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Abstract

The term hyper-redundant refers to redundant manipulalors with
a very large or infinile number of degrees of freedom. These
manipulators are analogous in morphology lo snakes, elephani
trunks, and tentacles. While a variely of obstacle avoidance
algorithms for nonredundant and mildly redundunt manipula-
tors exist, little analysis has been performed for hyper-redundant
robots. This paper presenis a strictlly geomelric algorithm Jor
hyper-redundant manipulator obstacle aveidance which relies on
the use of ‘tunnels’ in the obstacle-filled workspace Methods
of differential geometry ave used lo formulale equations which
guaraniee that seclions of the manipulator are confined fo the
tunnels, and therefore avoid obstacles. A general formulation is
presented with an ezample Lo ilustrate this approach.

1. Introduction

A hypet-redundant manipulato: is 2 redundant manipulater in
which the number of redundant degrees of freedom is large or
infinite. These manipulators are analogous in moiphology to
snakes oi tentacles A number of recent works have been de-
voted to the design and system aspects of snake-like manipula-
tors [8,13,14], although less work has been done in the kinematic
anzlysis of these manipulators. Because of iheir highly artic-
ulated structures, hyper-redundant manipulator are naturaliy
suited Lo operation in highly constrained environments

Several methods for dealing with the problem of robot cbstacle
avoidance in a time-independent workspace environment have
been developed by other investigators [1,3,10] One popular
method is the artificial potential field [10]. In this method, an
artificial repulsive potential field is assumed belween the ma-
ripulator and obstacles in the workspace. Similaily, in eother
methods a measuie of distance from obstacles to Lhe manip-
ulator can be defined, and optimized 1o yield configuiations in
which the manipulator does not touch obstacles [1]. These meth-
ods have potential drawbacks In the potential field approach,
the 10bot can ‘get stuck’ in a potential well, although methods

a37

to circumvent this problem have been investigated [11] The
computational burden of the oplimizalion methods is depen-
dent upon the degree of redundancy, and thetefore prohibitive
for hyper-redundant manipulators,

This paper presenis a novel approach, termed “tunneling,” to
the obstacle avoidance problem which is applicable to hyper-
redundant manipulaters The tunneling method relies upon a
novel kinematic formulation, which can be found ia [4], and is
briefly reviewed in Section 2. Section 3 presenis the obstacle
avoidance methodology. Section 4 presents an example to illus-
trale the technigue.

2. Kinematics of Hyper-Redundant Manipulators

Hyper-redundant manipulators willi constant base io end el-
fector length are 1efeired to tluoughout this paper as fensor
manipulators. A hyper-redundani Lensor manipulaior may be
comprised of many rigid links, as in Figure 1{a), or the physical
construction of the device may be iruly continuous such as a
preumatic or tendon based structure, as in Figure 1{b).

In—1 <

in

Discrete and Continuous Hyper-Redundant
Manipulatais

Figure 1:



A Shackbone curve” of constant length can be defined which
exactly captures the continuous manipulator shape In the case
of many discrete links, the essential macroscopic features of the
manipulator can be captured by a continuous hackbone curve
of the same length as the sum of the link lengths As reviewed
in Section 4, the obstacle avoidance computalions can be per-
formed using the continuous backhone curve, which is Lthen used,
via a ‘fitlting’ procedure, ta define the joint angies of a discrete-
tinked manipulator. In [5,6] the fitting procedure is described in
detail, whereas the locus of this papet is the determination of
appropriate backbone curves [or obstacle avoidance

2.1 Planar Hyper-Redundant Manipulator Kinematics

Figure {1h) is the ‘backbone’ curve of a tensor manipulator.
Attach a [rame defining an x-2a coordinate system fo Lhe base
of the backbonre cuive The backbone cutve is the locus of all
points in the base fame whick have position defined by T(s, 1) =
(x1(s,2), wa{s,)]7. sis the backbone curve arc length, measured
from the origin, and it is assumed that all fengths in the plane
are scaled to units of the manipulator length so that s is in the
range 0 < s < 1.

A time varying curve with aibitraly and pessibly time varying
position and orientation in lhe plane can be described by the
equation:

(s, 0) = QUUT(s,4) + &) (1)

(s, 1} is a vector [rom a fixed reference flame to a point on the
backbone curve #is a 2 % 1 vector, and Q is a 2 x 2 rotatlion
matrix which respectively define the position and crientation of
the backbone curve base frame in the global reference fiame
They may be time depeudent il the base of the manipulator is
translating and rotating

If we assume that T(0) = ¥ and that the tangent to the baclk-
bone curve at ils base points in the ze-direction, the follow-
ing intrinsic equations define the shape of a planar continuous

hypet-redundant manipulater in its base frame {6]:

ETERIE /ﬂl sin #{a, 1}da

s (2)
an(s, ) z[ cos 0o, )do
0
where: .
0s,8) = [ w(o, t)da (3)
[

x(s,1) is the curvature function, which is defined as the magni-
tude of the rate of change of the unit tangent vector at a point
s along the curve: (s, t) = |9°T/8s%| = 0/8s O(s0,1) is the
angle which the tangent to the cutve at the point s = sq makes
with the tangent at the point s = 0, 1 e, the angle il makes with
the 22 axis measured in a clockwise sense

For compactness in notation, Equation (2) can be wiitten in a
complex notational forn: which is used in the remainder of this
papet:

2(5,1) = 21{s,t) + twals, 1) = i[‘ e~ dg.
]

{4)

While the forward kinematics of planar tensor manipulaters is
givea by Equations (2) and (3}, the inverse kinematics and t1a-
jectory planaing can be reduced to determining the spatial and
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temporal behavior of the cuvvature [unction, x{s, 1) Thatis, the
function x(s,1) wiil determine the bending of the mechanism as
a function of time, and is selected to achieve desired objectives,
which depend upon the nature of the hyper-redundant manipu-
lator application. A methodology, based on a modal expansion
of #(s, 1), to efliciently solve inverse kinematics problems is pre-
senled in [4,6]

2.2 Spatial Hyper-Redundant Manipulator Kinematics

Theee functions are required to uniguely determine thie kinemat-
ics of spatial hyper-redundant manipulators. Two of these func-
tions determine the shape of the manipulator backhone cuive.
These funclions are denoted X(s,¢) and T{s,t) and are relerred
Lo hete as quasi-curvature and guasi-torsion. For comparison of
these quanlities o the curvatwe, &, and torsion, v defined in
classical differential geometry of curves see [4]. Further defining

K{s, )= /ﬂ Ko, $}de  T(s {}= [ST(U,t)dcr (8)
9 it

every point on the backbone cuive can be described by the egua-
tions:

[ f; sin iy (o, () cos T(o, t)da \
{6)

F(s, 0y = | [y cos K{o 1) cosT{o, {)do

f(: sin T{c, {)de

The same inilial conditions on the position and langent of the
curve at the base of planar maniputators held for spatial manip-
alators as well

The thizd function R{s, ) is the rate of roll disiribution, which
determines how cootdinale frames in planes normal to the hack-
bone curve rotate with respect to each other [§] The rate of
rol] distiibution plays no role in the current obstacle avoidance
formulation

3. Overview of the Obstacle Avoidance Scheme

The method presented in this papet is applicable Lo time-inde-
pendent workspace environments. It is assumed that the layout
of abstacles in the warkspace is well known, such as in an indus-
trial setting, or assuming a sufficiently accurate vision sensing
systern. Dxeculing 2 task in a field of obstacles is equated to
defining a path around obstacles to which the manipulator must
adhere. Such a path, as illustrated in Figure (2}, provides a tra-
jectory o1 ‘tunnel’ ia which the tensor-manipulator can ‘slither’
to circumvent the obsiacles

In practice, an automatic means for selecting one or more feasi-
ble tunnels which successfuliy negotiate the obstacle field could
be generated using previously published rethods TFree-space
methods [2] based on generalized cones could be used to identify
free path segments which could be assembled together to form
the “tunnels” required by this method. Once the end-effectar
has passed through the obsiacle field, the pottion ol the ma-
nipalator in the obstacle field can remain stationary while the
unconstrainted portion of the manipulator can petfoim useful
work The methods presented in [4,6] can be used to control the
geometry of the unconstiained manipulater segment outside of
the obstacle field.

Two problems must be solved to implement this obstacle avoid-



ance scheme. Tiist the proper geometiical constiaints on the
manipulator must be determined so that i statically conforms
to the tunrel constraints. This is accomplished by determining
the appropriate curvature functions for those sections confined
to tunnels, and defining compatibility equations for the fiee sec-
lions. Second the proper time rate of change of the manipulator
configuration must be compuled so that the moving manipula-
tor obeys the geometiic constrainls of the tunnels as it moves
through them In this way the manipulato: can ‘slither’ through
the tunnels from its staiting configmation to its final configua-
tion while obeying all of the geomeliic constraints In this paper
we do not assume or preclude any patticular actuation scheme.
Both position and 1ate information are computed, which in turn
can be used to diive most conceivable actuator serve conlrol al-
gotithms. The actuators in tuin contiol the manipulator shape

3.1 Planar Manipulator with Tunnel Constraints

-5 = Sen—1

Figure 2: Hyper-Redundant Maniputator Constrained io
a System of Tunnels

Figure (2} shows a hyper-redundant manipulator in which cer-
tain segments of its length are constiained to pass through tun-
nel segments in order to avoid obstacles. Let the segments which
are constiained to fit inside a tunnel be temed interior seg-
ments, while the uncenstrained segments are termed exlerior
segments. Number the segments sequentially staiting {rom the
base eof the manipulator, assuming that the fiist segment s al-
ways an extexior segment. The inteiior and exterior segments
will respectively have even and odd indices

A curvature function which will satisly the seclion by section
constraints has the form:

n

w(s,1) = 2, wils, )W (s, sioy, 5}

i=1
where sp = 0 and s; = $;(t) for i > 0, and i indexes the manip-
ulator segments #;{s,1) is a local curvature function, and W is
termed a window funciion:

W(s, siw1,8) = His — 5;) ~ H{s ~ Si-1).
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1 is the Heaviside, or unil, slep funclion. In other words, the
curvature function is defined as a piccewise continuous function,
where each segment of the manipulator is assigned a diflerent
curvature function to satisfy its local constraints. Jor interior
segmenis the curvature lunclion, termed an inlerior local cur-
vature function, must Lake the foin: of a tiaveling wave:

Ko w= fcg{(s - sg.'_](i))

whereas the curvature function describing extetior segments (an
exterior local curvature function) can have the more general
form:

Koigl = Koy (5,1)
However, the exterion segments have kinematic restrictions on
the positien and arientation of the manipulator at the entrance
and exit of interior segments:

LT it
hfg,'+1(15 = 0§:+

(8)
sai
and
. 21 . ¥ 4
1./ exp mz/ tpip1de | ds = 23171 (9)
2 Y -
03;“}‘! and zfl’:""l ate the constant orientation and pesition of the

frame at the entrance of the i+1st tunnel with respect Lo the
frame al the exit of the ith tunnel. In this way, Lhe manipula-
tor backbone curve is at least a once continuously diflerentiable
curve along its whole length.

The velocity constraints on the free sections of the manipulator
are found by simply taking the time derivative of the position
constiainis represented by (8) and (9) to yield:

- d e
03+ = — Kaiyyds = 0 (10)
= did,.
and
" d [ L
gt ia exp ml/ »h":,‘.*.ldﬂ' ds = 0 (11}

834 i

Since & = s (1), Liebnitz's 1ule can be used to write the velocity
constrainis {10) and (11) explicitly as:

/

i

Ikt Dpens . .
~—-~§i3'~'—1~ds + Kaigt (S2igra 1) Srig) — Koigr (520,1) 8oy = 0

and

(13)

2041 . . .
—i / "ag%ewﬂﬁds +emPuleientlsy b =0

sai

where

Oail(s, 1} = 7/‘! ko, )do

Sny

Note that for the parts of the manipulator which fully oecupy a
tunnel, a1 — sa; = const, which can also be wiitien

Baia1 = 8y

The velocity of every point along the manipulator is of the form:

_2 0 e, [200
v{s,i}_z.a—t-_/; e r!am[ﬂ 57€ do. (14}



3.2 Spatial Manipulator with Tunnel Constraints

Equations very similar in nature to those defined for the planat
obstacle avoidance problem are now defined lor the spatial case
Figure (2) is still applicable, and the same indexing system is
used.

The funclions X and 7 ate taken to be of the form:
"
Kis,t) = 2 Ki(s, OW(s, si-1, )
yzz]

T(s 1) = 2, Tils, )W (s, siz1,5i)

=1

(15)

where
Koai = Koi(s = s2ici(1)) o T = Tails — s2i-1(1))
are of the foum of traveling waves, and

Kais1 = Kaig1(5,8) 5 Taigr = Taiga(s,t).

are of a more general form, but must obey the constraint equa-
tions

82§41 A
[ Kajpts = consiy / Taizyds = consta  (16)

ani i

and
T( 52041, ) ~ T(52i, 1} = d

{17}
where d; is the constant vector measuring the diflerence in posi-
tion of the entrance of the i+1st tunnel with respect to the exit

of the ith tunnel as measured in the base frame

Rate equalions correspoading to (16) are of the same form as
(12). The explicit 1ate form of {17) is a complicated function
of the quasi-curvature and quasi-lowsion, and can be writlen
symbolically as

a1 (S'.list).

. or IF . 0T

52i41 “5‘;{521‘4«1, B + oy lsmia 1) = Snig=(sh) £+
Taking the time detivative of Equation (6) the velocity of every
point on the manipulator can be written as

ar

&5 sin K sin Tda + 7 84

¢ S cos K cos Tdo \

(o

_fra

e s g
g Sreosh smfdd——fﬂ

-ﬁ(s,t) = T

sin K cos T'do 1
f(;' %{— cos Tdo }

(18)
4. A Specific Example

Figures 3 and 4 illustrate & specific example of the planar for-
mulation presented in Section 3.1 The hyper-redundant manip-
ulator must pass through a single maze-like tunnel and reach a
goal on the other side. In the first unconstrained exterior sec-
tion, i.e, 0 < s < 51, the curvature function will be assumed to

have the form!:
2xs

s1(1)

k1{s,t) = a{t)cos
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wheze a{t} will be determined such that the point Z{s1,t) on the
moving, or slithering, manipulator is always coincident with the
tunnel entrance

Integeating the forward kinematics equations (2} and {3), we get

o 27 s
wy(sy, 1) = sin | ——sin m) ds=10 {19)
o 4 51
and
o s 27r5) asy
o 1 m/ ( H e 3 Q
za(sy, 1) . cos | 5 sin : ds = Jy (—mgw) 4 (20)

where Jp is the zeroth order Bessel [unclion

Let & > 0 be the distance from the base ol the manipulator to
the entiance of the tunnel % is 2 constant and the following

must hold:
asy(1) )
2

.‘;‘1{.‘,}.

Tor h to be positive, it is necessaty that

Bz Jy (

{151
G < g‘ < U1
where ) & 2.405 is the first zero of Jg.

The condition for stationarity of F{s;, 1) at the entrance of the
tunnel, while s; changes, is

2r h
a(t) = I’(Zi"“ ! (m) (21)
and so . N 27 J—l( h ) 27s .
"1(5! )“ S]“) ] 51('!!) €03 51(“ ("“")

where Jg! is a restricted inverse Bessel function, defined in [4]

z

\

r&—:—’,{i*"*‘%
}-‘

frigure 3: Dimensions of the Obstacle Field

¥ This form for the curvature {unctions was chosen to yield a
closed form inverse kinematic solutions for the iocal manipulator
segment Other closed form inverse kinematic solutions can be
found in {4,6]



The obstacle environment is illustiated in Figure (3). With
E{s1,t) = [0,h}]T fixed, we can now determine an appropriate
£z(s,1) which is the curvature of the section of manipulator con-
fined to the tunnel. For this particular obstacle field xy can be
defined as follows:

Ka(s,t) = W}Tzuf(s, 81,814 L) = W(s, 51 + L, s1 +21)
+W{s, 51+ 2L, 5 + 3L}

This choice of kg corresponds ta thiee consecutive semi-circular
arcs. The magnitude of the curvature over each of the three
sections, each with arc length L, is 7/, coiresponding to semi-
circles of radius r = L/x. The window funcliens take the value
of unity over each of the semicircles, and the sign indicates the
sense in which the arc turns. A positive sign indicates clockwise
bending, and a negalive sign indicates counterclockwise bending
of the manipulator

(23)

The compeosite curvature function for 1his example is then

#{5,8) = 11 {3, 0)W(s,0,91) + K25, )W (s,8,,1) (24)

Integrating Equation (24) in the variable s, as in Equation (3),
we find that
h 27
B(s,t) = J; ! (,i.) sin (—"i) — 25— s1)W (s, 81,5 + L)
8 53 L
+ {%(s =8y~ L) —ali¥(s, 81 + L,s8; +28L)
- -I”-(s — 51— 2L)W (s, 81 + 2L, 51 -+ 3L)
- ¥ (s, 81+ 3L,1).

N

25)

\—?} ]

Figure 4: Conlinuous Hyper-Redundant Manipulator in
an Obstacle Field

aan

A time history ef this tunneling obstacle avoidance maneuver is
shown in Figuie 4, cotresponding to Lthe obstacle with dimen-
sions shown in Figwie 3. The configurations shown coirespond
toh=04, L =02 and 5; = 100,0 94,0 83,0.68,0.54,0 44

We now demonstrate the adaptation of the continuous manipu-
lator analysis, via a fitting procedure, Lo a discrete n-link planar
manipulator with n revolute joints (such as in Figure 1(a)). All
links are assumed (o be of the same length, and the total length
of the manipulator is normalized to 1 The forward kinematies
for this manipalator is:

-w-l-i sin(i f]j)

Lee (26)
i=1 i=1
1 n { ¢ \
Vee = =2, cos | 2 45 (27)
“oom i=1 \j:l J}
O = Z i (28)

i=]
where #ee, Yoo, and g denote the position and orientation of
the end eflector, and ¢; denotes the angle of the j* joint.

The discrete manipulater shape and end-effector location are
fitted to the conlinuous curve model by minimizing the sum of
squared distance between points on both manipulators located
at g = & for 1 = 1,.,n To do this, we first assume the the
continuous curve selution can be used Lo approximately compute
the diserele maripulator joint angles:

27 +1
o =0 (%E2) —o(

in

2j ~1

) + et (29)

2n
In other words, we take the angies of the discrele case to be
approximately the change in angle over a corresponding section
of length in the continuous case. This approximation will lead
to errors, and to account for these errors, we inttoduce n free
‘fitting’ parameters, ¢;, which can be adjusted to minimize the
error between the disciete and continuous manipulator shapes.
The sum of the squared distances from the joints on the discrete

manipulator to the corresponding points on the continuous ma-
nipulator is:

<

[f ¢
G= %E} i(/" sinG(ISW;*;E i3 ‘IJ\

+ (,/0%‘:050([3‘ —:;Zi‘: COSE" f]j) "}

(30)

i=1 i=1

This function is to be minimized with respect to the {e;}. As-
suming the {¢;} ate small, (30) can be linearized to piovide
n linear equations in {e;] which can be efficiently solved (see
[6] for details). If the calculated {c;} are small, the linearizing
assumption is justified I net, the lirear approximation fitting
procedure can be iterated, or 2 much less efficient nonlinear solu-
tion proceduie must be implemented. This will generally only be
the case when there are points on the backbone cuzve with laige
curvature and/or the discrete manipulator has a small number
of links. Figure 5 shows an example of a 10 link manipulator
which has been 'fitted’ to the configurations in Figure 4.
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Discrete  Myper-Redundant
Obstacle Avoidance

Figure 5: Mauipulator

5. Conclusions

This paper presented a novel obstacle avoidance concept, hased
on “tunneling,” for hyper-redundant manipulators of constant
length A general formulation was given which allows a manip-
ulator to maneuver through a complicated sequence of inlerior
and exterior segments. Compuler simulations were presented
for a particular example In principle, connecting circular ares
{of more complicated blending curves} and line segments, as in
the example, can be used to construct a system of tunnels for
maneuvering in arbitratily complex obstacle fields. The benefit
of this method over existing potential field and optimal methods
for application to hyper-redundant marpipulatoss is that a com-
paratively efficient set of kinemalic equations based on differen-
tial geornelry is computed!, allowing much faster solutions The
method was demonsiiated for a continuous cuive model which
can be used 1o represent conlinuous hyper-redundant manipu-
latozs ar the approximate backbone curve of discrete manipu-
lators. While the applicability of the present model diminishes
with diminishing degree of redundancy, it works quite welt in
situations such as the continuous manipulator case, where con-
ventional methods of analysis do not apply

References

(1} J. Baillicul, “Avoiding Obstacles and Resolving Kinematic
Redundancy,” Proceedings of the 1086 IEEE Internalional

T The complete calculations [or the example in Section 4 te-
quired approximately 3 secands of computation on a Sun Mi-
crosysiems 4/260

342

6

=

=

[13

[t

[14]

Conference on Robolics and Aunlomation, San Francisce,
CA, 1986, pp 1698-1704

R A Brooks, “Selving ihe Find-Path Problem by Good
Representation of Free Space,” [EEE Transaction on Sys-
tems, Man, and Cybernetics, vol SMC-13, no 3, March
1983, pp. 190-197

1 Canny, The Complexity of Robot Maotion Planning, The
MIT Press, Cambridge, MA, 1088,

Chirikjian, G 8, Budick, J W, ¢ Kinematics of Hyper-
Redundant Manipulalois,” to appeal in the Proceedings of
the ASME Mechanisims Conference, Chicago, 11, Sept 16-19,
199G,

Chirikiian, G .5, Burdick, J. W, “An Obstacle Avoidance
Algorithm for Hyper-Redundant Manipulators,” Proceed-
ings of 1990 IEEE Conference on Robotics and Aulomation,
Cincinnati, Oh, May 14-17, 1990 '

Chirikjian, G.5., Burdick, J W, “A Modal Approach to the
Kinematics of Hyper-Redundant Manipulatos,” Robofies
and Mechanical Systems Report No. TUMS-80-3, Dept. of
Mechanical Engineeiing, California Institule of Technolopy,
Pasadena, CA, 91125, Seplember 1989,

Chirikjian, G, Burdick, J W., “Hyper-Redundant Robot-
ic Locomotion: Locometion Wihout Wheels Tracks, or
Legs,” Robotics and Mechanical Systems Technical Report
No RMS-80-G, Dept. of Mechanical Engineering, Califor-
nia Institute of Technology, Match 1990

Hirose, S , Umetani, Y , *Kinematic Contrel of Active Cord
Mechanism With Tactile Sensors,” Proceedings of Second
fnternational CISM-IFT Symposium on Theory and Prac-
tice of Robols and Manipulutors, pp. 241-252, 1976

Tvanescu, M., Badea, I,*Dynamic Contrel for a Tentacle
Manipulator,” Int Conf on Robotics and Factories of the
Fuiure, pp 317-328, Dec 4-7, 1984, Charlotie, Nc, USA

IKhatib, O, “Real-Time Obstacle Avoidance for Manipula-
tors and Mobile Robois,” Int. I Robotics Research, Vol
5, No 1, 1986

P. lkhasla and R. Volpe, “Superquadric Artificial Potentials
for Obstacle Avoidance and Approach,” Proceedings of the
1988 [EEE Iiernational Conference on Robolics and Au-
tomation, Philadelphia, PA, 1988, pp, 1778-1784

Millinan, R.S., Parker, G.D., Elements of Differential
Geometty, Prentice-Hall Inc , Englewood Cliffs, NJ, 1977

Shahinpoor, M., Kalkor, H., Jamshidi, M., “On Magneti-
cally Activaled Robolic Tensor Aims,” Proceedings of the
International Symposium on Hobot Manipulators: Mod-
eling, Conlrol, and Education, Nov. 12-14, 1986, Albu-
querque, New Mexico.

Tesar, D., Butler, M S, “A Generalized Modular Archilec-
ture for Robaot Structures,” ASME Manufacturing Review,
Vol 2, No 2, June 1989, pp. 91-118.



