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Binary actuators have only two discrete states, both of which are stable without
feedback. As a result, manipulators with binary actuators have a finite number of
states. Major benefits of binary actuation are that extensive feedback control is not
required, task repeatability can be very high, and two-state actuators are generally
very inexpensive, thus resulting in low-cost robotic mechanisms. Determining the
workspace of a binary manipulator is of great practical importance for a variety of
applications. For instance, a representation of the workspace is essential for trajectory
tracking, motion planning, and the optimal design of binary manipulators. Given that
the number of configurations attainable by binary manipulators grows exponentially
in the number of actuated degrees of freedom, U(2%), brute force representation of
binary manipulator workspaces is not feasible in the highly actuated case. This article
describes an algorithm that performs recursive calculations starting at the end-effector
and terminating at the base. The implementation of these recursive calculations is
based on the macroscopically serial structure and the discrete nature of the manipula-
tor. As a result, the method is capable of approximating the workspace in linear time,
©{n), where the slope depends on the acceptable error. @ 1995 John Wiley & Sons, Inc.
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1. INTRODUCTION

The traditional assumption in robotics is that mech-
anisms are actuated with continuous-range-of-mo-
tion actuators such as d.c. motors. However, there
are many applications of mechanisms and robotic
manipulators that require only discrete motion. For
these tasks, continuous-range-of-motion machines
are overkill.

A binary actuator is one type of discrete actuator
that has only two stable states (denoted “0"” and
“1"). As a result, binary manipulators have a finite
number of states. Major benefits of binary actuation
are that extensive feedback control is not required,
task repeatability can be very high, and two-state
actuators are generally very inexpensive (e.g., sole-
noids, pneumatic cylinders, etc.), thus resulting in
low-cost robotic mechanisms.

In principle, an analogy can be made between
continuous vs. binary manipulators and analog vs.
digital circuits. In the history of electronics and com-
puting, digital devices replaced many of their ana-
log counterparts because of higher reliability and
lower cost—exactly the same reasons for develop-
ing a binary paradigm for robotics.

One motivation for this work is that standard
robotic manipulators (which are often used for pick-
and-place tasks) have not been embraced by many
industries because of their relatively high cost, low
accuracy, and low payload capability as compared
to dedicated machine tools. Similarly, many mecha-
nism design problems do not require continuous
range-of-motion actuation, but because that is what
traditional methods address, those are the only
kinds of designs considered.

While robotic hardware based on binary actua-
tion is very inexpensive as compared to continuous
range-of-motion robots, there are associated al-
gorithmic and analytical issues in binary manipula-
tor motion planning and design that are currently
much more difficult than the corresponding prob-
lems in the continuous range-of-motion case. The
goal of this article is to develop an efficient algo-
rithm for the approximation of binary manipulator
workspaces as a tool to make these algorithmic is-
sues computationally tractable, and thus the cost
benefits of binary manipulators attainable.

The number of configurations that a binary ma-
nipulator can attain is of the form 2" where # is the
number of binary actuators. It is easy {o see that for
n large enough (e.g., n = 40) the explicit computa-
tion and storage of all workspace points becomes
impractical. Using this number of binary actuators
in a given manipulator is not unrealistic. If for in-
stance, one revolute joint is resolved into eight bits,
a five-axis manipulator would have 40 bits/binary
actuators. Therefore, no matter what aspect of these
manipulators is to be studied (e.g., kinematic syn-
thesis of binary manipulators with prescribed work-
space characteristics; motion planning of binary ma-
nipulators; or man-machine interface) efficient
methods for describing binary manipulator work-
spaces for large n are useful, and in fact necessary.

Figure 1 illustrates all possible configurations of
a “3-bit” planar binary platform manipulator. A fi-
nite number of points are reachable by the gripper
of the manipulator. In this case, 27 possible configu-
rations result because there are three actuators.
Note that for this design the location of points
reachable by the end-effector is a function of the
retracted cylinder length, extended cylinder length,
and width of the platform. In the general case these
kinematic parameters will be divided into joint stop
and structural parameters, which for this case are
denoted g"", 4", and a, respectively. In Figure 1,
g =1, a = 1.2 and g™ = 1.5.

A schematic of a highly actuated prototype is
shown in Figure 2 for 2 of its almost 33,000 (2'°) end-
effector positions along with its workspace. This
particular design is a variable geometry truss manip-
ulator. As currently configured, this manipulator
consists of 15 identical prismatic actuators, each
with two stable states (completely retracted, 0, or
completely extended, 1). In these figures g™ = 3/20
and g™ = 5/20 for each cylinder, while the width of
each platformisa; = 1/5fori=1, . . ., 15

The remainder of this article is organized as fol-
lows. Section 2 reviews the literature. Section 3
presents the necessary background and definitions
needed to formalize our approach. This background
is necessary because the workspace description for a
binary manipulator is different from that of stan-
dard continuous range-of-motion manipulators.
Section 4 presents the workspace mapping algorithm
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Figure 1. Configurations of a 3-bit platform manipulator.
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Figure 2. Sample configurations and workspace for a manipulator with 5 cascaded platforms.
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(our approximate representation of binary manipu-
lator workspaces) in detail. Section 5 presents
results generated using this algorithm. Section 6 is
the conclusion.

2. REVIEW OF RELATED LITERATURE

There are two distinct bodies of literature reviewed
in the two following subsections. Subsection 2.1
discusses the history and development of binary
mechanisms and “minimalist” robots. Subsection
2.2 reviews analysis methods for continuous range-
of-motion manipulator workspaces presented in the
literature. These two very different bodies of litera-
ture are both relevant to the current work.

2.1. The History of Binary Mechanisms

Due to the high cost/performance ratio of sophisti-
cated robotic systems, a recent trend in “minimal-
ist” robotics has begun to gain momentum. For in-
stance, there have been recent efforts to develop
new paradigms in robotics that parallel the develop-
ment of reduced instruction set computers (RISC).!
Related efforts include the investigation of sensorless
robots.?” In these efforts the mechanics of contact
and pushing are used to formulate planning algo-
rithms that are guaranteed to work provided partic-
ular physical constraints are observed. Thus, objects
can be manipulated in a precise manner without the
need for force feedback.

This trend runs counter to ideas that robots
equipped with sophisticated tactile feedback sys-
tems provide the solution to all industrial robotics
problems. However, the minimalist approach has
not included robotic manipulators completely de-
void of joint-level feedback (including position and
velocity) until now.

Nonetheless, if one reviews the literature, spo-
radic efforts in binary actuation can be found.*®
Such efforts resulted when computers were first
available to control robotic manipulators. However,
despite the seemingly natural parallel between dis-
cretely actuated mechanical systems and the devel-
opment of the computer, these efforts were aban-
doned for lack of a framework in which to design
and plan well-behaved motions of such systems.

Of course, a natural question that one might
raise is how different binary manipulators are from
current systems that use stepper motors, or pick-
and-place machines used in circuit board fabrica-
tion, or even flexible automation systems in which

technicians set joint stops. The answer is that, just
as in electronics, the true benefit of binary robotic
mechanisms is not so much a function of their dis-
crete nature as it is the reliability of having only two
states. Moreover, simple robots with only a few bi-
nary actuators cannot perform complicated tasks
such as obstacle avoidance. Therefore, the true ben-
efit of a binary paradigm for robotics can only be
exploited if a relatively large number of actuated
degrees of freedom (DOF) are considered. In this
way, the current work combines the trend towards
minimalist {or sensorless) robots with issues in the
kinematics and motion planning of high-degree-of-
freedom (“hyper-redundant”’) manipulators.” Other
recent works explore the design of binary manipula-
tors to reach a small number of specified points.®?

2.2. Determining Characteristics of
Manipulator Workspaces

We review various methods for determining manip-
ulator workspaces in this subsection. The impact of
workspace characteristics on the choice of a robot
for any particular application is substantial. !

Sen and Mruthyunjaya' use manipulators with
only discrete joint states to model continuous-
range-of-motion manipulators with limited joint res-
olution. The results are used to examine the posi-
tional accuracy of continuous-range-of-motion
robots. In addition, an algorithm is developed to use
these results to improve positional accuracy in mo-
tion planning processes for manipulators with only
few degrees of freedom. Kumar and Waldron'* de-
scribe a model that relates the joint accuracy to the
accuracy of the end effector.

Blackmore and Leu examine the volume swept
by a continuous-range-of-motion manipulator
changing its configuration.’ That work also de-
velops the mathematical framework to analyze the
swept volume of a manipulator arm.

The workspaces of manipulators with simple
geometric structure can be derived using classical
geometric approaches. These methods cover a wide
range of special manipulator structures, but they are
not applicable for manipulators of general structure.
In particular there exist algorithms for the genera-
tion of workspaces for manipulators with only revo-
lute joints.'"* These approaches address n-link ma-
nipulators, where n can be large.

Another approach solves the problem for ma-
nipulators with any kind of joints using the Monte-
Carlo method. This approach generates a large
number of random actuator values (joint angles),
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and calculates the corresponding end effector posi-
tions.!® An approximation of the workspace bound-
aries is found by tracking the border of this point
set. In principle the Monte Carlo method is not re-
stricted to manipulators with few degrees of free-
dom. However, the results lose reliability with in-
creasing degrees of freedom.

Finally, Rastegar and Deravi consider work-
space generation for a manipulator with general
structure and n joints.!” Those authors use an ap-
proach similar to the one presented in our article—
dividing the manipulator into parts, for which sub-
spaces are calculated. Other works by those authors
include the effect of joint motion constraints on the
workspace.™

3. BACKGROUND CONCEPTS
AND DEFINITIONS

The goal of this section is to provide background
needed to develop an efficient algorithm for the ap-
proximation of binary manipulator workspaces.

Intuitively, the approach presented here is to
break up the workspace into pixels/voxels in the
planar/spatial case, and calculate how many end-
effector positions in each one are reached. This is
done efficiently with an algorithm that adds the con-
tributions of each section of the manipulator by per-
forming recursive calculations starting at the end-
effector and terminating at the base. The quantity
calculated by the algorithm is called the point density
of the workspace and will be represented by some-
thing called a density array (precise definitions to fol-
low). The latter is a computer representation of the
number of end-effector points for each pixel/voxel
of the workspace.

The following subsections present the necessary
background and definitions needed to formalize our
approach. This background is necessary because the
workspace description for a binary manipulator is
different from that of standard continuous range-of-
motion manipulators. Subsection 3.1 presents nota-
tion and definitions. Subsection 3.2 reviews module
kinematics and discusses methods for storing the
minimal amount of information needed for the map-
ping algorithm. Subsection 3.3 discusses the calcula-
tions associated with efficient representation of bi-
nary manipulator workspaces. In section 4, an
efficient algorithm based on these ideas is devel-
oped to determine the point density of the work-
space.

3.1. Concepts for Discrete Workspaces

In this subsection we motivate the goals stated ear-
lier and provide background needed for the work-
space mapping algorithm for binary manipulators.
From now on we assume that the manipulator
workspace W (a subset of R") is divided into blocks
(pixels or voxels) of equal size. The following defini-
tions are useful:

Definition: The point density p assigns each block of
W C RN the number of binary manipulator states
resulting in an end-effector position within the
block, normalized by the volume of the block:

# binary manipulator states resulting in
ee-position within block
p(block) =

volume/area of workspace block

Since each binary manipulator state corresponds to
exactly one configuration and a resulting end effec-
tor position, the density can also be defined as:

# of reachable points within block
volume/area of block

#

plblock) =

where points are multiply counted when they are
reachable by multiple binary manipulator configura-
tions. The point density is important for binary ma-
nipulators because it is a measure of the positional
accuracy of the end-effector, i.e., the higher the
density is in the neighborhood of a point, the more
accurately that point can be reached.

Definition: The point density array, or density array for
short, is an N-dimensional array of integers (D(i, j)
for N = 2 or D1, j, k) for N = 3) in which each field/
element corresponds to one block of the workspace
and contains the number of binary manipulator
states causing the end-effector to be in this block.

The density array provides a discretized version
of the workspace from which point density is trivi-
ally calculated. Furthermore, the shape of a work-
space is approximated by all blocks for which the
corresponding entry in the density array is not zero.
The borders of the shape can be approximated by
curves from this information, but no efforts in this
direction are made in the present work. For most
applications only the discretized representation of
the shape is needed. Other characteristics follow in
a straightforward way: the size of a workspace, also
as understood intuitively, is given by the area/vol-
ume of the chosen block size multiplied by the num-
ber of non-zero entries in the density array. The
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calculation of moments of the workspace area/vol-
ume (e.g., center of mass, second moments, etc.)
follow in a similar way. However, in this case en-
tries of the density array are used as weights associ-
ated with the coordinates of all non-empty blocks.

The density array could be computed directly by
calculating the end-effector positions for all possible
binary manipulator configurations and counting the
points reached in each block. This is a reasonable
approach for binary manipulators with up to 20 ac-
tuators using currently available personal computer
technology, but this method is not efficient for ro-
bots with many more binary degrees of freedom
(e.g., 30-40).

To explain for what kinds of manipulators our
approach is useful, and how it works, the following
definitions are essential:

Definition: A module is a connected segment of a
manipulator that changes its configuration (and
thus that of the manipulator) by changing the states
of actuators contained in itself, and is completely
fixed in shape and size for given actuator states.

Definition: A minimal module is the smallest kine-
matically independent module in a manipulator. For
example, the collection of two or more adjacent min-
imal modules is a module, but the resulting module
is not minimal. Note that the manner in which a
manipulator is decomposed into modules is not
unique, whereas the decomposition into minimal
modules is unique.

Definition: A macroscopically serial manipulator is a
manipulator that is serial on a large scale, i.e., it can
be represented by a serial collection of modules
(where each module is mounted on top of the pre-
vious one). Closed loops may exist in each module,
but macroscopic loops are not permitted. Any mod-
ule partitions a macroscopically serial manipulator
into distinct segments.

Definition: The " intermediate workspace of a macro-
scopically serial manipulator composed of B mod-
ules is the workspace of the partial manipulator
from module i + 1 to the end-effector. (Modules are
numbered 1 to B, from the base to the end of the
manipulator.)

End-effector position vectors in the i interme-
diate workspace are written in a coordinate frame
attached to the top of module i. To visualize this,
imagine that the manipulator arm is cut between
module i and module i + 1. The lower part (the first
i modules) are ignored. The upper part (the most
distal B — i modules) are considered as a manipula-

tor on its own, with its base in the separating plane.
The workspace generated by this partial manipula-
tor is the ith intermediate workspace of the whole
structure.

Definition: An affine transformation in R" is a trans-
formation of the form y = Ax + b, where x, y, and b
are vectors in BY, and A is an arbitrary matrix in
RBN=N. A homogenous transformation is a special case of
an affine transformation: y = Rx + b, where R is a
special orthogonal matrix, i.e., an orthogonal matrix
with determinant 1. The set of all (N X N) special
orthogonal matrices is denoted as SO(N) (which is a
group under matrix multiplication). Members of this
set are also called rotation matrices. Note that the set
of all affine transformations in R" is closed under
the operation of composition, and that the set of all
homogeneous transformations is a closed subset un-
der the same operation. Furthermore, this subset is
a group under the operation of composition de-
noted as SE(N).

Modules are numbered 1 to B, from the base of
the manipulator to the end-effector. Each module
has a frame attached to its top (according to the
Danavit-Hartenberg convention in the serial case).
The frames are numbered such that frame 7 is on top
of module i, and frame 0 is the frame at the manipu-
lator base. The number of independent binary actu-
ators in module { is denoted J.. Therefore there exist
2" different combinations of binary actuator states
(and corresponding configurations) for the i mod-
ule.

Definition: Each module i with [; binary joint an-
gles, fori = 1, . . . , B will be represented by the
configuration set:

Ci - {':RI.- h]}, {er bz:'.r LI B } {Hz-‘-r bz.‘.}};
where R; € SO(N) are rotation matrices and b; € RV
are translation vectors for §o=ileani s 2%, These

pairs describe all possible relative orientations and
positions of frame i with respect to frame i — 1.

The information can either be stored in explicit
form, or the rotation matrix can be represented us-
ing Euler angles, unit quaternions, etc. The choice is
a trade-off between computational time spent on
arithmetic operations and storage space.

3.2. Efficient Representation of Workspaces

For our algorithm to work, a computational tool is
needed to efficiently store intermediate workspaces
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for future use. Efficient representation is critical be-
cause intermediate workspaces may contain many
points. Intermediate workspaces generated by mod-
ules composed of binary Stewart platforms as mini-
mal modules can easily have millions of points.

We first formalize requirements for potential
workspace representations before we propose one
approach that satisfies all of them:

1. The amount of data stored at any time must
be far less than the explicit storage of an in-
termediate workspace, which would require
2* N-dimensional vectors for k = n.

2. The positional error caused by the represen-
tation of the workspace has to be small. In
the ideal case it must stay below a given
bound.

3. It is crucial that the workspace representa-
tion used supports efficient computation of
affine transformations.

4. It is desirable to be able to quickly test
whether a particular vector lies in an inter-
mediate workspace.

While the first three conditions are necessary re-
quirements, the last one is not needed for all appli-
cations. However it is a nice feature since it opens
up a lot of new applications involving binary manip-
ulator motion planning, e.g., obstacle avoidance.

We decided to use the point density array de-
fined in subsection 3.1 to store all intermediate
workspaces. It satisfies all four conditions. To re-
store or generate a workspace from a given density
array some additional information, e.g., size and
volume of each block, is needed. For this purpose,
we define the following:

Definition: A density sef is a computational structure
containing the following information:

* A reference point xy € R" that defines a point
of the workspace in real coordinates. Here x,
is chosen to represent the middle point of a
workspace. That is, each component of x; is
the middle of the interval bounded by mini-
mal and maximal coordinate values of the
workspace.

* The resolution of the discretization, i.e. block
dimensions given by Ax = [Ax, Ay, Az]”,

* The dimensions/length of the array in each
direction, either in real (workspace) coordi-
nates, xy = [xr, ¥, z1]", or as integers, 1, ji,
ki, giving the numbers of pixels/voxels for the
particular resolution,

* The density array, D, of the workspace, which
is an N-dimensional array of integers repre-
senting the point density of the workspace
multiplied by block volume.

We denote a density set as
& = {D, xg, Ax, x}.

An example of the description of a workspace as a
density set is given in Figure 3 for the planar case.
Note that the orientation of the end-effector is not
stored because we only discretize in the workspace
translational coordinates.

For the next section, in which the workspace
mapping algorithm is presented, we need to know
how to access the density array D. In other words,
the following question must be answered: For given
workspace coordinates x = (x, v, z)T, what are the
corresponding array indices (i, j, k), and vice versa?

First (iy, jo, ko) are chosen to be the indices corre-
sponding to the middle point x, of the workspace,
such that the range of possible indices of the array is
simply

!I=ﬂi1.l--'rilibiﬂ+11"-:2jﬂr
j=0L....jujotL ..., 2
G VORI Y TR

Note that with this definition the number of indices
in each dimension is always odd. The rule to calcu-
late workspace coordinates from array indices is:

x(i, j, k) = x(i) = xp + Ax(i — i),
y(i J. k) = y(j) = yo + Ay(j — ja),
z(i, j, k) = z(k) = zo + Az(k — ko). (1)

The inverse problem is similar; however, the results
must be rounded to the nearest integer. We use the
notation of the floor operation |.| to describe the
rounding procedure. Round(x) denotes the nearest
integer to x, while [x] is defined to be the largest
integer that is smaller or equal to x. The following
relationship holds:

Round(x) = |x + 0.5],

so that the inverse problem is solved as follows:
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(a) Points of a workspace

(d) Density array D(¢, )

\
\

(b) Introducing a grid

\

middle point x4 € IR*

(¢) Counting points per pixel

resolution Ax = [Ax, &y]T

Figure 3. Representation of a workspace as a density set.

i, v, = it = [ S22 1 05 + 4y
i) =) = | Y + 05 + o
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(x, ¥, 2) =k(z) = |———=+ 05|+ k. (2)

Az

The following section presents the mapping al-
gorithm,

4. THE WORKSPACE MAPPING ALGORITHM

In this section, the workspace mapping algorithm is
presented and analyzed. Subsection 4.1 presents an
overview of the workspace mapping algorithm.
Subsection 4.2 describes the implementation of one
iteration of the algorithm in detail. Subsection 4.3
presents an error analysis. Because the workspace
mapping algorithm is an approximation method,
error analysis is important so that appropriate pa-
rameters can be chosen for the algorithm to yield
acceptable results, e.g., determining what pixel

dimensions vield reasonable accuracy. Subsection
4.4 discusses computational complexity and estab-
lishes a trade-off between accuracy and computa-
tion time.

4.1. An Overview of the Algorithm

The goal of this subsection is to explain the work-
space mapping algorithm on two different levels.
The first part describes how the algorithm uses a
recursive process to calculate the workspace of a
manipulator. The second part draws a basic picture
of one iteration. Subsection 4.2 describes the imple-
mentation of one iteration in greater detail.

As throughout this article, B denotes the num-
ber of modules of the manipulator under consider-
ation. In addition the following indices are used
throughout this section:

* Index s denotes the sth iteration of the map-

ping algorithm, (s = 1,2, . . . , B),
* Index m denotes the mth module considered
in the sth'step, (m =8, B—1, ... ;1)

Recall that W, is the intermediate workspace from
the top of module m and W,,_; is the intermediate
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workspace from the bottom of module m. These two
workspaces are related to each other through the
set C,,,, of all possible configurations of module m:
= {R{", b{"), (R, BY™), . Rz, by}
One iteration of workspace mapping determines the
density set 9,,_; (representing the point density of
workspace W,,_;) from given point density %, and
configuration set C, This situation is described
graphically below:

q
D —> iteration s

s=B-m+1)

=

* m=1

Cn—+

A schematic of this procedure is given in Figure 4.
The iterations of the algorithm are counted from 1 to
B. Because the algorithm starts with the last module
and propagates backwards the module number m
considered at stepsism(s) = B—s + 1, fors = 1,
2, . . ., B. Workspace Wy contains only one point
because there are no actuators above the top of the
most distal module. Thus the density array Dy
consists of a single element/field, containing the
value 1.

The algorithm can therefore be summarized as
follows: It starts with the trivial density set @5, The
first iteration determines %g_,, the second deter-
mines 9y 3, etc. After B iterations the algorithm
ends providing the density set %, of the complete
manipulator arm.

The following describes iteration s of the algo-
rithm, which deals with module m = B — 5 + 1, in
more detail:

1. Estimate size and location of intermediate
workspace W,,_; (details to follow). Based on
this information:

{a) Choose the dimensions of a block in the
new density array: (Ax™7U, Ay,
ﬁztnr—I}}_

(b) Based on these dimensions determine
the number of fields of the density array
in each direction: (i{"~1, ji®=1, k{=~1),

{c) Allocate sufficient memory fur this den-
sity array and initialize it with zeros.

(d) Determine the coordinates of the mxddle
point of the new workspace: e,
yfm 1) z1’m-—lil?J

(e) Determme the array indices, (iy’ . fy
ki*=1), of the middle point of the new
array.

(m=1) 2im— 1]

2. For all configurations (R[™, b™) € C,, (I =

1, . . ., 21, apply the corresponding ho-
mogeneous transformation to the density ar-
ray Dy

For all indices (i, j, k) for which the entry
D,fi, j. k) of the density array D, is not
zero, the following steps are applied:

(a) Calculate the vector x = (x(i), y(j),
z(k))T from the array indices (i, j, &)
according to Eq. (1).

{(b) Calculate the coordinate vector x° =
Ri™ x + bi™ € W,,_y.

{c) Find the array indices (i’, j', k') of x’
in the new array according to Eq. (2).

{d) Increment entries in the block of the
new array by the corresponding en-
try of the old array:

D,,,.. '[|:f-r, j—‘r k‘l} = {Dm—]ﬁr: _.r.lf kr,}

+ Duli, . k) (3)

To estimate size and location of workspace
W_,_p, all 2% homogeneous transforms are applied to
the eight corners of the density array D, (four for
the planar case). The resulting maximal and mini-
mal values in each coordinate axis are taken as the
boundaries of the next density array, D,,-,. Because
the actual workspace W,,; is smaller than this esti-
mate, a memory overhead is produced that would
decrease the efficiency of the next iteration of the
algorithm. For this reason an additional reduction
procedure is implemented, which detects and cuts
out the smallest part of the density array that con-
tains the whole workspace. The computational com-
plexity for both of these parts, the estimate and the
reduction procedure, are not significant compared
to the mapping process itself.

The next section shows the implementation of
these steps. In particular the operations described in
2(a)-{c), which build the core of each iteration, are
simplified so that the effort is reduced.

4.2. Implementation of One Iteration

The core part of iteration s is the transformation of
the indices of density array D,, to the indices of den-
sity array Dy-1, where m = B — 5 + 1. This is the
most important part, because it has to be performed
for each configuration and for all indices corre-
sponding to non-zero entries in D,,. Hence it is the
main contribution of the computational complexity
of the algorithm. The emphasis of this section is on
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(a) Configurations of one module and resulting overlay of density sets

""I' 1.'ﬁ
_&.e-a %

{9V S ~J/

=

(b) Summing the points in the new grid leads to the next density set

Figure 4. Schematic of one recursion of the workspace mapping algorithm.

the simplification and implementation of this part of
the calculation.

To eliminate indices that complicate the presen-
tation of one step of the algorithm, the following
notation is used: All variables belonging to work-

space W, or density set @, have names without
superscript, while variables belonging to W,_; or
D -1 have a superscript ('). For one particular con-
figuration (R, b) = (RI™, bj™) € C,,, and one particu-
lar set of indices (i, j, k), the three steps to calculate
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the indices (i’, j', k') from (i, j, k) as described in
sectHon 4.1, 2 (a)-(c), are illustrated.

The first part is described by Eq. (1) and can be
written as an affine transformation:

Ax 0 o0\ fi Xg — igAx
x=1-8 y 0O it | vo— jdy |
0= 0 cAzENk 70— bz

The second part is a homogeneous transformation
(a special type of affine transformation):

The third and last part has the form

o El_x_'xﬂ + 0.5 + i

i fr il L J

}:r{yr:l == LHT;F‘M - []5 - _.rIIJI o

k'(z') o 2
% 05+ kb

according to Eq. (2), which is also an affine transfor-
mation, followed by a floor operation |.| in each co-
ordinate.

The composition of affine transformations is al-
ways an affine transformation itself. Hence we can
find constants @y, @, as, b, . . . , ds, such that the

Ax
a; = (R)n TP

- Ay
b = (Rhz At

Az
c1 = (R R

general transformation from (i, j, k) to {i', j', k') has
the form:

E-r = [ﬂ']f + E}E}I + E']k =+ fi]],
i’ = laqi + baf + ook + ),
k' = |asi + byj + cak + ). (4)

As an example of how to calculate the constants a;,
@z . . . ,dsin Eq. (4), the constants for the first of
these relationships, a;, by, 1, and d; are determined.
In this context (R),, denotes the coefficient of the
matrix R in row © and column v, and (b), denotes
the uth coefficient of vector b. Substitution of the
equations above into the relationship

it = {—{x — %) | g5+ 55J = |mi + byj + ok + dy.
Ax
leads to the first four constants (see equation 5).

Result for iteration s = B — m + 1: For each config-
uration (R, b) = (R"™, b)), the constants
ay, . . . ,d;are calculated according to relationships
as given by Eq. (5) for the first four constants. Sec-
ond, Eq. (4) is applied to all relevant indices (i, j, k)
using these constants. The resulting indices (1", j’,
k') are used to increment the entries D,,_(i', j', k')
according to assignment (3). Note, that the entries
of the same density array D, are changed while
handling all I = 1, . . . , 2/~ configurations, with-
out reinitializing. This implements the superposi-
tion of all parts of workspace W,,—;.

4.3. Error Analysis

The previous subsections developed an efficient
method to approximate the point density of the
workspace of binary manipulators with macroscopi-

_ (Rjulxo — dx) + (Rha(yo — jody) + R)is(z0 — kodz) + (b) — xp

d

+ 0.5 + i

Ax'

()



394 - Journal of Robotic Systems—1995

cally serial structure. In this subsection an error
analysis is performed. Results from this analysis are
used in the next subsection, where a trade-off be-
tween complexity and error is developed.

The following tracks the error occurring at the
recursive steps of the algorithm in the intermediate
workspaces, caused by representing the workspace
as a density set. An upper bound on the maximal
error at each step of the algorithm is derived.

Recall that B denotes the number of modules in
the manipulator, which means that the algorithm
has B steps and there are (B + 1) intermediate work-
spaces. The intermediate workspaces are denoted
by W, as in previous sections. Again, the relation-
ship m(s) = B — s + 1 describes the number m of the
module that is treated in iteration s of the algorithm.
For the following let

* X, denote any exact end-effector position in
workspace W, (x. € Wy,),

* X, denote the corresponding vector calculated
by the mapping algorithm before discretiza-
tion at steps = B — m + 1, and

* %, denote the vector calculated by the map-
ping algorithm after this discretization.

Definition: The maximal error E,, of the workspace
mapping algorithm in workspace W, is an up-
per bound of the distance between vector x, €
W,, and the corresponding approximation %, calcu-
lated by the algorithm. Using the Euclidean norm
x
as a measure of the length of a vector, ||| ¥
E [
= Va? + i + z?, the maximal error is defined as
En = [P = Rl

Definition: The block radius r,, is defined as half the
diagonal length of a block of density set %, which
is:

1
T = % \f&xﬁ, + 5.11‘4',2,1 + E.zi = E ilﬂxmlha

where Ax,, is the vector of block dimensions of the
density set 9@,

Consider a vector %, before discretization, as de-
fined above. After the discretization X, is repre-
sented by the middle point, %,, of the block of the
density set 9, in which X, lies. Therefore the maxi-
mal possible distance between X,, and %,, is just the
block radius of density set @, ie., [[kn — Xul2

S T

As a result, the following relationships hold:

En =l = %2
maximal error in workspace m

x.ﬂf—l o Rmxm + bm
Zm-1 = Rukp + by
Elim o im”l =

discretization error at steps =B - m + 1
and therefore
Em-1 = [Xm-1 = Xn-1ll2
= [m-1 = Zm-1llz + -1 = Run-1ll2
= Ry + bo) = (R + bl + 7
= [Ron (X = Ru)llz + Fin-s
= [t = Rz + Ten-1

= Em = Faain

The mapping algorithm begins with
0
Xgp = 0 =i3=ia$E5=ﬂ
0

Therefore:
Egp-1 = Eg + 131 = rg—1
Eg-s = Eg_1 + rg-2 = rg—1 + rg—z
fot
Eo=E +m=r_1+trmat -—-+r

such that

B=1
Em o Z Th

f=m

is an upper bound on the error in workspace W,,.. In
particular
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is an upper bound on the maximal error of the algo-
rithm,

4.4. Computational Complexity

This subsection discusses the trade-off between
memory, time, and accuracy for the algorithm. It
consists of three parts: Subsection 4.4.1 discusses
how the composition of minimal modules to larger
units can decrease the error of the algorithm in ex-
change for some additional calculations. Subsection
4.4.2 addresses the computational complexity of the
core of the mapping algorithm. Subsection 4.4.3
combines the results of the first two, and suggests a
strategy to adjust the algorithm to given require-
ments of accuracy, time, and memory.
In this context we denote:

* U, Uz, . .., U the number of configura-
tions of each module. U, = 2 for m = 1,
P on iR e el

* Wg, Wg_1, . . . . Wy, the intermediate work-

space (in the order calculated by the algo-
rithm). Note, that the algorithm starts with a
special workspace at the end-effector, de-
noted Wy, which contains only the origin
(0, 0, 0).

* S, (m=BB-1, ... ,0), the density set
corresponding to workspace W,,. [, denotes
the density array of density set &, 95 consists
of only one block, with entry 1, representing

the origin.

*Cp,(m=B,B—1, ... ,0), the configuration
set of module m.

* Voo (m=B, B—1, ...,0), the volume of

the smallest box enclosing workspace W, that
is aligned with the axes of the mth frame (the
area of the smallest enclosing rectangle for the
planar case).

s p,(m=B88-1,...,0, the number of
blocks, used to store workspace W, in a den-
sity set @,. Special case: Py = 1.

4.4.1, Error Reduction by Choosing Module Size

This subsection describes how the size of the mod-
ules can reduce the error of the workspace mapping
algorithm. Starting the algorithm with modules
composed of a number of minimal modules realizes
a trade-off between direct calculation of all end-effec-
tor positions (no error, with large computational
and memory requirements) and the pure mapping al-

gorithm (not exact, but much smaller computational
and memory requirements).

Accordingly two opposing factors are to be bal-
anced: Choosing the modules very large results in
few recursions in the mapping algorithm. On the
other hand, the effort to calculate all configurations
of each module in advance grows exponentially
with its number of binary actuators. As a general
rule, the above calculations are not allowed to ex-
ceed the computational order of the mapping algo-
rithm (whose complexity is determined in 4.4.2).

Consider a module m, which consists of p mini-
mal modules with wuy, uz, . . . , u, configurations,
respectively. All U = wu; . . . u, configurations of
the composed module can be calculated by combin-
ing the configuration sets of the minimal modules.
For our approach the effort to calculate all configura-
tions of module m is approximately proportional to
the number of configurations to be determined, ¢, =
acll,, so that the total effort for these calculations is

E

a
Cr o Z O = Mg Z u."l"

m=1 m=1

The memory is specified by the number of configu-
rations to be stored (LI + Lk + - -+ + L) times the
amount of memory needed to store one configura-
tion:

B

M; = Ay 2, Uy, floats.

m=1

There is no error arising from this calculation except
that which is caused by floating point arithmetic.
Therefore, E; = 0.

4.4.9, Complexity of the Main Algorithm

Let us consider one step of the mapping algorithm
(s=1,2 ..., B) Intermediate workspace W, is
represented by a density set %,,, where m = m(s) =
B — s + 1. The number of elements/fields in D,, is
P,.. The next module to be considered is module m,
which has U,, = 2/~ different configurations, i.e., U,
affine transformations are applied. For each trans-
formation the constants ay, @z, @3, by, . . . . ds have
to be determined. This takes only 18 floating point
multiplications and 12 additions, and is negligible
compared to the effort for the affine transformation
applied to all the pixels.

The essence of the mapping process for each
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configuration is to transform the indices of all blocks
of D, to indices of Dy,-4, i.e.

= e + bij + ok + di),
= I_ﬂzl; + bg_j- + (:jk =+ ﬂ‘z],

= |asi + byj + csk + dal,

must be evaluated for all possible 1, j, k within the
dimensions of the density array. This can be done in
three nested loops, extracting all constants that are
invariant. This way the computational complexity
for one affine transformation of all fields of an array
D, is approximately 3P, Tra, where Try is the aver-
age time needed to perform one floating point mul-
tiplication and addition. This number, multiplied by
the number of affine transformations to be per-
formed, (i.e., the number of configurations Ll,)
gives the total effort for steps, s =B - m + 1)

(_-{S] e 3Pr:| umTJZM o 3Pﬁ—s+1u.!i—.:-'+'l TFM'

Summing over all steps, (s =1 . B), results in

E 'I-|. T,
Ch=3 2 (Ppos1Up-ei1)Tem = 3 }..B (P L) T
s=1 m=

B
o 3 2 {Pm um}TI-'.'rl'r

m=1

where Py = 1. (In the special case of two dimensions
the factor in front is 2 instead of 3.)

The memory needed for the algorithm depends
on the application: for motion planning tasks the
information from all intermediate workspaces is
needed. On the other hand, to generate the final
workspace (for instance, to see how changes in
kinematic parameters change the workspace), inter-
mediate workspaces need not be retained after their
information has been used, i.e., at most two density
sets, %, and %,,_;, have to be stored at a time. In
this case the memory needed can be estimated as:

&
My = 2max P; integers
=0

The error caused by the mapping algorithm was al-
ready determined in subsection 4.3.

4.4.3. Total Complexity, Memory, and Error

Here the results of the two previous parts are added
together to yield the final complexity, memory re-
quirements, and error of the algorithm:

B

C= C.""Cu-'lcz Um"‘SZ (Po Ui Trng,

M=M+ My = Ay E L, floats + 2 max P; ints,

m=1

B-1
E=E;+E”=D+2!‘m,

w=0

where r,, is half the diagonal of a block in density
array D,, as defined in subsection 4.3.

In general vectors are rotated in all directions,
which means that the errors are transferred from
one coordinate axis to the next one. A high resolu-
tion in only one coordinate direction does not help
to keep the error in this direction small. For this
reason we choose the resolution to be the same in
each coordinate axis: Ax, = Ayw = Az, (In two
dimensions Az, is ignored.) The expression for the
block radius r,, as defined in subsection 4.3, simpli-
fies to:

He

- %wxz + Ayq + Az

1 - V3
3 3Ax: = 5 Axy,

and the total error E takes the form:

Z, P = 2 A Xy

m=0 =)

E=E=

To adjust the algorithm to given requirements we
can choose either the resolutions A x,, or the number
of blocks P, for each step. If one of them is given,
the other one results from the relationship:

Vi = Pmﬁxnrﬂ-ymﬁzm = P.wrﬁx?ﬁ.,

% Ve
ie P, = ,-1,:3 or Az, = f;I'IP_.,,
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In the planar case the cubic root is replaced by a
square root, and volume is replaced by area. Vi, is
given by the morphology of the robot and its kine-
matic parameters. Note that the intermediate work-
spaces are growing as the algorithm propagates
down the manipulator, so that: V< Vg < --- <
Vy, and in particular 1y << V.

The total computational complexity C, the mem-
ory M, and the total error E can now be formulated
in terms of the same variables, Py, Py, . . . , Pg,
{Pg g 1]:

B-1 .fV—,,.
Ees 2 Y7,

Ve '
(3,1_u+ et ;.'—)
VP, VPa,

C=Mh(Lh + LU+ ---+ L)
g B{UH + PH—JUH bt e +P]U]:]T.r,\.1

M = ayllly + Uz + --- + L) floats

B
+ 2 max P, ints

LIk

The goal is to keep Ax; small for high accuracy and
not to increase computational complexity and mem-
ory too much. Because memory tends to be the criti-
cal factor (as compared to time) we decided to base
our strategy on the direct control of the number of
pixels used in the approximations. P, is chosen to be
constant for all workspaces,

P:P{:-=P'| = "":.P,_q_'|.

This implies the following complexity of the algo-
rithm in terms of the free parameter P:

V3 + YV

C=d (Ll + LI + --- + L)
+ 3P(LL; + -+ + Ua_1)Try + 3UpTrm
M= k(U + Uz + -+ + Up) floats + 2P ints

We now draw a rough picture of how these terms
increase in the number of modules B, and their de-
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pendence on the free parameter P based on the fol-
lowing two assumptions: (1) the volume V, grows
with the order of three in the number of modules,
V. = Ay (m(s)¥ = Ay(B — s + 1)%, (in the planar case
V, = h(B — s + 1)), and (2) the module size is kept
small. Then the error takes the form

phy

V3 BT

A
+ VAB = 2P + -+ + VD)
VIV
T 1+ -+ (B-1)

_ 1 V3V ({E - 1)3)
g 2 RAT B
and the algorithm has the following behavior:

* The error E grows quadratically in the number
of modules B with a very small factor. Depen-
dence on chosen parameter P is as factor
1/¥P.

* The memory M is approximately linear in B
and P.

* The time C is approximately linear in B and P.

To get a smaller error, P is increased.

Breaking the manipulator up into optimal sized
modules is a more complicated task. The reason is
that if the number of minimal modules per module
is changed, this not only effects the numbers U, and
B, but it also changes the geometrical data Vy, V',

. . of the workspaces.

Due to this complexity we have not found a
perfect solution for this problem yet. However,
choosing Uz as large as possible, because Us is the
only parameter not multiplied by P in the expres-
sion for time C, (Llp >> Uz_y), and Uy_; = Lp_s =

- = L gives good results. An example for the
choice of B and LI}, Uz, . . . , Up for a binary truss
manipulator and the results for different numbers of
modules are given in the next section together with
running time and resulting error.

5. NUMERICAL RESULTS

This section presents numerical results for the work-
space mapping algorithm. It was implemented for
the planar case on a SUN 4/40 SPARC station IPC in
the C programming language. Figures were made
using Mathematica version 2.2.



398 - Journal of Robotic Systems—1995

The algorithm is applied to the binary truss ma-
nipulator described in section 1 and illustrated in
Figure 2. The joint values were chosen as in Figure
2, to allow the comparison of the workspace approx-
imation for a 5-platform manipulator with the exact
workspace, shown in Figure 2 (g™ = 4, g = &5,
Tord =20 e oo 15

The minimal modules for a truss manipulator
are the platforms. Each platform consists of three
binary joints, such that it has 2* = 8 different config-
urations.

j*o0iaRs3

¥=

0.8 - 1
) .8 BT ST a1 3 (Bl

¥ = *0L0JER5F
(a) Manipulator with 5 modules (15 Bits),
Es = 0.018858

The maximal number of pixels, P, in the algo-
rithm is chosen as P = 20,000. The first step (s = 1)
of the algorithm treats the most distal 4 platforms as
one module. The remaining steps (s =2, . . . , B)
treat 2 platforms as a single module. If the total
number of platforms is odd, the last iteration (s = B)
considers only one platform as a module. The fol-
lowing summarizes the resulting parameters of the
algorithm for a manipulator with an even number of
platforms. Given parameters are:

1.9

OO0

v

; ‘.1:=|*{J.[J.394[14' . < :
(b) Manipulator with 8 modules (24 Bits),
Es = 0.041790

.7

nosE

R

¥=

-1.41

-3.ad -2 .2% =1.40¢8

0.13 1.31 .50 309

x=0*QOSR9

(c) Manipulator with 14 modules (42 Bits),

E,, = 0.146833

Figure 5. Point density of a manipulator workspace for 5, 8, and 14 modules.
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= M, the number of platforms. M is assumed to
be even for simplicity of the explanation.

* = 20,000, the maximal number of blocks in
the representation of a workspace.

Resulting parameters:

* the number of modules considered by the al-
gorithm: B = M/2 — 1.

* the numbers of joints per module: [ =4 -3 =
Weh ==l =l mp

* the numbers of configurations per module: Uy
=20 =212 =4096, U = -+ = Up-y = 20 = 64,

* the numbers of blocks in the representation of
a workspace W,: special case Py = 1, P, =
P=20000 form=20,...,8-1.

Figures 5a—5c show the results for a binary truss
manipulator with 5, 8 and 14 platforms, respec-
tively, each with actuator strokes stated earlier. E,
denotes the maximal error for points in each approx-

FiF GH sy

™"

(a) Time C

Lotal srtec
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imation. Figure 5a, which presents the workspace of
the manipulator with 5 platforms, can be compared
to the direct results, shown in Figure 2. Note that
the length scales of the figures differ for different
numbers of platforms.

Time, error, and memory were tracked during
the calculations. Figure 6a shows the effective user
time C, including all calculations except the time for
printing and storing the data in a file. While the
general trend is linear, discrete jumps in this graph
are a result of how the platforms are grouped as
larger modules. Figure 6b shows the memory M
needed for the calculations. The amount of memory
needed is given in terms of a number of integers.
Memory used in the form of double variables is con-
verted into integers using a factor 2, because on a
SPARC station an integer is represented by 4 bits, a
double variable by 8 bits. The memory is approxi-
mately constant because the storage of intermediate
workspaces is the main factor, and the number Py, of
blocks is chosen to be constant. Figure 6¢ shows the

mEwoTy in inCagers
Ll

Ta8A0

0300

ELo i

Ll

el o

14080

L0800

7 v

(b) Memory M

1% 20

(c) Error E

Figure 6. Time C, memory M, and error E of the algorithm for the example of section 5.
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maximal error E in the approximation of the work-
spaces. Points in the approximation may differ from
the exact positions by at most the distance E. The
jumps again follow from the grouping of platforms.

6. CONCLUSIONS

This article has presented an efficient algorithm for
generating an approximation to the workspace of
robotic manipulators with binary (two-state) actua-
tors. The error associated with this method was ana-
lyzed, and a trade-off between accuracy and compu-
tation time/memory was derived, and illustrated by
an example.

This article is one step in the development of a
binary paradigm for robotics. This paradigm has tre-
mendous potential as an alternative to standard
continuous range-of-motion actuation. However,
challenging algorithmic issues remain in the design
and motion planning of these devices.

This work was made possible by the N5SF National
Young Investigator Award IRI-9357738 from the Ro-
botics and Machine Intelligence Program, and a Pres-
idential Faculty Fellows Award.
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