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ABSTRACT

“Hyper-redundant” robots have a very large or infinite degree of
kinematic redundancy. This paper formulates generalized resolved
rate methods for solving hyper-redundent manipulator inverse kine-
matics using a ‘backbone curve.’ These methods are appiicable
cven in cases when ezplicit representation of the backbone curve
inlrinsic geomelry canno!l be writien in closed form. Problems
of end-effector trajectory tracking and singularity analysis which
were previously intractable can now be handled easily. Ezamples
include configurations generated using the celculus of variations.
Also, the method is naturally parallelizable for fast digital and/or
analog computation.

1 Introduction and Background

In recent work, a general kinematics and motion planning frame-
work for hyper-redundant robotic manipulators has been devel-
oped [Ch92,ChB00-92]. The complexity of tasks such as end-
effector placement and trajectory generation is reduced using these
methods. The basis for these algorithms is straight forward :
Ounly allow hyper-redundant manipulators to act as if they are
kinematically sufficient while performing a particular task. This
is relerred to as hyper-redundancy resolution. General numeri-
cal techniques are used here in combination with the concept of
hyper-redundancy resclution.

This paper is organized as follows: The rerainder of this sec-
tion reviews the parametrization of hyper-redundant manipulator
‘backbone curves,’ and provides motivational examples for the cur-
rent work. Section 2 reviews standard numerical techniques for
the solution of boundary value problems. Section 3 develops a gen-
eral intrinsic technique for hyper-redundant manipulator inverse
kinemnatics. Section 4 iilustrates this technigue with examples.
Section § presents an alternate exfrinsic technique for computing
inverse kinematics

1.1 Hyper-Redundant Manipulator ‘Backbhone
Curve’® Kinematics

Consider the ‘infinitely redundant’ planar manipulator as shown
in Figure 1. The actuatable degrees of freedom of this manipulator
cannot be represented with a finite length vector of joint angles,
but rather consist of two functions 0(s,1} and ¢(s,t) At each point
denoted by the parameter s along the length of the manipulater,
0(s,t) controls how the manipulator bends, while ¢(s,t} conirols
how the manipulator extends and contracts. The position of every
point on this planar manipulator with respect to a base frame is
given by £(s,1} = [z:(s,1), z2{s,1)])%, where

(-7803-0823-9/93/$3.00 (C) 1923 IEEE

z1{s, 1) == j; [1+ e(o, t)] sin {0, )de (1)

a(s,1) = L " (i + €(0, 1)) cos B(e, t)dor. (2)

f(s,1) can be related to the classical curvature function, x(s,1),
by observing :

85,y = [ [1+ (o, (o t)dor (3)

In the spatial case, four funciions are needed to fully specify
manipulator configuration, and

L1+ e(er, )] sin K (o, 1) cos T(o, t)do

E(s,t) = | [J[t + elo, 1)) cos K (o, 1) cos T(o, t)de | . (1)

11+ €(a, t)] sin T{o, t)do

K(s,t} and T'{s,1) are angles which determine the direction of
the tangent to the curve representing the manipulator at every
point, while ¢ again specifies extensibility. By convention, the
initial conditions J((0,t} = T(0,t) = 0 are assumed. One fnal
function, the roll distribution, R{s, 1), is defined to specify how an
actual mechanism twists about the curve F(s,1). These intrinsic
functions form a vector denoted : &, In the planar case, § =
(0, €)7, while in the spatial case § = [K,T,R,¢]T. Note that the
classical arc length measure, L, is related to the curve parameter,
$, through the extensibility:

L(s,0) = [+ e(o,)ldo. (5)

In addition to this idealized infinite degree of freedom case,
{1-3) and (4) are used to define continuous ‘backbone curves' for
discrete hyper-redundant manipulators with a finite number of de-
grees of freedom. An appropriate ‘fitting’ procedure is then imple-
mented to algorithmically link the real manipulator and backbone
curve kinematics [ChB91a,Ch92}.

In the author's previous work, reduction of kinematic and mo-
tion planning complexity for both continuous and diserete hyper-
redundant kinematic structures resuited from restrictions of the
form :

s t) = 0(s, g(1)) (6)
for € RN. N is the number of end-effector coordinates. For
positioning in the plane N = 2, while for pesition and orientation
in the plane N = 3. In space, N = 3 for positioning, and N = §
for position and orjentation.

As task requirements change, these artificial restrictions im-
posed on hyper-redundant manipulator configuration are allowed
to change also. In [ChB90z] it was first shown how closed form for-
ward and inverse kinematic algorithms based on this method can
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be used for hyper-redundant manipulators. When closed form so-
lutions cannot be obiained, a method analogous Lo rate linearized
(or instantaneous) kinematics for kinematically sufficient manip-
ulators was used with great success for both trajectory generation
and aralysis of algorithmic singularities [ChB90b},

However, in a broader context, there are situations when these
previous methods need to be augmented. This paper considers
the case when an explicit algebraic representation of the func

tions f(s,t} is not available In some situations only systems of
differential equations of the form:

)*

Qp

aF 8

F(s, fi 05, '5“) =40 "
with initial conditions
- aéﬂ 0,/ ”
G(Gﬁﬂao((}‘/‘):“m%;“&l) =0 (8}

are available, where F(1) € RM, G() € R®™ and M = dim(§)
While the methods developed in this paper are general, all the
examples are for the planar case.

1.2 Examples

In the author's previous papers, techniques for resolving hyper-
redundancy were presented. Two of these approaches are the
‘modal approach' [ChBY0b] and the calculus of variations opti-
malily based approach [ChB92al.

A planar example of the modeal approach for nonectensible
manipulators, e, manipulators with e(s,t) = 0, is

v
0s,t) = ij;(i)fbe(s). (9)

In this way the end-eflector position and orientation is a function
of {£;}. In the planar nonextensible case, the calculus of variations
approach seeks to minimize integrals such as

I =j01 Klds = [ §ds, (10)

subject to the end-effector constraints:

Tee mjol sinfds  ye. =le cos fds. (11)
Differential equations such as:
G prcos+ pasin 8 =0 (12)
together with integral constraints (11) and initial conditions

0(0,8) =0 6(0,t) = ps {13)

result when using the calculus of variations (see [ChB92a} for a
derivation and the appendix for background material) Here, and
throughout this paper, 2’ represents %.

In cither (9) or {12-13), several free variables map to the end-
effector position and/or orientation. The differential retationship
between free parameters {s;}, which will be referred to as the
reduced sef, and end-effector coordinates is :

A&, = J(T)AR (14
In the planar case, Z..{t) = [£7(1,?),6(1,1)]7, and
h ” cas Ods }'1 ‘” -~ cos Ids ul 2L o5 s
I(ji) = fu By smﬂds u! E:" sin fds c: a‘:asm ids
= Bz s

(15)

This relationship can be inverted {o solve for incremental changes
in the free parameters as a function of end-effector changes, e g,

Afi = I (@A, (16)

in much the same way that kinematically suflicient manipulator
kinematics is dealt with. It is clear that given an explicit function

0(s,¢) = 0(s, i(8)), (17)

(13-16) can be camputed numerically. The remainder of this pa-
per addresses the issue of how such equations can be computed
when a closed form representation of (17) cannot be writlen in
terms of standard funclions, such as is the case in (12-13). But
first, standard numerical techniques for solving boundary value
problems are reviewed.

2 Boundary Value Problems

In this section, mathematical and nurnerical techniques commonly
used for the numerical solution of boundary value problems are
briefly reviewed. Three aumerical techniques are the most com-
mon : ‘shooting’ {also called initial value) methods, finite differ-
ence methods, and integral equation methods. These techniques
are enumerated to give a comparison of potential solution strate-
gies Lo the problem stated in the previous section.

The idea behind shooting is straight forward: since it is rela-
tively easy to solve initial value problems, guess at initial condi-
tions which may or may not make the differential equation sat-
isfy conditions at the far boundary. Then, iteratively correct this
initial guess based on the error between the desired and actual
boundary conditions

In finite difference methods, both the domain over which the
problem is defined, and derivatives in the equations are discretized,
This results in a (generally large) system of algebraic equations
which can be inverted {either explicitly or iteratively) to compute
an approximate solution to the problem at a finite number of
points. If the initial differential equations are linear, the resulting
finite difference equations will be as well.

Integral equation fechniques are most commeonly used for the
nurnerical solution of linear differential equations. A Green's fune-
tion can be found for the particular linear operator, and an integral
of the product of the Green’s function, and forcing terms is ap-
proximated with a quadrature algorithm to yield an approximate
numerical solution

The method which will be used here is a form of shooting which
is particularly natural in the context of manipulator end-effector
trajectory iracking. For more information about sheoting, and
all numerical methods for solving boundary value problems, see
[KuH83], {Ke68], and [MeT3}.

3 Instantaneous Curve Kinematics

The general numerical technique used here to solve the instan-
taneous, or infinitesimal, inverse kinematics of hyper-redundant
manipulators follows from elementary mathematical principles,
Furthermore, it s modular enough that it can be implemented
in parallel on either digit or analog computers.

Generalizing Equations (1-4), the position and orientation of
the distal end of the backbane curve with respect o the base is
written in the form:

H10) = j; B(0(s, 1) ds (18)
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and .
$(1,1) = V{03, 1)), (19)

where ${1, t) is a representation of spatial rotalion. Together,
the vector representing end-effector position and orientation is
Zoe(t) = [7(1,1), B7(1,£))7. By restricting (s, t) to the form in
{6), the configuration is a function of .

The corresponding rate linearized, or differential, kinemalics
commonly used in robotics can then be writien symbolically as:

oz | pagais, iy, | di
Fht= [/ e (20)
and

o av ail(1, i) dji

at Lt)= {ag aji ] dar (21)

Together these equations can be put in the form of {14), and can

be solved for dji/di as in (16). The only problem is that if §(s, )
is not an explicit function, indirect methods of computing {15)
must be used. ~

Aside from explicit representation of the vector function #(s, F)
it may be defined by a system of diflerential equations with ini-
tial conditions as in (7) and (8). Without loss of generality, these
equations are rewritien in the form:

)

B+ f10,0,7,5) =

with initial conditions

ot

(22)

a(0i(0,1),8(0,1), i)y = § (23)

where §, f{-) € RM, 7 € RN, and §(') € R®M. M is the minimum
number of intrinsic gecmetnc functions needed to fully specify the
hyper redundant-manipulator configuration, and N is the number
of end-effector coordinates. In the plane M = 2 and N = 3, while
for spatial manipulators M =4 and N = 6.

Ia situations described by (22) and (23} {which is commonly
the case when seeking configurations derived frorn varialional prob-
lems), a system of auziliery differential equations must be solved
in order to generate (20) and (21) . These N sets of auxiliary
equations are derived by taking the derivalives of {22) and {23)
with respect to the N components of i, denoted z;. The set of
auxiliary equations are wrilten symbolically as the NV x M matrix

equation :
d* o0\ aid (60 Loror_ _of
EH a7 ds \ OF By O i

Note the hr:ear;hy of the above equamons in the auxiliary vari-
ables 2% for (i,7) € (1, ., M) x (1,..., N). The initial conditions
are wrlt,ten symbolicaﬂy as the 2M x N matrix equation:

g7 d 8788 83

et )
[30 ids (6;;) + 25 ai 5‘,:1 + di
which can generally be separated. Note that because derivatives
of smooth functions commute,

o _ 34 (o0
B ds \dp |

Similarly, differentiation and function evaluation commule in the

following cases :
000,) _ [00s,m)]  90(0m) _ [ d [ 80(s,)
=20 a”'. ds 6}1‘ .!:ﬂl
(26)

{24)

(25)

du; u;

The simultaneous (possibly parallel) solution of the original
system of equations and the auxilizry equations provide the means
by which the instantaneous end-eflector kinematics of the hyper-
redundant manipulator backbone curve is computed at each time
step.

While this method may seem very computationally intensive,
there are several ways Lo speed things up. First, if the algorithm is
paralielized as in Figure 2, the computation time is no greater than
if only the original sysiem of differential equations is integrated
forward. Since this must be done for the forward kinematics any-
way, there is no Joss in time to compute instantaneous inverse
kinematics when performed in parallel. Second, if the fastest pos.
sible numerical integration techniques are used, or analog imple-
mentation of the equations is considered, the solution to initial
value problems like {22-23) can be solved approximately in very
little time. Third, if computations must be performed at greater
speeds than possible using this method, then this method can be
used off-line to initiate neural networks or look-up tables which
contain the inverse kinematic mapping.

4 FExamples

In this section, various examples of the general formulation pre-
sented in the previous section are examined. Seclions 4.1 - 4.2
consider several examples of nonextensible (¢ = 0) planar prob-
fems. For convenience of notatien, all explicit time dependence is
suppressed in these problems because time does not enter into the
computations in each instanlaneous boundary value problem.

4.1 A Linear ODE

Consider the linear ordinary differential equation of second order
of the form:

it Pls}e+ Qs)x =0 (27)
where P,§) € C!, with initial conditions:
wf{0) = wp &{0)= ko (28)

It is guaranteed that solutions to this equation are of the ‘modal’
form :

k(8] == a3 pa(s) + azda(s) (29)

where ¢; for 1 == 1,2 are linearly independent functions such that

i+ P(s)di + Qs)y = 0, (30)
and a;, a; are constants such that:
_951(0) l7?'2(3) apy _ Ko
( a0 mwﬂ(ag)—(ku)' (31)

Without loss of generality, solutions can be normalize and com-
bined so that the matrix in (31) is the identity, i.e, a; = xg and
ay = k. Thus, independent of whether or not (27) can be solved
in closed form, the solution will be of the modal form in (29)
(with N = 2 in the case of a second order differential equation,
such as (27)). The varisbles {a;} serve as the free parameters
{#:} in the case of linear equations. In this special case, {g;} are
called the modal participation factors because they describe how
much each linearly independent solution participates in solving
the initial value problem.

In order to generate the partial derivatives :

a6 + Jn

-a—a—;‘= A *3;(.{5, {32)
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which are needed to compute the Jacobian matrix (15), the quanti-
ties %‘; for i = 1,2 can be computed by solving the set of auxiliary
diflerential equations:

d* [ 8k d {8x fr
e (g&:) + P(s) (a_a”) +Qs)5 - =10 (33)
with initial conditions :
8r d { O
Bal(ﬂ) =1 ds (3&1) (0)=0 (34)
and P vy
x I
@=0 = ("g’"g;) (©)=1. (35)

The notation F{D) is shorthand for the evaluation of any function
Fls,t)ats=0

As a concrete example, consider the mast well known of ali
differential equations :

Fiwie=0 {36)
with w = 2%, and initial conditions
k(0) = a; k(0)=ay (37)
The solution to this equation is of course:
#{s) = oy cos 2mws + a;smgws, (38)
2ar
whick means that
— cos?
B(s) = e sin 275 + agil__if%sii)h {39)

As was shown in [ChB902,Ch92}, the end-effector position {eval-
uation of {1-2} at s = 1) can be written in closed form as :

Tee = 22 (0) = sin{@z) T {(a§ + f’g)%] (10)

- - 1
Yoo = 72(0} = cos(&2)Jo [(a"f o ag}ﬁ]
where &y = §2.
The “inverse kinematics” (evaluation of modal participation
factors) in this case can also be computed in closed form :

(41)

(42)

Jitis the “restricted inverse Bessel function of zero order,” and
is defined as the inverse of Jo{z) for 0 < z < p where g & 3.832
is the first local minimum of Jg.

But let us pretend that for some reason we were unable to
explicitly represent the mode functions. Then it would not be
possible to proceed to find a closed form solution. We would have
to use the general techniques of Section 3, or in particular solve
the two auxiliary differential equations :

d* (3&)_*_“225%0

1112 3
o = & (1757 [+ 2] = [Atan2 (o )

gy = 2r Atan2 (z .z, Yoo ).

Frl b Rl (43)
for i == 1,2, with initial conditions {34) and (35}

Because these equations are completely independent, they can
be salved in parallel using either digital or analog computers, Note
that if w s nx for some integral n, closed form forward and inverse
kinematic solutions such as (40-42) do not exist, and the problem
would have to be solved numerically.

4.2 A Nonlinear ODE

As was mentioned in Subsection 1.2, when seeking backbone curve
shapes based on optimization criteria, nonlinear differential equa-
tions in the inirinsic functions often arise. See [ChB92a,Ch92]
for details, or the appendix for a brief review of how the Euler-
Lagrange equations are used ‘This section shows how these non-
linear differential equations are dealt with using the general for-
mulation in Section 3.

4.2.1 A Straightforward Computation

Suppose that the variables py, g, g3 map to the end-effector po-
sition and orientation through the differential equation :

§—pycosf+ pasinf=10 (44)
with initial conditions :

0(0) =0 0(0) = pa. (15)

Auxiliary equations are generated by simply taking derivatives of
the differential equation and initial conditions with respect to the
variables p;, pa, 13

This resulis in the differential equations :

4 [ ae a6 . a0
o= (6—#;) %plmsmf?-huga—#l cosfl = cos @ (46)
with
a0 d {80 _
B—,u](g} = (ﬂ) (0)=0, (47)
& {80 a0 . a9 .
-c—{—s—i (a—m*) +;;3~3Esm0+pga—mcos()._—sm0 (48)
with o, d[a
) e — | - 49
7= () 0= )
and & (a0 a0 a0
e (5};) +!11'a#—351n5+#25;;‘1059 =0 (50
with

ag d (00
E;L.:;{O) =1 i (-a—l;;) (0) = 1. (51)

Each of these initial value problems can be solved separately by
integrating forward simultaneously with (44-45), Note that these
differential equations are linear in the variables :—:.-v with nencon-
stant coefficients and forcing terms which are dependent on .

Figure 3 shows configurations defined by the Euler-Lagrange
equations which have the end-effector follow the trajectory (Tees Yee)
(t+1,1 fort € [0,]] In this example, since end-effector position
is the only quantity of interest, the constraint 9((]) =2 = pyis
imposed arbitrarily. In this way, the manipulator effectively acts
as i it only has two degrees of freedom. Thus, the Jacobian for
this case is 2 2 x 2 matrix

Figure 4 shows the workspace corresponding to the configu-
rations generated by (44-45) for (u1, 22} € [—18,18] x [-15,55]
Figures 5(a)-(b) respectively show where configurations are sin-
gular in the py-pa space and the workspace. Values of g, and
47 which cause the Jacobian to have determinants with absolute
value less than 0.05 are considered singular. In Figure 5(a), the
light region indicates where the Jacobian is nonsingular, whereas
in Figure 5(b) the dark region indicales where the Jacobian is
nonsingular.
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4.2.2 Transforming Equations into Simpler Forms

Equations (44-45) can easily be transformed into a simpler form.
Taking the derivative of {44} with respect to s yields:

dg . df

E;j—i-(p,smﬂ—%—p;cos{?)a-m(} (52)
with resulting initial conditions :

00)=0 0(0)=ps 6(0) = py (53)

Multiplying (52) by &, integrating, and evaluating with initial
conditions (53), yields

1; . 1

502 — (pysinf 4 pycosf) = 5;13 - Jlg. {54)
Combining (52} and (54} so as to eliminate the trigonometric
terms:

:c+»;(%x2+;:,—%yg) e {55)
with initial conditions :
£(0) = p3 &0} = . (56)
# can then be computed from :
waﬂ=L}@¢mm (57)

A change of coordinates for the free parameters can be defined
as pio ~ 1p = ga, j1 = g2, and p3 = g, to simplify the equations.
The decision as to what form the equations and free parameters
should be manipulated into depends on how the solution will be
implemented. In other words, some forms are more amenable to
numerical solution because a reduced number of arithmetic oper-
ations and function calls need to be performed, while other forms
may be more convenient for analog computer implementation be-
cause of particular hardware features.

Thus, we ean rewrite (55-56} as:

. I .
E+ x(E.\:? —q) =0 (58)
with initial conditions

(=g K0)=nq (59)

The corresponding auxiliary equations are:

d Ok 3 ., ax
I (%T) + (5" o ‘i':s) i 0 (60)
for 1 = 1,2 with boundary condilions:
O d [ dx
Eo=-g (2o (1)
nd 2 d (8
I K
= () 0=0 (62)
The third auxiliary equation is :
d {9 3, de
£ (3-5») + (30 -m) g = (63)
with initial conditions
au d {dx
P e = 4
E0-1 (2= (64

From the solution of these equations, we can then compute :
0 e O
d ar d

5 Alternate Formulations

Alternatives to the intrinsic formulation and associated auxiliary
equations are examined in this section In Subsection 5.1 an ez-
trinsic formulation of the same problem examined in Section 4.2
is introduced. In Subsection 5.2 it is shown how the shooting
technique, which is applicable to both intrinsic and extrinsic for-
mulations, is achieved without auxiliary equations.

5.1 An BExtrinsic Formulation

This section illustrates how exzirinsic parameterizations can be
used to reformulate Lhe problem considered in the previous sec-
tion. An extirinsic formulation uses Carlesian coordinates to de-
fine a curve and imposes appropriate constraints. This contrasts
to the intrinsic approach used previously in this paper, in which
2 minimal number of geometric funciions where used to define
the backbone curve shape (and thus the manipulator configura-
tion). The benefits of the extrinsic formulation is that for some
problems, intrinsic formulations lead to intractable mathematical
problems.

As an example of an extrinsically formulated problem, the
same extremal bending criterion defined for the previous example
is used. However, the algebraic description of the Euler-Lagrange
equations and the related numerical solutions are significantly dif-
ferent.

In the extrinsic formulation, the measure of total curve bend-
ing is defined as

1. .
I::./n F-fds. (66)

This is equivalent to (10} according to the definition of curvature
when ¢(s,1) = 0. This can be verified by substituting (1-3) inta
(66). A benefit of the extrinsic formulation is that there is no
need for the isoperimetric constraints like (31) . The drawback
however, is that algebraic constraints of the form :

Fo@=1 (67)

must be imposed to ensure that the curve parameter is arc length
in the nonextensible case. Otherwise, the quantity in (66) is not
a measure of pure bending, because the physical meaning of the
curve parameter varies with configuration.

Therefore, defining

£(s) = 5B )+ pla)(E E-1) (68)

and using the Buler-Lagrange equation as explained in the ap-
pendix, a system of differentizl equations resull which are writien
in state-space form as:

H(H)X = (), (69)

¢ _ d;
where X = [xx.ffz,$3,€L‘4,$s,$s,-’~"7,$s,ﬂ?n]:r, Tigy = '5,‘, Tifpq =

ff', and T = %ﬁi fori € {1,2}, and zg = g, Also:

= Is ©
H(X) = ( e A) (70)
where 15 is the 6 x 6 identity matrix,
- 1 0 —T3
AX)=10 1 ~z4], (11}
I3 Ty 0

and

. §(x)
HX)=| | , (72)

1071



where the components of §(X) are
gi(X) = ziya (73)
fori € [1,6] and
o T9Ts
Y)Y = Z9Tg {14)
~3{ 2527 + #7s)

The matrix H(X} is inverled to yield:

X = HYE)f(X) (15)
R = (T L), (76)

. =l X2y Ta
_I(X)= — T34 2 x4 - (77

—~ T3 —Tg 1

where

and

Equation (75) has initial conditions: (0} = za(0) = :c3(0) =
z{0) = 0 z4(0) = 1; 25(0) = pr; 72(0) = p; 78(0) = —pi; and
z5{0) = {,Uh,ug“ug} are undetermined constanis which are
consmtent w:ih the constraints at s = 0 (such as £{0}- r{{)) =1},
and the derivatives of the constraint equation, eg, Forf=1
implies £- £ = 0 for all s including 5 = 0. Because 7 is a [unction
of {p;}, we write

(s, ) = (s, /i(1)) (78)
The values of {g;} must be chosen to satisfy end-effector posi-
tion constraints. (75) is solved numericaily using the same kind of
shooting method developed for the intrinsically formulated prob-
lem. That is, the Jacoblan matrix is written symbolically as

z

30 = 57 (79)

where the collums of the Jacobian are generated directly by inte-

grating:
d {88 SN
o (Fﬁ:) =6_,(’le gee¥es] (80)

with respect to s.

Both the intrinsic and extrinsic {formulations have advantages
and drawbacks. For lnstance, an advantage of the extrinsic ap-
proach is that the auxiliary equations are zll of the same form,
with differences occurzing only in the initial conditions. This is
a benefit for modular implementation and ease in programming
because the same function can be called with different boundary
conditions. Another benefit of the extrinsic formulation is the
relative ease with which complicated variational problems can be
modeled On the other hand, the intrinsic formulation has the
benefit of a reduced number of equations which must be com-
puted, and provides a more easily visualized description of the
georetry of the backbone curve.

5.2 Approximate Shooting without Auxiliary
Equations

In either the intrinsic or extrinsic formulations, explicit computa-
tion of auxiliary equations can be avoided by simply perturbing
the reduced set of free variables and using the definition of the
partial desivative That is,

Bféi‘iﬁ)_ = }; [#(s, i + v&) — Z(s, )] 1

for 0 < v << 1 {&]) are the natural basis vectors for RN In this
way no auxiliary equations need to be computed.
potential for numerical ill-conditioning increases.

However, the

6 Conclusions

Methods for generating the inverse kinematics of hyper-redundant
manipufator configurations without explicitly defined intrinsic shape
functions have been presented. Examples illustrated the tech-
nique and showed how paraliel numerical algorithms can be im-
plemented. In addition, algorithmic singularities associated with
a special class of constraints on hyper-redundant maaipuiator con-
figurations were examined.

7 Appendix : Review of the Calculus
of Variations

The essential results from the calculus of variations which are used
in [ChB922,Ch92] to derive some of the differential equations used
as examples in Sections 4 and § are summarized here. Equations
{10-11) and (66-67) were used to generate manipulator configura-
tions. These equations are of the general form:
1 - o
1= [ 15,8051 s), - T ())ds (82)
(s} € RN is a set of functions such as the backbone curve intrin-
sic functions or the extrinsic ¢oordinates of points on the curve.
F() is a physically motivated function, eg, curvature squared.
f* is shorthand for & = ‘”. [ChD92a] dealt with extremizing
(82} subject to integral constramis (which arise from end-effector
position constraints) of the form:

[ (609,00 FNds =20, (89)

(82) may also be subject to finile constraints of the form:

R(s,0(s),0(s),

as are encountered in the exirinsic formulation. The calculus of
variations [Ew69] provides a means for finding a d(s) which yields
extremal values of Dquation (82) with constraints (83) and/or
(84). To solve such problems, define a function (which we will call
the Lagrangian):

7(s)) =1, (84)

[-:mf’i'ﬁc‘g'*'ﬂu“iia

where ji. and fi,{s) are respectively constant and variable La-
grange multipliers associated with the isoperimetric and finite
constraints. The #(s) which are extremals of (82) subject to con-
strainis (83) or (84) is a solution to the Euler-Lagrange equations:

§(~i)f% (%) =0 j=1, N (85)

With constraints (83) or {84} and boundary conditions 0(0) = 0,
and (1) = & for i € [0,1,.,n], (85) can be solved to find the
extremals, #, and Lagrange mult:phers fi. and f,{s) Necessary
conditions for solutions to {85) is discussed in [Ew69], while suffi-
ciency conditions for minimal solutions can be found in [Bre91].
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Curve segment represents a
continucus ‘infinite dof’

manipulator

Tigure 1: A Continuous ‘Infinitely Redundant” Manipulator
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Figure 2: Schematic of a Parallel Algorithm
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Figure 3: Configurations Associzted with Equations (44-45)

Figure 4: Workspace Associated with Equations (44-45)
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Figure §: Singularilies Associated with Equations {44-45)







