressions which can be evaluated by a highly parailel compuler
without any lime dependence on the actual nuwmber of degiees
of freedom is a powerful result The method was demonstiated
with an example of a hyper-redundant manipulator doing trajec.
tory tracking in an environment with gravily.
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Figure 3: Fitting Manipulator Medules to the Backbone
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Figure 2: Description of Backbone Curve Parametrization Figure 4: A Planar Variable Geometry Truss Manipulator
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