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Abstract

A “hyper-redundont” manipulator is a redundent manipulator
with a large or possibly infinite relative degree of redundancy.
These manipulators are analogous in morphology to snakes, cle-
phant trunks, and ientacles. This paper presenls a novel ap-
proach to the forward and inverse kinematics of these manipy-
lators which is based on differential geomelry. The mechanisms
are assigned a ‘backbone curve’ which captures the essential ge-
ometric features. 4 modal expansion of the backbone curve’s
curvgture funclion is introduced in ovder to reduce the inverse
kinematics problem lo the search Jor a finite set of modal par-
ticipation faclors. For fruly flexible devices, solutions derived
from the backbone curve can be used directly to control the hyper -
redundant arm geomelry. For discrete linked manipulalors, the
actual manipulalor is ‘fitted’ to the backbone curve solution.

1. Introduction

Hypei-redundant manipuiators have a relative degree of redun-
dancy which is large or infinite. In opeintion, these manipulators
approximate the shape of snakes, elephants’ trunks, or tentacles
Implementations of hyper-redundant manipulators may consis
of truly flexible physical structures, such as a pneumatically
driven hose, or consist of a large number of rigid links which
approximale a continuous morphology  Several overviews and
designs of hyper-redundant manipulators can be found in the
robotics literature. It would seem that there are as many differ-
ent names for these manipulators as there are aulhors, ‘Hyper-
tedundant’ manipulators have been called ‘spine’ [5], ‘flexible’
[7], ‘tentacle’ [8], ‘elephant-trunk’ [9], ‘tensor-arm’ [11}, and
‘snzke-like’[12). The hyper-redundant manipulator Hterature
has primarily focused on manipulator systems, although one
can also imagine using hyper-1edundant mechanisms as grasping
devices [10], or even for novel forms of locomotion [4] Appli-
cations of hyper-redundant manipulators may include actively
conlrolled medical endoscopes, devices Lo inspect pipes or tun-
nels, novel locomotion devices, and arliculated space strucluies.

There has been a sporadic history of hyper-redundant manip-
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ulator research with few sustained eforts leading to practical
results. The failure of hyper-redundant manipulators Lo achieve
wide-spread applications is due to inefficiency and inefiectiveness
of previous kinematic modeling techniques, complex mechanical
design, and complexity in the programening of these devices aris-
ing from their non-anthropomerphic geometry. In this paper we
address the first problem Novel and efficient techniques and
algorithms for analyzing the forward and inverse kinematics of
hyper-redundant manipulators are presented. It is hoped that
this framework will form a foundation for fubure work which
will enable hyper-redundant manipuiators to be more widely
applied. Related works in obstacle avoidance and locomotion
which employ this basic ramework can be found in [2,41

2. Differential Geometry of Planar Curves

A planar hyper-redundant manipulator may be comprised of
many rigid links, as in Figure 1(a), or the physical construction
of the device may be truly flexible-such as a pneurnatic or tendon
based structure, as in Figure 1{(b). This section will consider
only the case of continuous planar manipulators, as Section &
explains how this analysis can be extended to the case of rigid
link manipulators.
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Figure 1: Planar Hyper-Redundant Manipulators



We assume that the geometric features ofa hyper-redundant ma-
nipulator can be captured by a “backbone curve,” of constant
length, which lies along the centerline of the hyper-redundant
manipulator. Attach a frame defining an @3-z coordinate sys-
tem to the base of the backbone curve. The ‘backbone curve’
is the locus of all points in the base frame which have position
defined by E(s) = Iz (s), z2(8)]7. s is the backbone curve arc
length, measured from the origin, and it is assumed that all
lengths in the plane are scaled to units of the constant manip-
wlator length so that s is in the 1ange 0 < s <1 1t is possible
to define a single function, the curvature function, defined as
x(s) = |d*F/ds?|, which totally defines the shape of a planar
curve,

— T and that the tangent to the backbone

If we assume that Z(0)
[0 1),

curve ai its base peint is in the za-direction (dEfds =
the curve can be parameterized as follows:

z1{s) = /: sinf{a}doe  wals) = [: cost{o)dos (1)

where: s

#s) = /0 £(o)do ()

0(sg) is the angle which the tangent to the curve at s = 3¢
makes with the fangent at the point s =0 {the zg-axis) mea-
sured clockwise. This formulation is not altered if the curvature
function depends upon fime as well as arclength

Remarle: Planar hyper-redundant manipulator for-
ward kinematics is completely determined by the cur-
vature function of the backbone curve In this ap-
proach, hyper-tedundant manipulator inverse kinemat-
ics and trajectory planning operations are reduced to
finding the proper time varying behavior of the curva-
ture function so as to induce the desired manipulator
behavior, That is, the function x{s, t} will deter mine
the bending of the manipulator as a function of time,
and is selected to achieve desired objectives, which de-
pend upon the nature of the hyper-redundant manip-
ulator application.

3. Planar Hyper-Redundant Kinematics

This section presents one method, hased on & modal expansion
of the curvature function, for making the inverse kinematics of
maeipulator backbone curves tractable. This method could be
used for trajectory planning purposes in the same way that in-
verse kinematics algorithms are used as the basis for planning
joint trajectories of non-redundant manipulators. Forward kine-
matics can be computed by exact or numetical integration of (1).
However, the inverse kinematic problem would essentially be a
blind search for curvature functions which satisfy the forward
Lkinematic constraints, Bach guess would involve integration of
(1), and such a procedure would require numerous computations,
limiting the applicability of this approach

However, the complexity of the inverse kinematic probiem can
be reduced by limiting the curvature functions to a modal form:

N

x5, t) = 2 ai()ei(s),

1=1

(3)
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where ¢i{s) is a curvalure mode function, and g; is termed a
modal participation factor. N is the number of modes, which
will depend upon the number of kinematic constraints which
are specified.

The curvature modes are specified functions, and thus Lhe in-
verse kinematics problem is reduced to finding the {a;} which
satisfy the end effector constraints, For some choices of modes,
exach inverse kinematic solutions can be found, some of which
ate presented below In general the {a;} must be fourd numeri-
cally. The greatest benefit of the modal approach is that NV, the
number of modes, can be chosen to be significantly less than n,
the number of manipulator degrees of freedom  This leads to
considerable savings in inverse kinematics computations

3.1. Closed Form Examples

Consider the [ollowing choice of modes for NV &= 2%

$1(s) = 2mcos2ms;  ¢ofs) = 2w sin2ws. (4)

Substituling these two modes into (1-3), it can beshown (1] that
the forward kinematics equations reduce to

er(1) = sin(az) o [(a} + a)F] a(1) = cos(an) o [(a + D))
(5)

whete J; is the serolt order Dessel lunction. Henceforth the
notalion Z., z1(1} and yee = mofl) is used The ‘inverse
kinematics' (evaluation of medal pazticipation factors) in this
case can be computed as:

aq = Atan2{Tec, Yee)

(6 a)

H
i
217

ay =t ([Jﬂ-l [(mgc + yfe)'i:”g - [Ata“‘?-' (Zees Vee )] )

Ju"l is the ‘resiricted inverse Bessel function of zeto order’, and
is defined as the inverse of Jo(z) for 0 < & < pt where gt &2 3 832
is the first local minimum of Jo. Jo is monotonically decreasing
over (0, ), and there is no problem in defining a unique invesse
If the Jo wete not restricted to this interval, multiple solutions
would be possible. The highet order solutions would physically
correspond to self-intersecting configurations of the manipula-
tor, and these solutions are neglected on the basis of practical
considerations

(6.5}

e

B
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Figure 2: One Possible Choice of Modes

* These modes were chosen solely because they lead to a closed
form inverse kinematic solution




Figares 2(a) and 2(b) show two examples of the inverse kine-
malic solutions provided by (6). In Figure 2(a)}, the manipuia-
tor end-effector is commanded o move to locabion (Tees Yee} =
{0.3433,0 2733). From (6}, the modal participation factor solu-
tions are a; = 1.3588 and a» = 0 8984, Figure 2(b) is another
example with (zee, yee) = (—0.2933,0.6133), which results in
modal participation factors of gy == —1 0957, as = ~0.4461.

Of the other closed form solutions which have been found, the
foflowing are among the simplest. If we take

#1(s) = 27 cos{2ms);  da(s) = §(s — 0%}

where § represents a delta function, the forward kinematics can
be written:

Tee = Jolar)sinag;  yee = Jo{ay) cosay.

The inverse kinematics is then

- I; 1
= I (el +05)T) e = Alan2(ec, gee)

Similarly, il we take

#ils) = 2msin(2ns);  a(s) = 6(s — 0%)

the forward kinematics becomes

Tee = Jo{ay)sin{ay + an}; Yee = Jo{ay) cos(a; + ap)

and the inverse kinematics is

- H
@ =I5+ 1) @ = Aan(ee ) — ar

3.2 Modal Singularities and Mode Switching

While the introduction of medes reduces computational needs,
it alse introduces new problems, such as modal singularities.
Modal singularities are analogous to the kinematic singularities
of standard manipulators In a standard kinematic singular-
ity, an instantaneous motion of the Joinis is unable to provide
an instantaneous motion of the end-effector in one or more di-
rections in the workspace. For modal singularities, the loss of
end-ellector freedom is measured with respect to instantaneous
changes in modal participation factors The Jacobian matrix is
defined as:

J,‘k = 5’“&7

(7
To illustrate modal singularities {7} is evaluated with the choice
of modes given by Equation (4) Since two participation factors
are involved, and we are only interested in end-effector position
in the plane, loss of rank can be determined by setting

oo Dy,
3(11 8(13

Ozee OYuo _

Ji= - =
| l 8&2 3{1]

{8)

Substituting (5} into (8), the modal singularities of this manip-
ulator occur when:

alef +a) [ + )] 1 [+ )] =0 (9)
Equation (9) will be satisfied for any one of the following condi-
tions: ap =0, Jy [(a% + a%)if] =9, 0t Jy [{a% + ag)']-’] = 0. The
case of a; = 0 corresponds Lo the workspace boundary, and phys-
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ically means that for this set of modes Lhe manipulator can not
extend further in a direction normal to the boundary imposed
by these modes The other conditions oceur when (af + a«g’)i’
is a zero of either of the functions Jg or J1. Since the inverse
kinematics solulion uses a restricted Bessel function, the only
time this happens is when (a} + a%)’lf =y where ji; = 2.405 is
the first zero of Jp.

Figure 3(a) shows the a;-a2 modal participation factor space for
this choice of medes and the loci of a; and as values which lead
to modal singulazities. Figure 3(b) shows the loci of end-effector
positions where modal singularities occur

az

Loti of Modal
" Gibgelarition -

L]

(a) (®)

TFigure 3: Loci of Modal Singularilies

Care must be exercised in choosing curvature mode functions to
avoid degenerale mode choices. For example, if the {¢;} are cho-
ser: to be linearly dependent, the number of end-eflector degrees
of freedom will be less than the numbe: of modal pa:ticipalion
factois for all values. Conseguently, linear independence iz a
necessary condition for a choice of modes to be nondegenerate.
However, linear independence is not a sufficient condition For
instance, it can be shown [1] that if all the ¢;'s are chosen to be
functions which are even aboul the point s == .—E,—, with zero mean
value over the interval 0 < s € 1, the hyper-redundant manipu-
lator end-effector will be constrained to move along Lhe za-axis
for al} vatues of {a;}, even though the modes are lineatly inde-
pendent. Thus a stronger condition than linear independence of
mode functions is necessary.

Definition: A choice of modes is degenerale if F loses
rank for all values of modal participation factors. A set
of modes can be tested for degeneracy by simply eval-
uating the rank of the Jacobian for a random seleclion
of {a;}. H the Jacobian is full rank for any set of {a;},
the medes are nondegenerale

The introduction of modes may restrict the manipulator to op-
erate in & workspace which is smalier than dictated by physical
limitations on the manipulator However, the potential to switch
among several sels of modes allows this approach to covey t.]:te
workspace of the manipulator. Figure 4 shows a schematic pic-
ture of a manipulator’s physical wotkspace which is “covered”
by different overlapping modal regions

To smoothly switch from a set of modes {¢]} to the set {¢2]
the curvalure function will be of the form

I
w(s,8) = 2 lal()dl(s) + al (1)¢7 ()] (10

=1



where at the beginning of the switching process, which we denote
by t = 0, a?(0) = 0 for all i € [1,N] and at the end of the
process, denoted by t =1, af(1) = 0 for all i € [1,N]. 1f the
end-effector must remain stationary duting the procedure, the
following relation can be used to control the mode switching:

(11)

J; and Jp ate the Jacobians associated will the original and
new participation {actors. One of the two Jacobians need be {ull

1+ 305° =T

rank for (11) to be useful By defining 7% to be an increasing
function of time and inverting J;, c'zJ can be found. Conversely,
by defining &7 1o be a decreasing function of time and invert-

ing Jo, &~ can be found. If both Jacobians are singular, the
constraint of constant end effeclor position as a function of {ime
must be relaxed.

by

Workapace
Boundary

Mode Boundary

Figure 4: Multiple Mode Covering of the Workspace

4. Representation of Space-Curves

Given a space curve paramettized by arclength, s, wilh position
vector to every point on the curve T(s), a parameter called tor-
sion, 7 (s), is needed in addition to curvature, x(s), to uniquely
specify a space curve. The classical definitions of curvature and
torsion are

2 " ‘ # ;e Zl:'! . (f” x fm) /52‘ (12}
where a ' represents a derivative with respect to 5. A unigue
frame, termed the Frenet-Serret frame, can be assigned to the
curve at all points for which » and 7 are not zero. This frame is
denoted by the triplet of vectors {@1(s), ®2(s), ®a(s)}, where:
b = ':”1:"".; Dy = E"/r;; D3 = (T‘ X E”) /&

(13)
are respectively called the tangent, normal, and binormal

To date there is no spatial analogue to the convenient planar
equations (1) which relates the paramelers £ and 7 to the posi-
tion of ail points on the curve. However, it is possible to define
functions of arclength other than curvature and torsion which
are more convenient Lo describe the geometry of a space curve,
Here we use quantities which we refer to as quasi-curvature and
quasi-torsion denoted by the letters X and 7 respectively Defin-
ing
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K{s)= [ K(oyde T(s)= / T{o)do (14)
0 &
every point on the space curve can be represented by the para-
metric equations:
{ Iy sinfi (o) cosT(a)da\

(s) = k}};

This form is not unique and was chosen so that the conditions
at ¢ = 0 on the curve are the same as the planar case, F(0) =
0 E'(O) = [01 0]7. The functions K and T’ can be related back
to curvature and torsion through the relationships:

cos N (o} cos T{a)de

Iy sinT(o)da

K= (T')'3 + (Iﬂ.‘r)2 cos T (16)

= —K'sinT + ;}- (K"~ 7" K eosT = (T'V i sin T
()
which can be derived from (12).

Like the classical parametrization of space curves, a frame can be
assigned Lo every point on a space-curve defined by the param-
eters K, and 7. This frame is denoted by the triplet of vectors
{W(s), Wa(s), Wa(s)} which have the explicit representation:

_ sin K cosTy ~sinKsinTy cos iy

¥y = \ cos WeosT j 10 = —cos K sinT ) ;W3= —~sink
sinT’ \ cos T } \ 0

(18)

and are referred to as the tangent, complementary vector, and
planar-normal respectively This frame relates back to the Irepet
frame through a rotation about the tangent vector:

$i(s) = ROT(T(s), B(s)]Wi(s)

where 3 = Atan2{T', L' cosT) Parametrization of space curves
with X and T has other advantages besides the existence of an
easily defined frame. The initial conditions at the base of the
spatial curve are easily specified in this framework, and this pa-
rameterization allows closed form solutions based on the same
approach used in the planar case The price to pay for this sim-
plicity is that in some sense the ‘intrinsicness’ of the formulation
has been lost.

To recognize the similarity in mathematical lorm between the
spatial and the planar cases, use the relaiionships:

sin K cos T = o [sin( K + ) + sin{K —T)]

cos K cos T = = [cos{K + T} + cos(f — T)]

[ -

to write the equations for the position of the end-effector of the
curve as

1 1
[ sinftds + / sinf7ds = 2z (1) = 2,

{18¢}
0 0
1 1
/ cos8"ds + f cos 07 ds = 2za(1) = 2. (194)
] ]

A
/




(18¢)
where
Ot (s) = K(s) + T(s); 07 (s) = K{s)—T(s).

Thus the geometry of space cutves can be represented as ‘cou-
pled” planar problems.

5. Spatial Hyper-Redundant Manipulators

The modal method can be used to formulate algorithms for spa-
tial hyper-redundant manipulators Let

Ny Ny
K(s)= 2, aidils);  T(s)= 3 estils) (20)
=1 =1

where o; and o; can vary with time as the end-effector moves
However, unlike the planar case, the curve representation of
hyper-redundant manipulators is not sufficient. A third quan-
tity R(s), termed the rate of roll disiribution must be defined
such that

(21)

where R(s} is the 1ol of all points along the manipulator with
respect to the relerence frame {¥;} ard is measured in the plane
normal to the {angent to Lhe curve R(s) can be expanded in a
medal form in the same way that K(s) and T(s) were.

Thus if the end ellector orientation is specified by a vector of
direction cosines ¥ = [y5, 72, 13]¥ and a roll p measured with
respect to the frame {¥;}, the conditions which must be satisfied

are
sin0*(1) +sin6™(1) = 27,

cos (1) + cos 07{1) = 24, (22a)
sin %{0‘*{1) e 07(1)) = 3 (22)
R(1)=p (226)

Note that equations (22a) are equivalent to the forward kinemat-
ics equations of a two link revolute-jointed planar manipulator
with unit length links, and the solution to that problem can be
used to calculate two solutions to (22a):

07(1) = Atan2(, ) — Atan2 (1 - )%, 1 - 93)
" . {23a)
0+(1) = 07(1) + Atan2 (2751 — 3)%,1 - 293) .

07(1} = Atan2(y1, 12} — Atan2 (——73{1 - 7;“’)'1-’, 1- ygf)
. ~ - R (238)
07(1) =67(1) + Atan?2 (—273(1 - )71 - 275)

It can also be shown that equalion (22b} is automatically satis-
fied by the solutions of (23a,b). Equation (22c) is solved inde-
pendentiy of the other equations Determination of appropriate
modal parlicipation factors for a given orientation is a linear
problem from this point.

At least 5 unknown modal participation factors, distributed be-
tween {a;} and {oy}, and at least a one parameter roll dis-
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tribution are needed to solve spatial position and orientation
problems using the methods outlined in this seclion. With the
similarity between the two and three dimensional cases appar-
eni, analysis of the planar case provides much of the necessary
tools for solving spatial problems.

The closed form planar kinematics solutions can be applied to
find closed form forward kinematics equations for the three di-
mensional case Tor instance, let:

K(s,1) = 2ra) cos 2xs + 2was sin2rs (24)

T(s,1) = 2ma; cos 2ws + 2way sin s -
Since K and T act in different planes at every point along the
manipulator they can be chosen to be similar functions without
having to worry about linear dependence. The forward kine-
matic equations corresponding to these modes are:

1 3 .
Tps = 3*.]0[{((1; + a3) + (aa + (14)2)’1-"]513{:13 + ayg)

+ 5l((a1 — a3)? + (a2 ~ 20)*)¥]sinfaz ~ a)

Yoo 13 ] b g,

Vee = ?':Jo[((al he ﬂa):J + {as + a.‘)z}’i’] cos{ag + ay) {25}

1
+ S Jol((a1 — 23)* + (a2 — a4)?) ¥ cos(as — ay)
Zeg W Jg{(a% + a?;)'lf] sinagq

The authors have not found closed from inverse kinematic so-
lutions for (25). However, the existence of closed form forward
linematic solutions makes rate formulations faster than if inte-
grals would have to be computed at every time step.

6. Fitting a Discrete Manipulator

The continuous backbone curve approach presented earlier can
be applied directly to control the geometry of actual hyper-
redundant manipulators with a continuous morphology. How-
ever, in practice, many hyper-redundant manipulators might be
constructed of a large number of discrete links, and the contin-
uous inverse kinematic approach doesn't directly apply. This
section demonstiates the adaptation of the modal method to
the case of an n-link planar revolute manipulator. The primary
assumption is that the discrete-linked manipulator has a suffi-
cient number of degrees of freedom so that a continuous back-
bone curve inverse kinematic solution can be used to approxi-
mate the discrete link joint angles, or other pertinent parameters
for the discrete actuators (such as tendons) Two methods of
approximation are possible. In the first method, one is only
concerned with guaranteeing thet the end-effector of the dis-
crete manipulator aligns with the end-effector of the continuous
backbone curve manipulator. This method is computationally
very efficient, and can be found in [1}. In the second and more
complicated methed which is summarized below, the discrete
manipulator geometry is sefected so that both the end-effector
and the nominal shape of the discrete manipulator coincide as
closely as possible with the continuous backbone cut ve solulion.
A more complete derivation of this methodology can be found
in [1,2]

Figure 1(a} shows a planar manipulator comprised of n rigid
licks with » revolute joints. All links are assumed to be of the
same length, and the total length of the manipulator is no:-
malized to 1. It is also assumed that the backbone curve inverse




kinematic solution has been compute so that the {a;} ate known
for a given set of curvature modes {¢;}.

In this method, the joint angles, {g;} of the discrete manipulator
are computed as:

2j 41 2j 1
fh‘+i=9( )—3( o™

n

) + ¢ (26}
In other words, we take the angles of the discrete case to be
approximately the change in angle over a corresponding section
of length in the continuous case This approximation will lead
to errors, and to account for these errors, we introduce n free
‘fitting' parameters, {¢;}.

The {¢;} are computed to minimize a function which is the sum
of squarted distance between points on both manipulators located
ats=Lfori=1, ,m

5

) £ o |
s £
G == %EZ; i_(/n sinfds — }T;Z sin Gi}

i \2-!
C ZQJ}J

Assuming each ¢ is small, {27) can be linearized to provide n
linear equations in the n unknown {&}. If the compuled values
of {¢} are small, the linearization assumptions are justified. If
the {¢} are not sufficiently small, iteration of the above pro-
cedure or a nonlinear fitting technique can be used. This will
generally only be the case when there are points on the back-
bone curve with large curvature magnitude. Such cases can be
avoided by restricting the maximum curvature magnitude, pos-
sibly at the expense of reducing the volume of the workspace
associated with a particular set of modes. Restrictions of the
maximum curvature correspond to restrictions on the {a;}, and
are analogous to jeint angle limits.

/ (27)
& 1<
+ \/; cos fds — ;I—Z,

imz] =1

7. Conclusions

This paper presented a novel approach to the kinematic analysis
of hyper-redundant robot manipulators An associated *back-
bone curve,” which captures the shape of the manipulator, was

introduced to model the manipulator geometry. Differential ge-
ometry was used to develop the kinemadic equations of the back-
bone curve. The kinematic analysis was simplified by introduc-
ing the modal approach, which leads to closed form forward and
inverse kinematics solutions in some cases. In addition, meth-
ods for fitting the continuous backbone kinematic solutions to
discrete manipulator structures were developed and applied to
planar examples. An expression for modal singularities was de-
veloped, and the concept of mode switching for circumventing
them was introduced. In companion works, we have used sim-
tlar formulations to develop new methods for hyper-redundant
manipulator obstacle avoidance {2], path planning (3], and loco-
motion [4]
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