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The topic of reachable workspaces of robotic manipulators has received considerable attention
over the past half century. One approach to generating workspaces is by sampling joint angles
and evaluating the boundary of the resulting set in the space of rigid-body motions. In the case
when the manipulator has discrete actuation, such as stepper motors or pneumatic cylinders,
not only the boundary of the workspace, but also the density of reachable poses within the
workspace is important. Following previous efforts that focused on characterizing this
workspace density, we show that this density is particularly efficient to evaluate in the special
case of planar serial arms with revolute joints. We then show how the resulting density can be
used in inverse kinematics algorithms that are equally applicable for discrete-state and
continuous-motion robot arms.
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1. Introduction

Planar robots are currently used in a number of industrial and medical applications [1]. Moreover, commonly used industrial
architectures such as SCARA manipulators like the one shown in Fig. 1 contain planar manipulators as critical components.

The development of algorithms for highly accurate and stable control of planar robotic arms is therefore an important topic.
The solution of the inverse kinematics problem is a fundamental part of robot control. Traditionally, three models have been used
to solve the inverse kinematics problem. The first is the geometric model, which is well-suited to compute the inverse kinematics
of relatively simple manipulators with a small number of links. For example, A. Yu et al. [2] published a geometric approach to the
accuracy analysis of class 3-DOF planar parallel robots. The second is the algebraic model, which does not guarantee a
“closed-form” solution, but can be efficiently solved by polynomial root finding. D. Manocha and J.F. Canny [3] presented an
algorithm and implemented it for efficient inverse kinematics for a general 6R manipulator by extending the polynomial
elimination methods of M. Raghavan and B. Roth [4]. The third is the iterative model, the result of which depends on the starting
point used. This approach to finding the inverse kinematics solution of robotic manipulators was proposed by J.U. Korein and N.I.
Badler [5].

In parallel with intelligent control developments, there are additional novel approaches for solving the inverse kinematics
problem. For example, neural-network-based inverse kinematics solution methods for robotic manipulators have been explored
recently in [6–12]. For example, B. Karlik and S. Aydin [6] presented a structured artificial neural-network (ANN) to the solution of
inverse kinematics problems for a six-degree-of-freedom robot manipulator. Work has been undertaken to find the best ANN
configurations for this problem. J.A. Martin et al. [7] proposed a method to learn the inverse kinematics of multi-link robots by
evolving neuro-controllers. The method is based on the evolutionary computation paradigm and obtains incrementally better
neuro-controllers. R.V. Mayorga and P. Sanongboon [8] presented an ANN approach for fast inverse kinematics computation and
effective geometrically bounded singularity prevention of redundant manipulators. E. Oyama et al. [9] proposed a novel expert
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Fig. 1. A SCARA manipulator.
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selection by using performance prediction networks which directly calculate the performances of the experts which could reduce
the computation time. S.S. Chiddarwar and N.R. Babu [10] presented a fusion approach to determine inverse kinematics solutions
of a six degree of freedom serial robot. The effectiveness of the fusion process was shown by comparing the inverse kinematics
solutions obtained for an end-effector of an industrial robot moving along a specified path with the solutions obtained from
conventional neural network approaches as well as an iterative technique. S. Tejomurtula and S. Kak [11] presented an ANN
approach for solving the inverse kinematics problem. The method yielded multiple and precise solutions. It was suitable for
real-time applications. S.K. Nanda et al. [12] proposed a novel application of ANNs for the solution of inverse kinematics of robotic
manipulators. This method represents the non-linear mapping between Cartesian and joint coordinates using multi layer
perceptrons and a functional link artificial neural network.

Genetic algorithm approaches, such as in Refs. [1,13], and [14], have been widely investigated. P. Kalra et al. [1] presented an
approach based on an evolutionary genetic algorithm that was used to obtain the solution of the multimodal inverse kinematics
problem of industrial robots. A.C. Nearchou [13] used a modified genetic algorithm to search successive robot configurations in
the entire free space to specify how the robot should move its end-effector. R. Köker [14] presented a genetic algorithm approach
to a neural-network-based inverse kinematics solution for robotic manipulators based on error minimization. In that work, ideas
from neural network algorithms and genetic algorithms were fused.

The Jacobian pseudo-inverse approach is a widely used method for solving the inverse kinematics problem. A.A. Maciejewski
and C.A. Klein [15] presented the Singular Value Decomposition (SVD) of the Jacobian to compute pseudo-inverse for robotic
manipulators. R.G. Roberts and A.A. Maciejewski [16] presented repeatable control strategies that obtain near optimal solutions in
the selected workspace.

Researchers have also focused on someother approaches to obtain inverse kinematics solution for robotmanipulators. B. Siciliano [17]
addressed the inverse kinematics, manipulability analysis, and closed-loop direct kinematics algorithm for the Tricept robot. H. Zhang
[18] presented a method to compute inverse kinematics in parallel for robots with a closed form solution. The computational task of
inverse kinematics was partitioned with one subtask per joint and all subtasks were computed in parallel. This results in
effectiveness and the efficiency of the algorithm for a multiprocessor system. S.R. Lucas et al. [19] compared the merits of many
of the methods already presented and described a new approach that led to a fast and numerically well-conditioned algorithm.
P. Chiacchio et al. [20] presented new closed-loop schemes for solving the inverse kinematics of constrained redundant
manipulators. G.S. Chirikjian and J.W. Burdick [21] presented efficient kinematic modeling techniques for “hyper-redundant”
robots. Their methods were based on a backbone curve that captures the hyper-redundant robot's important macroscopic
features. I. Ebert-Uphoff and G.S. Chirikjian [22] introduced algorithms for inverse kinematics of discretely actuated
hyper-redundant manipulators using workspace densities. They proposed a framework for the discussion of the discretely
actuated case and presented an inverse kinematics algorithm. This builds on prior sampling-based approaches to manipulator
workspace analysis such as in Refs. [23,24] by observing that sampled workspaces of subchains can be smoothed to result in
densities, and these densities can be “added” by convolution to result in the density for the whole manipulator. Y. Wang and
G.S. Chirikjian [25] presented workspace generation of hyper-redundant manipulators as a diffusion process. In that work, the
evolution of the workspace density function is defined by a diffusion equation, which depends on manipulator length and
kinematic properties. A multi-objective optimum design of general 3R manipulators for prescribed workspace limits was
proposed byM. Ceccarelli and C. Lanni [26]. In that paper a suitable formulation for the workspace was used for themanipulator
design, which was formulated as a multi-objective optimization problem by using the workspace volume and robot dimensions
as objective functions, and given workspace limits as constraints.

Each methodology contains certain advantages and disadvantages for solving the inverse kinematics problem of robot
manipulators. Our paper derives the “closed-form” workspace density and inverse kinematics for planar serial revolute robot
arms.
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2. Workspace density

2.1. The kinematics of planar robot arms

A three-link planar revolute robot arm is shown in Fig. 2. Three link lengths specify the geometry of the planar robot, and three
angles specify its conformation (or configuration). Let L1, L2 and L3 denote the lengths of the three links and θ1, θ2 and θ3 denote
the joint angles between the links. The definition for the joint angle θi is measured counter clockwise from link i − 1 to link i.

The position and orientation of the end effector are presented in the Cartesian coordinate system as
and co
x ¼ L1cosθ1 þ L2cos θ1 þ θ2ð Þ þ L3cos θ1 þ θ2 þ θ3ð Þ ð1Þ

y ¼ L1sinθ1 þ L2sin θ1 þ θ2ð Þ þ L3sin θ1 þ θ2 þ θ3ð Þ ð2Þ

θ ¼ θ1 þ θ2 þ θ3 ð3Þ

nverted to polar coordinates as follows

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
ð4Þ

ϕ ¼ Atan2 y; xð Þ: ð5Þ
2.2. Gaussian distributions to model positional workspace density

We use a similar approach for workspace generation as that in I. Ebert-Uphoff and G.S. Chirikjian [27]. They used closed-form
convolution of real-valued functions on the Special Euclidean Group for workspace generation. A.B. Kyatkin and G.S. Chirikjian
also proposed a method based on Fourier transform on the discrete-motion group for computing the configuration and
workspaces of manipulators and for design of robots for specified workspaces [28,29].

Roughly speaking, the workspace is the volume within the space of rigid-body motions that the end-effector of the
manipulator can reach. Suppose that a robot manipulator has N links, and every joint has M states. The number of points that
compose the manipulator workspace is then K = MN. The workspace of the three-link planar robot is shown in Fig. 3, where the
vertical direction is the end-effector orientation, θ. Here the length of each link is equal to 1.25. Each joint angle is allowed to
Fig. 2. The kinematic model of a three-link planar robot arm.

image of Fig.�2
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change from −π to π. There are 40 equally-spaced states in each joint. This manipulator can reach 403 = 64,000 points in the
workspace. The color code goes from red to blue, with red denoting high density.

We divide the workspace, W, into small boxes (voxels) of equal size Δx ¼ 0:15;Δy ¼ 0:15;Δθ ¼ π
4. The workspace density ρ

assigns each box of the workspaceW the number of points within the box that are reachable, normalized so as to be a probability
density.
ρ boxð Þ ¼ # of reachable points in box
total # of pointsð Þ � volume of the boxð Þ : ð6Þ
This density is a probabilistic measure of the positional and orientational (pose) accuracy of the end-effector in a considered
area of the workspace. The higher the density in the neighborhood of a point, the more accurately we expect to be able to reach a
pose. The positional workspace density of a 3 link planar robot arm (resulting from integrating over the θ direction) is shown in
Fig. 4.

As established in [22], when a manipulator is separated into two segments, convolving the densities for each segment will
result in the density for the whole manipulator. Generally speaking, if f1(g) is the density for the lower segment and f2(g) is the
density for the upper one, then the density for the composite will be
f 1 � f 2ð Þ gð Þ ¼
Z

G
f 1 hð Þ f 2 h−1g

� �
d hð Þ ð7Þ

h is a dummy variable of integration in G = SE(n) and d(h) is the Haar measure. This is equally true for the planar (n = 2)
where
and spatial (n = 3) cases.

In general, if a manipulator has N segments, then
f 1;…;N gð Þ ¼ f 1 � f 2 � ⋯ � f Nð Þ gð Þ; ð8Þ

* is convolution for G = SE(n). Let g = (R,x) ∈ G. Then d(g) = dRdx where dR is the Haar measure for SO(n) and dx is the
where
Lebesgue measure for Rn.

If we are only interested in the positional density, then we can marginalize f1,…,N(g) over SO(3) to result in
ρ1;…;N xð Þ ¼
Z

SO nð Þ
f 1;…;N R;xð Þ dR: ð9Þ
For N = 2 we write out the convolution f1,2(g) = (f1 ∗ f2)(g) from Eq. (8) more explicitly as
f 1;2 R; xð Þ ¼
Z

A∈SO nð Þ

Z
y∈Rn

f 1 A; yð Þ f 2 ATR;AT x−yð Þ
� �

dAdy: ð10Þ
Fig. 3. The workspace of a three-link planar robot with L1 = L2 = L3 = 1.25.

image of Fig.�3


Fig. 4. The workspace density of the three-links planar robot of Fig. 2.
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When we substitute Eq. (11) into Eq. (10), the result is
then s

where

and
ρ1;2 xð Þ ¼
Z

A∈SO nð Þ

Z
y∈Rn

f 1 A; yð Þ
Z

R∈SO nð Þ
f 2 ATR;AT x−yð Þ
� �

dRdAdy: ð11Þ
But
Z
R∈SO 3ð Þ

f 2 ATR;AT x−yð Þ
� �

dR ¼ ρ2 AT x−yð ÞÞ:�
ð12Þ
In the special case when
ρi Rxð Þ ¼ ρi xð Þ; ð13Þ

ubstituting back into Eq. (12) gives

ρ1;2 xð Þ ¼ ρ1⋆ρ2ð Þ xð Þ ¼
Z

y∈Rn
ρ1 yð Þρ2 x−yð Þdy ð14Þ

⋆ is the usual convolution on Rn. And for N links

ρ1;…;N xð Þ ¼ ρ1⋆ρ2⋆⋯⋆ρNð Þ xð Þ: ð15Þ
In general, given density functions ρi(x) for i = 1,...,N, the first two moments are defined as
μ i ¼
Z

Rn
xρi xð Þdx ð16Þ

Σi ¼
Z

Rn
x−μ ið Þ x−μ ið ÞTρi xð Þdx:
These are the mean and covariance.
A general property of convolution in Rn is that
μ1;…;N ¼
XN
i¼1

μ i ð17Þ

image of Fig.�4
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Σ1;…;N ¼
XN
i¼1

Σi: ð18Þ
We now examine these moments of pdfs in the special case when the symmetry in Eq. (14) holds, and how these moments
behave under convolution. First, note that the mean is
μ i ¼
Z

Rn
xρi xð Þdx ¼ 0: ð19Þ
And the covariance simplifies as
Σi ¼
Z

Rn
x−μ ið Þ x−μ ið ÞTρi xð Þdx ¼

Z
Rn

xxTρi xð Þdx ¼ σ2
i In ð20Þ

In is the n × n identity matrix. Then from Eqs. (18) and (19)

μ1;…;N ¼ 0 and Σ1;…;N ¼
XN
i¼1

σ2
i

 !
In: ð21Þ

ws that when all of the links are identical, Σ1;…;N ¼ Nσ2
1

� �
In.
It follo

For the N-link planar revolute manipulator (as well as a spatial manipulator with ball-in-socket joints) for which the range of
motion is completely unrestricted, the symmetry in Eq. (14) will hold, and the results in Eq. (22) apply. Suppose that for such a
manipulator, we sample each joint angle uniformly atM points, resulting in K = MN samples. The sample covariance for this N-link
manipulator is then
S1;…;N Kð Þ ¼ 1
K−1

XK
k¼1

xkx
T
k : ð22Þ
If M is large enough, then this sample covariance, will become the true covariance:
lim
M→∞

S1;…;N Kð Þ ¼ Σ1;…;N :
If we compute (or obtain a sample estimate) of σi for each link in a manipulator, using the above equations we can obtain the
covariance for the whole manipulator, Σ1,…,N. Since, the central limit theorem states that iterated convolutions results in a
Fig. 5. The workspace density modeled as a Gaussian distribution.

image of Fig.�5
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Gaussian density function,
ρ x; μ;Σð Þ ¼ 1
2πð Þn

2jΣj12 exp −1
2

x−μð ÞTΣ−1 x−μð Þ
� �

; ð23Þ

use this to describe the positional workspace of a manipulator for the case when Eq. (16) applies.
we can
In the planar (n = 2) case, we get
S1;…;N Kð Þ≈Σ1;…;N ¼ σ2
1;…;N 0

0 σ2
1;…;N

 !
ð24Þ

σ2
1;…;N≈

1
2
tr S1;…;N

� �
: ð25Þ
If all of the links are the same, then σ1,…,N
2 = Nσ1

2. Substituting Eqs. (25) and (26) into Eq. (24) in this case, the resulting
density is
ρ1;…;N xð Þ ¼ 1
2πσ2

1;…;N

exp − jjxjj2
2σ2

1;…;N

 !
ð26Þ

¼ 1
2πNσ2

1

exp − jjxjj2
2Nσ2

1

 !
: ð27Þ
The positional workspace corresponding to the sampled version in Fig. 4, when modeled as a Gaussian distribution, is shown
in Fig. 5. In both figures, N = 3.

As can be seen from these figures, the Gaussian captures the total positional density quite well. But for many
practical applications, it is desirably to know the full pose density. The generation of such densities is the topic of the
next section.

2.3. Using the motion-group Fourier transform to compute workspace density

In prior works mentioned earlier, the Fourier transform for the group of rigid-body motions of the plane, SE(2), has
been used to compute workspace densities. The novelty observed in the present work is that the workspace densities for
revolute manipulators can be written in a form that provides special structure, giving these densities closed-form
expressions.

2.3.1. Joint angles without stops
From Fig. 1, in the case of a single link we have ϕ = θ and r = L1 = L. The workspace density function of one link with one

freely moves revolute joint at its base is expressed as
f 1 g; Lð Þ ¼ 1
2π

δ r−Lð Þ
r

δ θ−ϕð Þ ð28Þ

−π ≤ θ, ϕ ≤ π. The δ function, or the Dirac delta function, is a generalized function on the real number line that is zero
where
everywhere except at zero, with an integral of one over the entire real line. As a result, the integral of the function f1(g;L) over x,
y, and θwith respect to themeasure d(g) = dxdydθ (or equivalently, over r,ϕ,θwith respect to themeasure d(g) = rdrdϕdθ) has
a value of unity. Here g(r,ϕ,θ) is the homogeneous transformation matrix with translations parameterized expressed in polar
coordinates,
g r;ϕ; θð Þ ¼
cosθ −sinθ r cosϕ
sinθ cosθ r sinϕ
0 0 1

0@ 1A: ð29Þ
The Fourier transform of a workspace density function, f(g), is an infinite-dimensional matrix defined as
F fð Þ ¼ bf pð Þ ¼
Z

G
f gð ÞU g−1

;p
� �

d gð Þ ð30Þ



where

where
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U(g−1,p) is a unitary representation of G = SE(2) and d(g) is the natural bi-invariant integration measure for SE(2), and
where
“p” is a frequency-like parameter. In group theory, the set of all “p” values is called the “unitary dual” of G, and is denoted as bG and
when G = SE(2), bG ¼ RN0. The matrix elements of this representation are expressed as
umn g−1
;p

� �
¼ in−mei mθþ n−mð Þϕ½ � Jm−n prð Þ: ð31Þ

i ¼
ffiffiffiffiffiffiffiffi
−1

p
and Jm − n(x) is the (m − n)th Bessel function, which we evaluate at x = p ⋅ r.
where

The matrix elements of the Fourier transform of this function are
bf mn p; Lð Þ ¼
Z

G
f 1 gð Þumn g−1

;p
� �

rdrdϕdθ ¼ in−m Jm−n pLð Þ
Z 2π

θ¼0

ef 1 θð Þeinθdθ ð32Þ

ef 1 θð Þ ¼ 1
2π, and so

Z 2π

0

ef 1 θð Þeinθdθ ¼ δ0;n: ð33Þ
The Kronecker delta function δ0,n is defined for integer variables m and n such that
δm;n ¼ 0 if n≠m
1 if n ¼ m

:

�
ð34Þ
Due to the structure of the density function for a single-link manipulator, the matrix elements of the Fourier transform bf mn

simplify to
bf mn p; Lð Þ ¼ in−mδ0;n Jm−n pLð Þ
¼ in−mδ0;n Jm pLð Þ:

ð35Þ
The m − kth element of the squared Fourier transform matrix bf 2 p; Lð Þ is
bf 2 p; Lð Þ
� �

mk
¼
X∞
n¼−∞

bf mn p; Lð Þbf nk p; Lð Þ

¼
X∞
n¼−∞

in−mδ0;n Jm pLð Þ
� �

� ik−nδ0;k Jn pLð Þ
� �

¼ ik−m Jm pLð Þ J0 pLð Þ δ0;k ¼ J0 pLð Þ bf mk p; Lð Þ:

ð36Þ
From the above derivation, it is not difficult to see that for the N-link case, the Fourier transform matrix has elements
bf N p; Lð Þ
� �

mn
¼ J0 pLð Þð ÞN−1bf mn p; Lð Þ: ð37Þ
In general, the inverse Fourier transform (IFT) corresponding to Eq. (31) is
F−1 bf� � ¼ f gð Þ ¼ C �
Z ∞

0
trace bf p; Lð ÞU g;pð Þ

� �
pdp ð38Þ

C ¼ 1

2πð Þ2.
where
The workspace density for an N-link manipulator with equal link lengths is denoted as fN(g;L). When link lengths are different,

then we write fN(g;L1,…,LN) for an N-link manipulator. In this way fN(g;L) is shorthand for fN(g;L,L,…,L). The fact that this Fourier
transform matrix with elements bf N p; Lð Þ

� �
mn

is used to reconstruct fN(g;L) with the inversion formula is seen as follows:
f N g; Lð Þ ¼ f � f � f⋯ � fð Þ g; Lð Þ ¼ C �
Z ∞

0
J0 pLð Þð ÞN−1tr bf g; Lð ÞU g;pð Þ

� �
pdp ð39Þ

:

tr bf U� �
¼

X∞
m;n¼−∞

bf nmumn ¼
X∞

m;n¼−∞
im−nδ0;m Jn pLð Þ
� �

� umn ¼
X∞
n¼−∞

i−n Jn pLð Þu0;n g; pð Þ: ð40Þ
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In the above formula, the length of each link is L. Based on Eq. (36) the m − kth element of the squared Fourier transform
matrix bf 2 p; L1; L2ð Þ for different link lengths is
where
bf 2 p; L1; L2ð Þ
� �

mk
¼
X∞
n¼−∞

bf mn p; L1ð Þbf nk p; L2ð Þ ¼
X∞
n¼−∞

in−mδ0;n Jm pL1ð Þ
� �

� ik−nδ0;k Jn pL2ð Þ
� �

¼ ik−m Jm pL1ð Þ J0 pL2ð Þδ0;k
¼ J0 pL2ð Þbf mk p; L1ð Þ: ð41Þ
From the above derivation, it is not difficult to see that for the N-link case, the Fourier transform matrix has elements
bf N p; Lð Þ
� �

mn
¼ ∏

N

i¼2
J0 pLið Þbf mn p; L1ð Þ: ð42Þ
Therefore, the “closed-form” workspace density when the link lengths are all different is:
f N g; L1;…; LNð Þ ¼ C �
Z ∞

0
∏
N

i¼2
J0 pLið Þtr bf g; L1ð ÞU g;pð Þ

� �
pdp: ð43Þ
2.3.2. Modeling joint limits
Suppose that instead of swinging all the way around, the joint angles are limited to the range −θ0 to θ0. For a single link, it is

still the case that θ = ϕ and r = L. The workspace density function of a revolute manipulator for one link is expressed as
f g r;ϕ; θð Þð Þ ¼ ef 1 θð Þ δ r−Lð Þ
r

δ θ−ϕð Þ ð44Þ
:

ef 1 θð Þ ¼
1
2θ0

if −θ0≤θ≤θ0

0 otherwise

8<: ð45Þ
Based on Eq. (33), the matrix elements of the Fourier transform of this function are
bf mn p; Lð Þ ¼ im−n sin nθ0ð Þ
nθ0

Jm−n pLð Þ: ð46Þ
The resulting Fourier matrix can be decomposed as
bf p; Lð Þ ¼ QVQ−1
: ð47Þ
The Fourier transform matrix is computed based on Eq. (48). Here we truncate at −M ≤ m, n ≤ M, and the resulting Fourier
matrix is (2M + 1) × (2M + 1). The SE(2) Fourier transform of the density function for the N-link revolute manipulator then can
be computed as
bf p; Lð Þ
h iN ¼ Q VN Q−1

: ð48Þ
The inverse Fourier transform for the N-link revolute manipulator density can be written in terms of elements as
f N g; Lð Þ ¼
X

n;m∈Z

Z ∞

0

bf N p; Lð Þ
h i

mn
unm g;pð Þpdp: ð49Þ
In the numerical evaluation of this reconstruction formula we truncate the range of the integral to [0,P] and the sum to−M ≤ n,
m ≤ M where P = M = 10, and use an integration step for p of Δp = 0.01. Using the cutoff M = 10 specifies the size of Fourier
transform matrix as 21 × 21.

2.3.3. Numerical computation of workspace density
Let each link length be L = 1.25 and the number of links be N = 3. For the sake of numerical evaluation, sample each joint

uniformly on its range with 1000 states from −π to π. For the purpose of display, slice θ into four parts so that the thickness of
each parts is π

2. Fig. 6(b) (e) (h) and (k) show the discrete workspace density and the corresponding density of this manipulator
with three links generated from the Fourier method based on Eq. (40). Fig. 6(a) (b) and (c) compare the workspace density of
θ∈ −π;−π

2½ Þ. In Fig. 6(d) (e) and (f), θ∈ −π
2;0½ Þ. In Fig. 6(g) (h) and (i), θ∈ 0; π2½ Þ. In Fig. 6(j) (k) and (l), θ∈ π

2; π½ �.



a) b) c)

θ = [ − π , − −−π2 )

d) e) f)

θ = [ − π
2 , 0)

g) h) i)

θ = [ 0, π
2 )

j) k) l)

θ = [ π
2 , π]

−

−

−

Fig. 6. Comparison of the sample-based workspace density with the corresponding density of this manipulator with three links generated from the Fourier
transform.

517H. Dong et al. / Mechanism and Machine Theory 70 (2013) 508–522
Fig. 6 compares the discrete workspace density with the corresponding density of this manipulator with three modules
generated from the SE(2) Fourier transform. As can be seen, the maximal values of density appear in the same areas. In the left
column (panels (a), (d), (g), (j)) is the density obtained from sampling. In the middle column is the result of the Fourier method
(panels (b), (e), (h), (k)). In the right column (panels (c), (f), (i), (l)) is the Fourier method with negative values set to zero.
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Fig. 7. Comparison of the sample-based workspace density with the corresponding density of this manipulator with five different link lengths generated from the
Fourier transform.
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In order to illustrate the case of different link lengths, we take Ln = Le−an where L = 1 and a = 0.1. In this way, the link
lengths gradually decrease. Based on Eq. (44), the simulation of five links is shown in Fig. 7. In the left column (panels (a), (c), (e),
(g)) is the density obtained from sampling. In the right column (subfigures (b), (d), (f), (h)) is the result of the Fourier method.

As another case, consider when the joint angles are limited to θ ∈ [−θ0, θ0]. The Fourier-based approach to computing
workspace density of revolute manipulators is given by Eq. (50). We set the length of each link as L = 1.25, the number of links to
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Fig. 8. Comparison of the workspace density generated by sampling and Fourier methods for a manipulator with three links.
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N = 3, and we setθ0 ¼ π
4. The resulting workspace densities of the manipulator are compared in Fig. 8. Slice the θ into four parts. In

Fig. 8(a) and (b) θ∈½−3π
4 ;−3π

8 Þ. In Fig. 8(c) and (d) θ∈½−3π
8 ;0Þ. In Fig. 8(e) and (f) θ∈½0; 3π8 Þ. In Fig. 8(g) and (h) θ∈ 3π

8 ;
3π
4½ �. In the left

column (panels (a), (c), (e), (g)) is the density obtained from sampling. In the right column (panels (b), (d), (f), (h)) is the result
of the Fourier method.



Fig. 9. Flowchart for the inverse kinematics method.
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3. Inverse kinematics using workspace density

To illustrate the usefulness of our Fourier-based approach to workspace density generation, we solve the inverse kinematics
problem by workspace density generated using this approach. This method is similar to the J. Suthakorn and G. S. Chirikjian [30]
approach which presented an inverse kinematics algorithm for binary manipulators with many actuators. The criterion of this
method is to select joint angles so as to obtain the maximum workspace density near the target point to fix the configuration of
the manipulator.

Consider a discretely actuated serial revolute manipulator with N links. Let gk denote the homogenous transformation from the
base of the kth link to its own distal end, where k ∈ {1,2,⋯,N}. The homogenous transformation from the base of the manipulator
to the distal end of kth link is denoted g(k).
g kð Þ ¼ g1∘g2∘⋯∘gk: ð50Þ
The homogenous transformation from the base of kth link to the distal end of the manipulator is
g kð Þ� �−1∘g Nð Þ ¼ gkþ1∘gkþ2∘⋯∘gN : ð51Þ



Fig. 10. A simulation result of the inverse kinematics method.
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The inverse kinematics method based on workspace density generated using the Fourier method is shown in Fig. 9. In Fig. 9,
gdes denotes the target pose. All of the possible states of one joint are computed. The transformations between them are denoted
by gk, where k ∈ {1,2,⋯,N}. For the kth link, we find gk which makes this link maximize the workspace density fN −

k((g1∗ ∘ g2∗ ∘ ⋯ ∘ gk)−1 ∘ gdes). Thenwe fix the transformation of the kth link to gk∗. Thenwe proceed up themanipulator one link at a time.
Amongall possible states, we search the gk + 1 that can achieve the highest density fN − k − 1((g1∗ ∘ g2∗ ∘ ⋯ ∘ gk∗ ∘ gk + 1)−1 ∘ gdes). If gk + 1

is such a state, we configure the k + 1st module to gk + 1
∗ . This procedure is performed by sequentially maximizing density for the first

to (N − 1)st link. At the last step, we compute the minimum distance between the pose of Nth link and the target pose, and fix gN
∗ .
4. Numerical simulations for inverse kinematics

The manipulator with 8 links is used to illustrate the inverse kinematics approach. The length of each link is L = 1.25, and the
joint angle is unlimited θ ∈ [−π, π]. We give the pose xdes; ydes; θdesð Þ ¼ 6;7:5; π3ð Þdefining gdes. The inverse kinematics algorithm in
Section 3 is now demonstrated with the workspace density from Eq. (40). The simulation result is shown in Fig. 10. The
segmented lines display the corresponding configurations of the manipulator, where each segment stands for a link.
Fig. 11. Another simulation result of the inverse kinematics method.
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For the limited joint angles, the manipulator with four links is used to simulate the inverse kinematics approach. The inverse
kinematics algorithm uses the workspace density generated by Eq. (50). The length of each link is again L = 1.25, and the joint
angle is limited θ∈ −π

4;
π
4½ �. We give the target pose as xdes; ydes; θdesð Þ ¼ 3;3:5; π5ð Þ. The simulation result is shown in Fig. 11.

From all of these tests, we see that the inverse kinematics algorithm using the workspace density generated by the Fourier
method provides an accurate solution to reach the target.

5. Conclusion

By using a combination of the concept of the Fourier transform for the group of rigid-body motions of the plane, the resulting
convolution theorem, and the particular form of the workspace density of a single link in a planar revolute manipulator, we show
that the workspace density for planar serial revolute manipulators can be computed efficiently. This density is then used to solve
the inverse kinematics problem for these manipulators. The significance of this approach is that whereas methods based on
Jacobian pseudo-inverses assume continuous motion and the differentiability of forward kinematics, the approach taken here
selects a solution from among a very large discrete set using workspace density as an evaluation criterion. Challenging
mathematical issues remain in the adaptation of this method to the three-dimensional case, though the conceptual framework is
the same.

Acknowledgements

The authors would like to thank China Scholarship Council for grant No. 201206120127 that supported Ms. Hui Dong's visit at
JHU, and the US National Science Foundation for Grant IIS-1162095 that supported G. Chirikjian.

References

[1] P. Kalra, P.B. Mahapatra, D.K. Aggarwal, An evolutionary approach for solving the multimodal inverse kinematics problem of industrial robots, Mech. Mach.
Theory 41 (2006) 1213–1229.

[2] A. Yu, I.A. Bonev, P. Zsombor-Murray, Geometric approach to the accuracy analysis of a class of 3-DOF planar parallel robots, Mech. Mach. Theory 43 (2008)
364–375.

[3] D. Manocha, J.F. Canny, Efficient inverse kinematics for general 6R manipulators, IEEE Trans. Robot. Autom. 10 (5) (1994) 648–657.
[4] M. Raghavan, B. Roth, Inverse kinematics of the general 6R manipulator and related linkages, J. Mech. Des. 115 (3) (Sept 01, 1993) 502–508.
[5] J.U. Korein, N.I. Badler, Techniques for generating the goal-directed motion of articulated structures, IEEE Comput. Graph. Appl. 2 (9) (1982) 71–81.
[6] B. Karlik, S. Aydin, An improved approach to the solution of inverse kinematics problems for robot manipulators, Eng. Appl. Artif. Intell. 13 (2000) 159–164.
[7] J.A. Martin, J.D. Lope, M. Santos, A method to learn the inverse kinematics of multi-link robots by evolving neuro-controllers, Neurocomputing 72 (2009)

2806–2814.
[8] R.V. Mayorga, P. Sanongboon, Inverse kinematics and geometrically bounded singularities prevention of redundant manipulators: an artificial neural

network approach, Robot. Auton. Syst. 53 (2005) 164–176.
[9] E. Oyama, N.Y. Chong, A. Agah, Inverse kinematics learning by modular architecture neural networks with performance prediction networks, Proceedings of

the 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, 5, 2001, pp. 21–26.
[10] S.S. Chiddarwar, N.R. Babu, Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach, Eng.

Appl. Artif. Intell. 23 (7) (2010) 1083–1092.
[11] S. Tejomurtula, S. Kak, Inverse kinematics in robotics using neural networks, Inf. Sci. 116 (1999) 147–164.
[12] S.K. Nanda, S. Panda, P.R.S. Subudhi, R.K. Das, A novel application of artificial neural network for the solution of inverse kinematics controls of robotic

manipulators, Int. J. Intell. Syst. Appl. 9 (2012) 81–91.
[13] A.C. Nearchou, Solving the inverse kinematics problem of redundant robots operating in complex environments via a modified genetic algorithm, Mech.

Mach. Theory 33 (3) (1998) 273–292.
[14] R. Köker, A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization, Inf. Sci.

222 (2013) 528–543.
[15] A.A. Maciejewski, C.A. Klein, The singular value decomposition: computation and applications to robotics, Int. J. Robot. Res. 8 (6) (11 1989) 63–79.
[16] R.G. Roberts, A.A. Maciejewski, Nearest optimal repeatable control strategies for kinematically redundant manipulators, IEEE Trans. Robot. Autom. 8 (3) (6

1992) 327–337.
[17] B. Siciliano, The Tricept robot: Inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm, Robotica 17 (1999) 437–445.
[18] H. Zhang, A parallel inverse kinematics solution for robot manipulators based on multiprocessing and linear extrapolation, IEEE Trans. Robot. Autom. 7 (5)

(1991) 660–669.
[19] S.R. Lucas, C.R. Tischler, A.E. Samuel, Real-time solution of the inverse kinematic-rate problem, Int. J. Robot. Res. 19 (2000) 1236–1244.
[20] P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano, Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space

augmentation and task priority Strategy, Int. J. Robot. Res. 10 (1991) 410–425.
[21] G.S. Chirikjian, J.W. Burdick, A modal approach to hyper-redundant manipulator kinematics, IEEE Trans. Robot. Autom. 10 (3) (1994) 343–354.
[22] I. Ebert-Uphoff, G.S. Chirikjian, Inverse kinematics of discretely actuated hyper-redundant manipulators using workspace densities, IEEE Int Conf Robot.

Autom. 4 (1996) 139–145.
[23] D. Sen, T.S. Mruthyunjaya, A discrete state perspective of manipulator workspaces, Mech. Mach. Theory 29 (4) (May 1994) 591–605.
[24] A. Kumar, K.J. Waldron, Numerical plotting of surfaces of positioning accuracy of manipulators, Mech. Mach. Theory 16 (4) (1980) 361368.
[25] Y. Wang, G.S. Chirikjian, Workspace generation of hyper-redundant manipulators as a diffusion process on SE(N), IEEE Trans. Robot. Autom. 20 (3) (2004)

399–408.
[26] M. Ceccarelli, C. Lanni, A multi-objective optimum design of general 3R manipulators for prescribed workspace limits, Mech. Mach. Theory 39 (2004)

119–132.
[27] I. Ebert-Uphoff, G.S. Chirikjian, Discretely actuated manipulator workspace generation by closed-form convolution, ASME J. Mech. Des. 120 (2) (6 1998)

245–251.
[28] A.B. Kyatkin, G.S. Chirikjian, Computation of robot configuration and workspaces via the Fourier transform on the discrete motion group, Int. J. Robot. Res. 18

(6) (6 1999) 601–615.
[29] A.B. Kyatkin, G.S. Chirikjian, Synthesis of binary manipulators using the Fourier transform on the Euclidean group, ASME J. Mech. Des. 121 (March 1999)

9–14.
[30] J. Suthakorn, G.S. Chirikjian, A new inverse kinematics algorithm for binary manipulators with many actuators, Adv. Robot. 15 (2) (2001) 225–244.

http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0005
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0005
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0010
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0010
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0015
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0115
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0020
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0025
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0030
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0030
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0035
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0035
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0120
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0120
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0045
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0045
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0050
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0055
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0055
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0060
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0060
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0065
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0065
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0125
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0130
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0130
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0070
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0075
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0075
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0080
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0085
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0085
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0090
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0095
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0095
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0135
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0140
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0100
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0100
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0105
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0105
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0145
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0145
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0150
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0150
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0155
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0155
http://refhub.elsevier.com/S0094-114X(13)00166-3/rf0110

	Workspace density and inverse kinematics for planar serial revolute manipulators
	1. Introduction
	2. Workspace density
	2.1. The kinematics of planar robot arms
	2.2. Gaussian distributions to model positional workspace density
	2.3. Using the motion-group Fourier transform to compute workspace density
	2.3.1. Joint angles without stops
	2.3.2. Modeling joint limits
	2.3.3. Numerical computation of workspace density


	3. Inverse kinematics using workspace density
	4. Numerical simulations for inverse kinematics
	5. Conclusion
	Acknowledgements
	References


