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Discretely Actuated Manipulator
Workspace Generation by Closed
Form Convolution’

We derermine workspaces of discretely actuared manipulators using convolution of
real-valued functions on the Special Euclidean Group. Each workspace is described
in terms of a density function that provides the number of reachable frames inside
arry wunil volume of the workspace. A manipulator consisting of n discrete actuators
each with K states can reach K° frames in space. Given this exponential growth,
brure force representation of discrete manipulator workspaces is not feasible in
the highly actuared case. However, if the manipulator is of macroscopically-serial
architecture, the workspace can be generated by the following procedure: (1) parii-
tion the mamipulator into B kinematically independent segments; (2) approximare
the workspace of each segment as a continkous density function on a compact subset
of the Special Euclidean Group; (3 ) approximare the whole workspace as a B-fold
convelution of these densities. We represent density functions as finite Hermite-
Fourier Series and show for the planar case how the B-fold comvolution can be
performed in closed form. If all segments are idenvical only O log B) convolutions

are Necessary.

1 Introduction

The concept of a convolution product of real-valued functions
on the Special Euclidean Group (which describes rigid body
motion in Euclidean space) is examined in this paper. The
primary application discussed here is the generation of dis-
cretely actuated manipulator workspaces in terms of the densiny
of reachable frames. Density is a function that describes the
number of reachable frames inside any volume?® in the work-
space. Figure 1 shows a discrete manipulator in three different
configurations superposed on a discretized representation of the
workspace density. Dark gray commesponds to high density, i.e.,
a large number of reachable positions per unit area, and the
boundary berween gray and white marks the border of the work-
space. In the context of discrete actuation, the density function
in many ways replaces dexterity measures as a scalar function
of importance defined over the workspace. The reason is that
the density in the neighborhood of a given point/frame is an
indication of how accurately a discretely actuated manipulator
can reach that point/frame. Hence, important applications of
workspace generation in the context of discrete manipulators
are {a) the design of manipulators with prescribed workspace
density {e.g., to prescribe areas of high accuracy as described
in Chinikjian (19963} (b) the vse of workspace densities for
inverse kinematics, as described in Ebert-Uphoff and Chirikjian
(1996a).

To compute this workspace density function using bruote
force, 1.2, calculating all possible configurations, is computa-
tionally intractable. For a manipulator with # actuators each with
K states brute force calculation requires O( K"} computations.

To give a numerical example we consider the variable geome-
ry truss manipulator shown in Fig, 1. It consists of ten variable
geometry truss modules, each of which has three actoated links.
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Each actuated link is assumed to have only two stable states.
Fig. 2 shows a schematic of all possible configurations of one
truss module. The whole manipulator in Fig. 1 has a total of
2000 = 2% = 107 states. Figure 3 shows a prototype consisting
of five such truss modules that was built in our laboratory. In
Section 4 we generate the workspace density of a manipulator
consisting of eight truss modules of the same type but each
actuator is assumed 1o have four different states instead of two,
i.e., the whole manipulator has a total of 4% = 4% = 2.8 x
10" states. In our estimation it would require more than a
decade on an average workstation to compute all of these con-
figurations using brute force.

In this paper we propose an alternative way to approximate
the workspace densities for manipulators of macroscopically-
serial architecture. A macroscopically-serial manipulator can be
described as a serial collection of modules, as shown in Fig. 4,
where each module is mounted on top of the previous one, The
modules can be serial links or parallel structures, such as Gough
( Stewart ) platforms. For this kind of manipulator the workspace
density can be generated by the following procedure: (1) parti-
tion the manipulator into B kinematically-independent seg-
ments; (2) approximate the workspace of each segment as a
continuous density function on a compact subset of the Special
Euclidean Group; (3) approximate the whole workspace as a
repeated B-fold convolution of these densities. In this article
we represent density functions as finite Hermite-Fourier Series
and show for the planar case how the B-fold convolution can
then be performed in closed form based only on the coefficients
of the series. If all segments are identical only O{log B) convo-
lutions are necessary.

In the following section, we review work that deals with
manipulator workspace genération. Section 3 reviews how the
convolution product of functions on SE{D) applies o work-
space generation and presents an implementation of the convo-
lution in closed form. Section 4 presents numerical results for
workspace generation using the concept of convolution. Section
5 presents a final discussion and conclusions.

2 Literature Review

The study of workspace generation started with serial open
kinematic chains. See for example Kumar gnd Waldron
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Fig. 1 A discretely actuated manipulator with 2% states

{1981b}, Gupta and Roth (1982), Yang and Lee (1983) and
Tsai and Soni (1981 ). These works contributed to a framewaork
for workspace generation and derived analytic descriptions for
the workspace of certain manipulators. Other works include
Lai and Menq (1938) and Emiris ( 1993). Works focusing on
manipulators with only revolute joints include Ceccarelli and
Vincigyerra {1995}, Korein (1985), Kwon et al. (1994) and
Selfridge (1983).

A number of different approaches exist for manipulators of
more general architecture. Alciatore and Ng (1994 ) propose an
approach that generates workspaces based on the Monte-Carlo
method. Rastegar and Deravi (1987) divide the workspace of
a manipulator into subsets according to the number of solutions
of the inverse kinematics problem which are calculated numeri-
cally using the Jacobian.

A number of works have dealt with the optimal design of
workspaces. E.g., Dwarakanath et al. {1994 ) design a manipula-
tor to contain a desired rectangle in the workspace, while
Gosselin and Guillot (1991) optimize the workspace to have a
boundary specified by a collection of arcs.

Blackmore and Len { 1992 ) discuss the swept volume for an
object (a set in R") under rigid body motion. The method is
applied to generate the workspace of serial open kinematic
chains. Park and Brocket ( 1994 ) derive dexterity measures for
mechanisms over the workspace volume based on differential
geometry and the theory of Lie groups.

Discrete manipulators were considered by Roth et al. (1973,
Pieper (1968), and Koliskor {1986). Sen and Mruthyunjaya
{1994 ) consider manipulators with only discrete joint states to
model continuous-range-of-motion manipulators with limited
joint reselution. Te the best of our knowledge that work was
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Fig. 2 The eight possible configurations of a truss with three bistable
actuators
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Fig. 3 Manipulator consisting of 5 truss modules

the first to point out the importance of the workspace density as
a measure of local accuracy of a discretely actuated manipulator,
Kumar and Waldron (1981a) describe a model that relates the
joint accuracy of a continuously actuated manipulator to the
accuracy of the end effector.

The density of points in the workspace can be used construc-
tively for inverse kinematics of discrete manipulators { Ebert-
Uphoff and Chirikjian, 1996a). Previously, we presented a
method to efficiently generate workspaces (Ebert-Uphoff and
Chirikjian, 1995) in terms of densities. While those works are
based on a discrete representation of workspace densities similar
to a histogram, we now take a continuous approach. The advan-
tage is that we capture the density distribution of the whole
workspace in a small number of coefficients, hence reducing
the amount of data to be handled. Furthermore, the coefficients
provide access to global properties of the workspace, e.g., center
of mass, average orientation, €1c.

In order to apply the method presented in this paper for
hybrid-serial-parallel manipulators it is necessary to generate
the workspace of parallel platform manipulators. A great deal
of work on this topic was reported for example by Merlet { 1992,
1995 and references therein. Kumar (1992) discusses the
workspace for mechanisms consisting of serial chains mounted
in parallel.

3 Workspace Generation by Convolution

We begin this section by reviewing how the workspace of a
discretely actuated manipulator of macroscopically-serial struc-
ture can be generated using repeated convolution. This formula-
tion of workspace generation motivates our study of closed-
form calculation of the convolution product of functions on
SE(D) (the rigid motion group of D-dimensional Euclidean
space ), which is discussed in the remainder of this article.

A given discretely actuated manipulator is divided into B
kinematicallv-independent modules, each containing a number
of actuators. As outlined in Section 1, modules can have a
paralle] kinematic structure internally, but the modules are all
cascaded in a serial way. The modules are numbered from 1 to
B, as shown in Fig. 4, starting at the base with module 1 and
increasing up to the most distal module, module B. For each
module one frame is attached to the base of the module and a
second one to the top, where the next module is attached.

Since the manipulator is actwated discretely, each of these
maodules has only a finite number of states. Each state corre-
sponds to a transformation H € SE(D) of the lower frame to
the upper frame. The set of all possible end-effector frames can
be generated by combining all possible frame transformations
for all modules, but, as we already know, this is not feasible if
the manipulator consists of many actuators or if each actuator
has a large number of states.
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Fig. 4 A macroscopically-serial manipulator

Instead the frame distbution for each module is represented
separately by dividing SE(D) into small volume elements,
counting the number of frames that lie in each of these volume
elements, and dividing this number by the volume of each ele-
ment. The result is a discrete density function (or histogram)
for each of the B modules: g, (H), ..., pa(H). The concatena-
tion of all possible frame transformations comresponds to the
convolution of the density functions of all modules, i.e., the
density function py of the total workspace of the manipulator
is obtained as

pwl HY = (pi#pe®. . Fpp)(H).

If all modules of the manipulator are identical then p; = p*p,
i5 the workspace density of a two-module segment, g, = g% g
is the density of a four-module segment, py = pa*p, is the
density of an eight-module segment, etc. This means that the
workspace density of a manipulator consisting of B = 2" mod-
ules can be calculated using m = log: B convolutions.

31 Convolution of Functions on SE(2)

3.1.1 Defmition of Convolution on SE{D). The concept
of convolution can be formulated in a general way for functions
on Lie groups. This general form is often used in mathematical
physics (see Vilenkin and Klimyk (1991}).

The set of rigid body motions, SE{ D), with matrix multipli-
cation as group operation, is a Lie group. For any two functions
o (HY, g2 HY € F3(SE(D)),” the convolution product is de-
fined as

() H) = J‘

FE

pi(H ) pa (X T Hydu( K ),

where du(H) is a left and right invariant volume element (see
Park and Brockett { 1994) and Murray et al, { 1994)). If we are
dealing with homogeneous transformations in space, and use z-
x-z-Euler angles to parametrize the rotation part of elements,
H = SE(3), the volume element takes the form

*We denote FUSE(D)) 1w be the space of all real-valued square-integrable
functons on SE(D), 1.2, o (H) € R for all H € SE(D}), and ij ol HdulH)
= m, where dui f) s an appropriately defined volume element.

Journal of Mechanical Design

dp(Hix, 22, X3, ¢, &, @)) = sin fdx du dx;depdfidyy.
In the planar case, using x;, X, § as parameters, we get
dp{H(xy, x2, 87) = dx,dx;d0.

Applying this parametrization for SE(2) the homogeneous
transforms H and & take the forms:
—sin # x;
cos 8 X
1

cos £
H{x1,x3,$}= sin ¢

0 0
and
cosa —sina &
H(E, L, a)=]| sina cosa £ ).
O 0 1

In the following we write o(x,, x;, £) to denote the function
p(H) parametrized by x,, x; and 8, ie., p(x;, x;, #) = p(H(x,
xz, #)). For this parametrization the convolution product on
SE(2) can be expressed in the form:

(g =p2) (X, 32, )

=f-I f P1(Err 2, @)pa( (31 — &) cos @

+ (xy = £3) sine, = (x; — &) sin
+(xp— &) cosa, @ — a) d,dEde. (1)

3.1.2 Connection between Convolution and Workspace
Generation, To understand the connection between convolu-
tion of functions or SE(D) and workspace generation let us
consider a manipulator that consists of two kinematically-inde-
pendent segments stacked on top of one another. The workspace
density functions of the lower and upper segments are given as
pi (&) and pa(H), respectively.

Each frame transformation can be expressed in terms of a
homogeneous transformation matrix, where

* # denotes the transformations from base to top of the
lower segment

¢« H denotes the transformations from base to top of the
upper segment and

e H' denotes the transformations from base to top of the
whole manipulator, ie, H' = & - H.

The workspace density functions, g, and g;, can be viewed
as a measure of the frequency of occurrence of homogeneous
transformations for the lower and upper segments, respectively.
To caleulate the frequency of occurrence p:(H') of a particular
homogeneous transformation for the whole manipulator we
have to:

* consider any configuration & that the lower segment can
attain and weigh it by the frequency of occurrence for
this segment, o (& ),

= calculate the configuration H of the upper segment that
yields ' as the transformation for the whole manipulator,
ie, H = #&"'+H' and weigh it by the frequency of
occurrence for the upper segment, pa(FH),

* multiply these two terms to get the combined frequency
of occurrence and add up all these contributions by inte-
grating over all # € SE(D):

pu(H') = _Lm] (A Voo (F T H ydpl( F ).

Result: This shows that the workspace density p; of a manipula-
tor consisting of two segments stacked on top of each other is

JUNE 1998, Vol. 120 / 247



just the convolution of the workspace density functions p, and
p= of the segments. This operation is simply repeated to generate
the density for the whole manipulator,

3.2 Implementation of Closed-Form Convolution

3.2.1 Representation of Densiry Functions. In this section
we are looking for an efficient way to approximate a function
p(H) = p(x, ¥, #) with compact support in closed form. We
consider an expansion of the form

N KR N

plH) =% ¥ 3 cufi(x)giy)p8).

=l jul k=0

(2)

To guarantee a good approximation of functions in F*(SE(2))
it is necessary that

¢ the set of functions { fi{-)} and {g,(-)} are complete in
the set of square integrable functions on the real line B,

* {p:(+}} is complete in the set of bounded functions on
the circle.

Further desired properties are:

= the convolution product should be form-preserving, i.e.,
the convolution of two series of the form of Eq. (2)
should result in a series of the same form. (Without this
condition, multiple convolutions would lead to expres-
sions which could not be evaluated.)

+ the functions f; (- ) and g, (+) should decay rapidly to zero
for large arguments (| x| = 0). ;

= each set of functions should be orthogonal, so that the
constants ¢ can be determined independently. This also
allows one to choose the level of detail by the number of
terms retained.

* it should be possible to evaluate each function quickly to
guarantee efficient evaluation of the series approximation.

Our Choice:

The following introduces a set of approximation functions
which satisfies all the requirements. The remainder of this article
is based on this choice. The functions f; { - ) and g ( - ) are chosen
to be Hermite functions and the angular part of the distribution
1s represented in terms of trigonometric functions:

filx) = hi(x)
gl¥) = Rl ¥)
pe(B) = cos (k8 + d) = g, cos (kf) + by sin (kf)

In summary functions on SE(2) are approximated as:
NNN
¥ h(x)hd¥)[ag cos k9 + by sin k8],

£ k=000

plx, v, 8) =

3.2.2 Review of the Properties of Hermite Functions. Nor-
malized Hermire functions are derived from Hermite polynomi-
als as ( Vilenkin and Klimyk, 1991):

H:' (x-}g—hzﬂil

A = ”
) ({12! yw)'12

where the Hermite polynomials H;(x) are defined as

H,(x) = ':—lre*‘j?{e-x’n.

In accordance with this definition Hermite polynomials can be
expressed explicitly as
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Hix)= 2 e.x",
i)

(- 1 }l:n—r;n'in e

n==Fr el
£ = 2 H g

0 if (r+ n)odd (3)

Figure 5 shows normalized Hermite functions k; (x) for several
values of {. Hermite functions are suitable for approximating
density functions because (1) they are complete in the space
of all square integrable functions on the real line, (2) they
rapidly decay to zero for | x| 2 0, and (3) they are orthonormal
with respect to the scalar product

(frg)= J:: flx)g(x)dx.

A square integrable function ofx) can be approximated as a
linear combination of Hermite functions as

if (r -+ n)even,

-
alx) = lim 2, a:h (x)
== g
where, using the orthonormality of the Hermite functions. the
coefficients a; are computed independently as

a; = r e[ x)hy (x)dx.

The resulting approximation for a finite number of terms, N,
provides a least-squared approximation of the function.

To get a good approximation using a finite number of coeffi-
cients it is necessary to scale the range of x- and y- coordinates.
The reason is that the density functions to be represented, as
well as the Hermite functions used to represent them, are only
significantly different from zero in a very restricted range of x-
and y-values. These areas have to coincide as much as possible
to allow a good approximation using only few terms of the
Hermite-Fourier-Series. As explained in Ebent-Uphoff ( 1997)
this can be achieved by

(1) scaling the input functions g, and g, using a common
scale factor L,
Piix,y,0) = p(Lx, Ly, 8), palx.y.8) = p2(Lx, Ly, 6),

(2) convolving the scaled functions 7, and p; to get py =
B#*py, and

{3) calculating the desired function p; = g, * p; from 2, using
the relationship

o fx ¥
¥, 0 = L5 =.,=,8].
palx, ¥, 0) P:(L L )

Using this procedure we can take care of the scaling before the
convolution, so that the scale factor L does not have to be
considered in the following calculations.

hiz, =]

AL
=4

Fig. 5 MNormalized hermite functions h{x) for i =0, 1, 2, 5, 10, 20
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3.2.3 Fiming Procedure. Given a discrete density histo-
gram p,, formed by dividing a compact subset of SE(2) into
blocks of equal size, and counting how many discrete frames
Iie in each block, a continuous density function is fit to this
discrete data in the least squared sense by finding the ¢constants
@, By Due to the orthonormality of Hermile functions, the
coefficients are explicitly calculated as follows:

an= [ otey. Onomasaas,

b,',{;.‘—‘ﬂ,

G = ,l_rf f j plx, v, 8k (x)hi v) cos kBdxdvdd,

by = f J.Iz r plx, v, @)k (x)i( ¥) sin kfdxdvd 6.

If the data is provided in terms of a discrete density array
that represents the number of points per pixel divided by pixel
volume, the integration is approximated by a summation of the
form:

1 30 e %
iy = = 2, 3 2 oL, ¥y MR (% 1L (3) cOS RBATAYAR

T =i = u:-x-:n
k

AxivAg
LZMHZ& {}}Ep,ﬁcasnﬁ

L i} =0 k=)

Hermite pelynomials can be converted to power series of the
same order (and vice versa) at any tme without any loss of
information according to Eq. {3). Substitution results in the
following series representation for g{x, ¥, #):

plx.y, 8)
- =l N Iv
= g7iTNL N by N (afy cos kf + Bl sin k9),

L= k=0

where

EF.'E..l'rrr &
T i

Eatim
2 (HR I
3.2.4 Closed-Form Convelurion of Hermite-Fourier Series.
Given two density functions on SE(2) which are both repre-
sented using a series approximations of the form
=
3 x'yllal cos k8 + bl sin k6),

Fik=0

N a1

pilx, ¥y, 8)=¢

ﬁ‘:(-l', ¥ ﬁ}

w
i e-(:--r_vv'uzv Z -l"l}'m{c;m.- cos .I'I& + d;:rm Siﬂ ﬂﬁ'}

L nml

their convolution as defined in Eg. (1) 15 evaluated as

(pi=padix, ¥y, 8) = J. Ju Ju P e I

N L
X T S S gni{(x— €) cos @

Pl e
+{y=n)sinal'[-(x = £} sina + (y = 77) cos a]"
¥ [ajy cos ke + b sin ka][cl.. cos n(f — a)

+ iy sin m{E — o) |dEdnde.
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The integration in the convolution can be reduced to the integra-
tion of certain constant terms which all have a closed-form
solution. These constants can be calculated off-line.

Writing the convolution product { o, # g2} as a new series with
coefficients ef;, f fx,

(pi*p2)(x. y, 0)
S iy 38 N
= g~ M ¥ Y Y xMyef,, cos nd + f L, sin nél,
w= u=0 a=0
the new coefficients can be calculated from the input coeffi-
cients, (& . B¢, ¢y and d; ), based on the constants calculated
off-line through simple algebraic operations. The derivation of
this procedure extends over ten pages and can be found in Ebert-
Uphoff (1997} and Ebent-Uphoff and Chirikjian { 1996b).

The complexity of this procedure is of the order O(N').
While this may be a large computation, it is independent of the
number of actuator states. Note, that the number of terms re-
tained has increased to 3N % 3N x N, In order to cut the number
of terms to the original number of N x N x N terms the series
has to be transformed back to Hermite-polynomials. The com-
plexity of this process is negligible as compared to the complex-
ity of the convolution.

4 Numerical Results

In this section we present a numerical example of workspace
generation using the method presented in this paper. We con-
sider the following task: given the workspace density of a planar
manipulator that consists of four truss modules each with 64
states, calculate the workspace density of a planar manipulator
of the same architecture that consists of eight truss modules.
The following demonstrates step by step how the workspace of
the &-module manipulator is generated in accordance with the
preceding sections. Each truss module of the manipulator under
consideration has the same kinematic parameters: the width of
the base and top is w = 0.2; each of the three actuated legs can
each attain four different states that are equally spaced between
Gmin = .15 and g, = 0.25. The number of configurations that
the 8-module manipulator can attain is hence 4% = 2.8 » 10",
As input we are given the workspace density of the 4-module
manipulator in the form of a histogram.

1. The workspace density of the 4-module manipulator is
shown in Fig. 6. The dimensions of each pixel are Ax

131:

E

r in 107

T 10

Fig. & Discrete density of manipulator with 4 modules
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Fig. 7 Hermite-Fourier Seres for density of manipulator with 4 modules

= Ay = 0.05 and A# = 27 /50, To simplify the plotting
the data is projected in the x, y-plane by summing over
all different values of the angular variable #, and the
density is plotted as height over (x, ¥).

2. The fitting of a Hermite series to the histogram is shown
in Fig. 7, using N = 10 terms in each of the directions
x, ¥ and &. Shown again is the projection to the x, y-
plane which in this case resulis from integration over all
orientation angles, The scale factor in the series approxi-
mation is chosen as L = (.25

3. The Hermite series is convolved with itself (since the 8-
module manipulator consists of two identical 4-module
parts ), and the result is shown in Fig. 8. This approxima-
tion has 3N terms in x- and v-direction and N terms in
f-direction.

4. The number of terms in the series approximation is re-
duced to the number used before convolution (N = N =
N7}, The result is shown in Fig. 9. The appearance of
ripples is typical for Hermite series approximations of
very low order.

5. To allow a comparison with other methods we also in-
cluded the result obtained from a discrete convolution as
described in Chirikjian and Ebert-Uphoff (1998). That
particular implementation was not designed to deal with
very high densities, so that densities above a certain
threshold are cut. This occurs before the results are pro-
jected to the x, y-plane and in effect restricts the values
in Fig. 10 to be smaller then 10", However, Fig. 10
serves as a reference for the shape of the workspace in
Figs. % and 9.

It has to be considered that the time for each convolution, al-
though independent of the number of modules considered, de-

Ed

-1

Fig. 8 Convelution of Hermite-Fourier Series (density of & modules)
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5 i

=)

1612

Fig. 10 Discrete density of manipulator with 8 modules

pends on the number of coefficients being used. As mentioned
in Section 3.2.4, each convolution is of order O(N™} which
limits the number of coefficients N that can be used in the
approximation. However, once N is fixed, each convolution
takes a constant amount of time and can be repeated any number
of times to generate the workspace of manipulators with 16
modules, 32 modules, ete.

The algorithm was implemented on a SUN SPARCstation 5,
110 MHz, in the C programming language. Figures were made
using Mathematica version 2.1. The running time to generate
the workspace density for four modules by brute force is about
five minutes, To perform the convolution takes two hours,
Hence the running time to generate the workspace density for
cight modules following the above procedure is about two
hours, while brute force would have required more than a de-
cade.

5 Discossion and Conclusions

In this paper the concept of closed-form convolution of func-
tions on SE( D) is explained and applied to the efficient genera-
tion of discretely actuated planar manipulator workspace density
for the case when D = 2. Explicit closed-form approximation
of workspace densities are obtained using the Hermite-Fourier
series. It is shown that this series approximation captures the
qualitative shape of discrete data, and allows for efficient convo-
lution.

For a manipulator which is a cascade of B identical discretely-
actuated modules with K states each, this reduces numerical
computations from G(K?) to O(N" log B), where N° is the
number of functions in the series approximation. It remains to
refine these technigues, to generalize them to the three dimen-
sional case, and to numerically solve the mathematical inverse
problem of manipulator design for desired density.
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