Proceedings of the 1996 IEEE
International Conference on Robotics and Automation
Minneapolis, Minnesotz - April 1996

Inverse Kinematics of Discretely Actuated Hyper-Redundant
Manipulators Using Workspace Densities

Imme Ebert-Uphoff *

Gregory S. Chirikjian

Department of Mechanical Engineering
Johns Hopkins University
Baltimore, MD 21218

Abstract

Hyper-redundant manipulators present an alterna-
tive to conventional 6 DOF manipulators for inspec-
tion, space, and medical applications. The additional
degrees of freedom facilitate obstacle avoidance and
allow tasks to be performed even if some of the actu-
ators fail. In this paper we consider hyper-redundant
manipulators that are actuated discretely, e.g. using
two-state actuators or motors with finite resolution.
The inverse kinematics problem for a discretely actu-
ated manipulator is intrinsically different from the one
for its continuously actuated counterpart. We present
a framework for the discussion of the discretely ac-
tuated case and propose an algorithm for the inverse
kinematics. The algorithm generates solutions in lin-
ear time with respect to the number of manipulator
actuators, as opposed to the exponential time required
by brute force search.

1 Introduction

Hyper-redundant architectures include cascades of
modules such as Stewart Platforms, variable geome-
try trusses, or serial links. We call any of these types
macroscopically-serial manipulators. One particular
subclass of hyper-redundant manipulators are mech-
anisms consisting of serial links connected by active
revolute joints. They have been studied extensively,
e.g. in the early 70’s a prototype called the Active
Cord Mechanism was built in Japan by Shigeo Hirose,
who based the design and motion planning procedures
on studies on snakes [1]. More recent developments in-
clude a prototype of a Hyper-redundant Active Endo-
scope for use in remote and minimally invasive surgery
[2], and a prototype with 12 degrees of freedom that is
currently being tested at thé Jet Propulsion Labora-
tory for inspection tasks on space stations [3]. A wide
variety of algorithmical issues have been discussed for
this kind of manipulator, see for example [4, 5] and
references therein.
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A second class of hyper-redundant manipulators
uses variable geometry truss mechanisms (VGT’s)
stacked on top of one another. This design origi-
nated from space applications. Actuators were added
to large static space structures so that they could
be folded during transport and actively deployed in
space. An advantage of this type of manipulator is
that it offers excellent static stability. Different can-
didate topologies and their suitability for applications
in space have bzen discussed extensively, e.g. [6, 7, 8].

One approach to the inverse kinematics of gen-
eral macroscopically-serial manipulators is to pre-
scribe their shape using backbone curves ([9, 10] and
references therein).

In this paper we consider manipulators of gen-
eral macroscopically-serial architecture that are actu-
ated discretely. We consider discrete actuators be-
cause they offer high precision and reliability with low
cost compared o actuators with continuous range-of-
motion. For example, a continuous actuator can be
turned into a very precise two-state actuator by replac-
ing the position feedback by a mechanical constraint
and overpowering it, to make sure that both states
are reached uncler load. This is also an alternative for
applications where position sensors and feedback are
not avaiable or are too expensive.

The inverse kinematics problem for a discretely ac-
tuated manipulator is intrinsically different from the
one for its continuously actuated counterpart. Assum-
ing continuous motion capabilities to determine ideal
joint values anc rounding these to the closest discrete
joint values available can result in large errors. The
reason for this is that the discrete joint values clos-
est to the ideal joint values do not necessarily lead
to the discrete configuration closest to the ideal con-
figuration (since the forward kinematics are in general
non-linear). In addition small inaccuracies close to the
base can result in large displacements at the tip.

We present a framework for the discussion that con-
siders only the discrete configurations attainable by
the manipulator and develop an algorithm that solves
the inverse kinematics problem in linear time with re-
spect to the number of manipulator modules. The
algorithm is based on determining and fixing a config-
uration for each of the modules sequentially starting
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Figure 1: A macroscopically-serial manipulator

at the base while maximizing at every step the re-
dundancy remaining to reach the goal. A measure for
the remaining redundancy is derived from character-
istics of the workspace of the more distal platforms.
The approach is illustrated for binary manipulators
(using two-state actuators), as an example of a hyper-
redundant manipulator with extremely low resolution
in each actuator.

2 Concepts for Discrete Manipulators

This section provides concepts and definitions for
manipulators whose joints have only discrete states.
The discussion is restricted to manipulators of the
macroscopically-serial type, i.e. a serial collection of
modules where each module is mounted on top of the
previous one. Modules are numbered 1 to B, from
the base to the end of the manipulator, as shown in
Figure 1. Closed loops may exist in each module, but

macroscopic loops are not permitted.
2.1 Intermediate

Point Density and

Workspaces

The workspace of a continuous range-of-motion ma-
nipulator 1s often described by its boundary and the
ease with which points in the interior can be reached
is described using dexterity measures. A discrete ma-
nipulator can only reach a finite number of points.
Therefore not only the boundary of the workspace is
important but also the distribution of the points inside
this boundary.

For discrete manipulators one has to distinguish
carefully between redundant architecture and redun-
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dancy of motion. In the context of discretely actuated
manipulators redundancy of motion only has meaning
when an error threshold is specified. That is, given an
error radius 7, a discrete manipulator is redundant for
a specified position and orientation (frame), if there is
more than one configuration within the distance r of
the frame. The distance is measured according to a
distance function that compares two frames with each
other, e.g. such as in [11]. In the following we define
the redundancy of motion based on the local density of
reachable points/frames per unit workspace volume.
Depending on whether the manipulator under con-
sideration is planar or spatial, and whether orientation
is considered, the manipulator workspace W is a sub-
set of R?, R* x SO(2), IR? or R?® x SO(3). From now
on we assumne that the workspace W is divided into
blocks (pixels) of equal size. The distribution of the
points is described as follows: The point density p as-
signs each block of workspace W the number of points
within the block that are reachable by the discrete
manipulator, normalized by the volume of the block:
o(block) = # reachable points in block

unit volume/area

The point density is a probabilistic measure of the po-
sitional accuracy of the end-effector in a considered
area of the workspace. The higher the density in the
neighborhood of a point, the more accurately we ex-
pect to be able to reach the point.

The i** intermediate workspace, W1, of a
macroscopically-serial manipulator composed of B
modules is the workspace of the manipulator segment
from module 7 4+ 1 to the end-effector. End-effector
position vectors in the i? intermediate workspace are
written in a coordinate frame attached to the top of
module 7. To visualize this, imagine that the manip-
ulator arm is cut between module 7 and module ¢+ 1.
The two resulting segments are considered as manipu-
lators on their own: the lower segment (modules 1 to
i), and the upper segment (modules 7 + 1 to B} with
its base in the separating plane. The workspace gen-
erated by the upper manipulator segment is the ¢th
intermediate workspace of the whole structure.

Each module has a frame attached to its top. The
frames are numbered such that frame F; is on top of
module 7, and frame Fj is the frame at the manipu-
lator base. The number of discrete configurations of
module 7 is denoted K;. The K; discrete configura-
tions of module 4, (z = 1,..., B) are represented by
the configuration set:

G = {®P Y, (®RYBY), (R D))
where R;’) € SO(N) are rotation matrices and bg.l) Is

IRY are translation vectors for j = 1,..., K;. These
pairs describe all possible relative orientations and po-
sitions of frame 7 with respect to frame 7 — 1.

(4)
2

2.2 The Configuration tree

In this subsection we present a computational
structure for manipulators with discrete joint resolu-
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Figure 2: Configuration tree

tion: the configuration tree. In later sections we will
explain how it can be used to solve the inverse kine-
matics for manipulators with low joint resolution, in
particular for binary manipulators.

As described in the preceding subsection we con-
sider macroscopically-serial manipulators. The mod-
ules are numbered, starting at the base with module
1, and proceeding up to the most distal module with
the number B. The configuration tree (C'T) of such a
manipulator is a tree defined by the following conven-
tions:

e Starting from the root of the tree with module 1,
each level represents one consecutive module of
the manipulator.

e At level ¢ each node has exactly one child for
each configuration attainable by module 7. Each
of these K; branches has a geometric descrip-
tion of the module configuration assigned to it:

RY b)) e Ci.
As a result the nodes of the tree hold the following
information:

e The nodes of level i enumerate all possible con-
figurations of the partial manipulator given by
module 1 to .

The leaves of the tree, i.e. the nodes of the last
level, enumerate all configurations the whole ma-
nipulator can attain.

For any node on level 7 the relative orientation
and position of frame F; with respect to the fixed
base frame Fy can be determined in the following
way: we walk from the root of the tree to the
desired node, consecutively applying all geometric
relationships assigned to traversed links.

The inverse kinematics can now be implemented
as a search in the tree. For the decision process the
densities of intermediate workspaces are used. Note
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that the configuration tree is never generated com-
pletely, since the computational complexity is expo-

nential in the number of modules ((’)(]’]f__1 Ki)). In-
stead paths in the tree are only generated as necessary.

3 Inverse Kinematics

In this section we explain our approach for the
inverse kinematics problem, avoiding the exponen-
tial complexity required by brute force computation.
Given a target frame, we try to reach it with the end-
effector of the manipulator.

The discussion consists of two parts. In the first
part a measure is developed that determines how well
the goal can be reached if modules close to the base are
fixed in a particular configuration. The second part
presents algorithms that use this measure to solve the
inverse kinematics problem.

3.1 A measure for reachability

3.1.1 Generation of intermediate workspaces

As a prerequisite for the measure of reachability we
need a description of intermediate workspaces that in-
cludes their internal point density.

Although every discrete manipulator has only a fi-
nite number of states, it is impossible to store (or cal-
culate) the end-effector positions for all states of a dis-
crete hyper-redundant manipulator due to exponential
complexity ((’)(]_[f:1 K;)). On the other hand, if the
workspace is discretized in a finite number of pixels of
equal size, it is possible to quickly approximate and
store the number of points contained in each of these
pixels, which in turn can be converted to the point
density.

The algorithm used in this paper to approximate
the point densities of all intermediate workspaces is
called the Mapping Algorithm and is described in
[12] in much detail. Also included in that paper



are numerical examples and an error bound on the
approximation.! The following gives a brief overview
of the algorithm.

The Mapping Algorithm determines intermediate
workspaces starting at the end-effector and ending
at the base. At each step we climb down one mod-
ule, maintaining an approximation of the intermediate
workspace corresponding to the segment of all modules
above the current one. The point density of each inter-
mediate workspace is described by an N-dimensional
array of integers representing the number of points in
each pixel of the discretized workspace, where N is
the dimension of the workspace. Combined with ad-
ministrative information, i.e. the pixel dimensions and
the coordinates of a reference point of the workspace,
this array represents the density distribution in the
workspace.

Each iteration of the algorithm is based on the ob-
servation that workspace W;_; (workspace of modules
i to B) is connected to workspace W; (workspace of
modules ¢ + 1 to B) through the set C; of all possi-
ble configurations of module i. To generate the point
density of workspace W/, the algorithm interpretes
the elements of C'g_; as homogeneous transformations
and applies them to workspace W/. Superposition
of the results yields workspace W/ ;. Note, that the
complexity of each homogeneous transformation de-
pends only on the number of pixels chosen for the
discretization of workspace W and can be imple-
mented very efficiently as an identical operation on
all indices of the array. The generation of all inter-
mediate workspaces is performed offline and requires
time linear in the number of modules of the manipu-
lator (O(B)), linear memory, and quadratic but small
error.

In more general terms this transformation can be
reformulated as a convolution of functions on the Eu-
clidean group, SE(N). Two real-valued functions,
fi(H) and fo(H), where H € SE(N), are used to de-
scribe the distribution of configurations Cp_; and the
point density of intermediate workspace W/, respec-
tively. The convolution of the two functions 2 results
in the density distribution f3(H) of the intermediate
workspace W/:

1

fs(H) = (fi* f2)(H) = /fl(H)fz(%—lH)dﬂ(H),

SE(N)

where dp(H) is a volume element in SE(N). An algo-
rithm for workspace generation based on this equation
as well as mathematical and physical interpretation
of above equation are described in [13]. For identical

! Although the algorithm is described in [12] only for the
case of binary actuation, it can be generalized to other discrete
actuation by a simple change, namely the numbering convention
for the configurations of the modules has to be adjusted.

2 f; and f; have to be nonnegative and bounded everywhere,
and decrease rapidly enough to zero such that the convolution
integral converges.
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Figure 3: Manipulator divided into two segments

modules the workspace generation is achieved in order
O(log B) time.

3.1.2 Derivation of Reachability Measure

The goal of this subsection is to develop a measure
that predicts how well a goal specified by position vec-
tor b(¢®) and rotation matrix R(¢®) can be reached by
the end-effector if modules close to the base are fixed
in a particular configuration.

The manipulator is divided into a lower segment
(modules 1 to ), and an upper segment (modules i+ 1
to B), as described in section 2.1 and shown in Figure
3. To describe their configurations we use the follow-
ing notation:

o (R, bE): orientation and position of frame F}
with respect to frame Fy (lower segment)

o (RU) b®): orientation and position of frame
Fp with respect to frame F; (upper segment)

o (R{*®) b(e4)): target orientation and position of
frame Fp with respect to frame Fy (whole manip-
ulator)

Composing the frame transformations (R(F) b(F)
and (R(Y), b)), one finds that

(Rle®) blee)y = RERY) pL) 4 REBb)).
Consequently, the ideal configuration the upper mod-
ule has to attain for any particular configuration of
the lower segment is described by

RO - (Rm)TR(ee),

b (R(L))T (b(ee> _ b<L>) ,

Recall, that the sth intermediate workspace of the
manipulator is the workspace of the upper segment
when considered as a manipulator on its own. The
point density of this workspace is available through the
methods mentioned in 3.1.1. We evaluate the point
density at the pixel of the ideal orientation and posi-
tion of the upper segment, (R(Y) b(¥)). The higher
the point density is around (R(U),b(U)), the more ac-



curately we expect to reach (R(®), b(ee)) with the end-
effector.

Evaluation of reachability measure: In summary
the measure on the configuration (R, b(L)) of the
lower module is implemented as:

1. Calculate the homogeneous transform
(RY) b)) for the upper segment to reach the
target.

2. Evaluate the density of the pixel of the ith inter-
mediate workspace in which (R(Y), b)) lies to
determine how well it can be reached.

Note, that the evaluation of the reachability measure
in the examples for this paper is only based on the
position b(¥) and neglects the information of the ori-
entation R(Y). Consequently, the algorithms for the
inverse kinematics that are derived for the general case
(including orientation) in this section, are only simu-
lated in positional coordinates.

3.2 Algorithms for Inverse Kinematics

Our discussion of the inverse kinematics problem
consists of two parts. The first part shows how to re-
solve the geometric constraints arising from the task
of reaching a target location and orientation as closely
as possible. An algorithm that finds a solution to
these constraints is presented in the first subsection.
The second part of this subsection discusses strategies
to resolve the remaining redundancy to avoid abrupt
transitions between configurations.

3.2.1 Satisfying the geometric constraints

The criterion for reachability established in the pre-
vious subsection can be used in a simple algorithm
that determines a solution for the given target posi-
tion and orientation. The algorithm starts with the
first module and considers the finite set of its possi-
ble configurations. For each configuration the reach-
ability measure is evaluated as described in 3.1 and
the algorithm picks the one with the maximal value.
The module is fixed in this configuration and the algo-
rithm continues with the next module. The following
describes the algorithm in terms of the configuration
tree:

Path of Probability Algorithm (POP)

1. Input: target location and orientation.
Start with the root of the tree.

2. For all children of the current node: evaluate the
reachability criterion. Choose the branch that
maximizes the reachability criterion. Take the
child as current node.

3. If the current node does not have any children:
Output configuration. DONE.
Otherwise: goto 2.

The reachability criterion can be evaluated in constant
time. Considering the maximal number of configura-
tions per module as a constant, the total order of this
algorithm is of the number of modules, O(B), and is
therefore also linear in the number of actuators.

3.2.2 Resolving the remaining redundancy

The algorithm of the previous section (POP) provides
a solution close to the target position and orientation
and hence solves the inverse kinematics problem. In
practice, however, we are not only interested in finding
the solution tc one frame but to a set of frames or a
trajectory, expecting some kind of smooth and repeat-
able motion. This is not guaranteed by the preceding
algorithm. The problem is that since the redundancy
in the interior of the workspace is not resolved, the al-
gorithm arbitrarily picks one out of a number of pos-
sible solutions.

Our approach to resolve the redundancy is to max-
imize a secondary criterion in the algorithm. The
secondary criterion prescribes characterisitics of the
motion in some way while it resolves the remaining
redundancy. Examples of secondary criteria are:

e The weighted number of modules that remain in
the same state as in the previous configuration,
with a higher weight close to the base.

e The weighted number of modules that are fully
contracted (i.e. binary state 0), with a higher
weight close to the base.

While the first, criterion above compares two config-
urations with each other, (the previous one with the
one under consideration), the second is independent. of
previous motion (history-independent). The second
criterion above generates behavior similar to a long
narrow spring: the manipulator expands only as far
as necessary. In general history-independent criteria
are preferred because they guarantee higher repeata-
bility.

Improved Path of Probability (IPOP)

1. Input: target location and orientation.
Start with the root of the tree.

9. For all children of the current node: evaluate the
reachability criterion and one of the secondary
criteria. Choose one branch based on a combina-
tion of the two criteria.

3. If the current node does not have any children:
Output configuration. DONE.
Otherwise: goto 2.

Our implementation of step 2 considers all configura-
tions for which the primary criterion i1s above a cer-
tain threshhold (to bound the error). Out of these we
choose the one that satisfies the secondary criterion
the best.



Figure 4: Numbering convention

Result: The Improved Path of Probability algorithm
produces solutions that satisfy the geometric con-
straints imposed by the task of approaching a certain
position and orientation. Close to the boundary of
the workspace this already specifies the solution. In
areas with higher point densities, and therefore higher
redundancy, the solution satisfies an additional per-
formance criterion which is chosen according to the
application. The evaluation of any of these criteria
requires only a constant amount of time. Hence the
time requirement of the IPOP algorithm is also linear
in the number of modules, O(B).

4 Simulations of Binary Manipulator
Inverse Kinematics

The inverse kinematics algorithms are applied to
a planar binary manipulator that consists of B = 16
variable geometry truss modules. FEach module has
three independent actuators which can only attain
the lengths 0.2 and 0.25, while the base is fixed at
width 0.2. This manipulator can reach 2316 = 248 ~
2.8 x 10'* points in the workspace. The state of the
manipulator can be described as a bit sequence, us-
ing one bit for each actuator. State 0 indicates that
the actuator is contracted, state 1 indicates that it is
extended. The actuators are numbered from right to
left, from the most distal module to the module at the
base, as shown in Figure 4 for a manipulator consisting
of only four modules.

The simulations are performed on a Pentium PC
(60 MHz) using NextStep. The time required to calcu-
late the inverse kinematics for a single position ranges
from 50 to 120 msec, depending on the location in the
workspace.

Figures 5(a-c) show results of the inverse kine-
matics using three different algorithms. The task
is to reach three points with the end-effector,
(3.0,0.7),(0.55,2.9),(0.4,2.7), in this order, starting
from an upright contracted position (bit sequence 0).
In the background of each figure the point density of
the manipulator workspace is shown in a logarithmic
gray scale. Point densities above a certain thresh-
old are shown in identical, dark gray. The three tar-
get points are marked by black crosses. The bit se-
quences corresponding to all generated configurations
are listed in Figure 6, together with resulting end-
effector position, orientation and error. Each bit se-
quence is written in the octal system, i.e. each digit
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Figure 5(b): IPOP, configurations similar to previous

corresponds to the configuration of exactly one mod-
ule.

In Figure 5(a) the POP algorithm is applied, Figure
5(bc) apply the IPOP algorithm. Figure 5(b) uses
similarity to previous configurations as the secondary
criterion while Figure 5(c) uses maximal contraction
as the secondary criterion starting from the base.

Note that the configurations chosen to reach the
point furthest to the right, (3.0,0.7), look very much
alike in all figures. The reason is that the target point
is close to the workspace boundary, where the density
is low, thus restricting the shape of modules close to
the base to be unique, as can be seen by comparing
the most significant bits of the corresponding bit se-
quences in Figure 6. In contrast, the points (0.55,2.9)
and (0.4,2.7) are in an area with very high point den-
sity and a significant redundancy is left after the geo-
metric constraints are satisfied. The results from the
three different figures for these two points give a good
example of how the different algorithms resolve the
redundancy. The POP algorithm resolves this redun-



Figure 5(c): IPOP, favoring contracted modules

dancy randomly, i.e. a configuration is picked arbitrar-
ily from those within an error threshhold. Hence the
solutions in Figure 5(a) for the two points differ sub-
stantially. In Figure 5(b) modules are as similar as
possible to the previous configuration with a higher
weight given to modules close to the base. As a re-
sult the configurations for the upper two points are
similar to each other and, as much as possible, to the
configuration for the right point. Using maximal con-
traction as the secondary criterion, as shown in Figure
5(c), the solutions for the upper points are also similar
to each other although the solution for each point is
independent from the others.

5 Conclusion

This paper discusses an efficient way to solve the
inverse kinematics of discretely actuated manipulators
with many degrees of freedom.

A measure is developed which can test partial con-
figurations for their suitability to reach a specific goal.
Based on this measure an algorithm (POP) for the in-
verse kinematics is proposed that generates solutions
satisfying the geometric constraints of the task. The
remaining redundancy is resolved by additional con-
straints imposed on the algorithm. This improved
form of the algorithm (IPOP) avoids abrupt transi-
tions between configurations. Different constraints are
discussed and demonstrated by simulations.
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