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Abstract

We present a unified method to generate conformational statistics, which can be applied to any of the classical discrete-chain polymer models.

The proposed method employs the concepts of Fourier transform and generalized convolution for the group of rigid-body motions in order to

obtain probability density functions of chain end-to-end distance. In this paper, we demonstrate the proposed method with three different cases: the

freely rotating model, independent torsion-angle energy model, and interdependent pair-wise energy model (the last two are also well-known as

the rotational isomeric state model). As for numerical examples, for simplicity, we assume homogeneous polymer chains. For the freely rotating

model, we verify the proposed method by comparing with well-known closed-form results for mean-squared end-to-end distance. In the

interdependent pair-wise energy case, we take polypeptide chains such as polyalanine and polyvaline as examples.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Conformational studies on polymer chains have been

applied to a number of areas, such as polymer science and

biophysics, including protein folding [1,2]. An important

quantity in conformational studies is the end-to-end distance

distribution, or probability density function (PDF) of end-to-

end distance.

From the ensemble average of end-to-end distance, or its

distribution, many observable quantities can be predicted,

including the radius of gyration, the viscosity of dilute polymer

solutions, local concentration, scattering of radiation, etc. [3].

Another interesting quantity that depends on the end-to-end

distance distribution is the reaction-limit rate, which is one of

the crucial factors in loop formation in polypeptide chains [4].

It has also been shown that the end-to-end distance distribution

is important in obtaining force-extension relations and elastic

properties of semifexible polymers [5–7]. Well-known works

by the Mark group have shown that elastic properties of

polymer networks with and without filler particles can be
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derived from the end-to-end distance distribution of a polymer

chain [8–12]. In order to determine this probability distri-

bution, one needs a theoretical model for a polymer chain.

Several phantom models of polymers have been developed to

analyze their statistical behavior. These can be categorized into

two main groups.

The first group consists of continuous chain models, which

need mechanical properties such as bending/twist stiffness and

persistence length, etc ([1,13,14]). Representative examples of

this group are the Kratky–Porod model or worm-like chain

(WLC) model, Yamakawa helical wormlike chain model, and

Marko–Siggia model [14–17]. For example, attempts have

been made to generate end-to-end distance distributions with

the WLC model [18–20]. These works employ mathematical

techniques from quantum physics to compute end-to-end

distance distributions theoretically, and compare those with

the results from Monte Carlo simulation. Also, Zhou has shown

that loops in proteins can be modeled using the WLC model

[21]. In another work, end-to-end distance distribution

functions for polyelectrolyte chains have been derived using

a charged WLC model, together with excluded volume effects

[5]. Recently, one unified methodology has been reported by

which one can describe probability density functions with

respect to all continuous phantom models with quadratic

energy function [22]. Also Zhou and Chirikjian have succeeded

in generating probability density functions for bent semifexible

polymers with this general approach [23].
Polymer 46 (2005) 11904–11917
www.elsevier.com/locate/polymer

http://www.elsevier.com/locate/polymer


J.S. Kim, G.S. Chirikjian / Polymer 46 (2005) 11904–11917 11905
The second group consists of discrete chain models ([1,13]).

For example, the freely-jointed model, freely-rotating model,

independent energy model, and interdependent pair-wise

energy model (the last two are also called the rotational

isomeric state (RIS) model) fall into this category. Among

these models, the RIS model is treated as the most general one

[3]. The end-to-end distance distribution for the freely-rotating

model is known analytically [24]. As for the RIS model,

several approximation methods have been developed to

generate the end-to-end distance distribution [25–28]. These

works use least squares inference together with the character-

istic function (which is the classical Fourier transform of the

spherically symmetric part of the end-to-end distance

distribution) to obtain even moments of the end-to-end distance

distribution. These works have been applied to symmetric and

asymmetric chains [29]. Other widely used methods are

numerical techniques considering full atomic detail in both

polymer chains and solvents. One such technique is molecular

dynamics (MD) simulation [30,31]. This method, however, has

one big drawback that the computational cost is too high.

Monte Carlo (MC) simulation has been preferred instead to

obtain end-to-end distance distribution (e.g. [32]). Another

method incorporates the RIS model (especially the inter-

dependent pair-wise energy model) into MC [3]. In this work,

one can generate many possible conformations of a polymer

chain within the framework of the RIS model. Also, the largest

eigenvalue method can be incorporated into this work to obtain

the end-to-end distance distribution functions of long polymer

chains ([33] and the references therein). A recent attempt

combines MD and MC together such that MD is applied first to

obtain an energy distribution with respect to torsional angle

space and then MC and RIS models are applied for

computation of mean end-to-end distance [34]. However, in

general, MC also has some drawbacks, one of which is that it is

not good for describing the ‘tails’ of some probability density

functions [35]. A very general theoretical methodology has

been published using the generalized convolution on the group

of rigid-body motions [35].

In this paper, we present a unified method to analytically

and exactly generate the probability density function (PDF) of

any of the classical discrete-chain polymer models. The

presented method is based on the generalized convolution

concept [35], and combines it with ideas from non-

commutative harmonic analysis [13]. Our proposed method

can generate the full 6D PDF of relative end-to-end position

and orientation of a polymer chain. Then the PDF of the end-to-

end distance can be viewed as a 1D marginal PDF. Hence, our

method can be applied to both symmetric and asymmetric

chains. It will also be shown that, unlike other methods, the

proposed method can be applied to any type of pair-wise

potential energy in the RIS model. For more specific

demonstrations, we apply the method to the case of the freely

rotating model, independent energy model, and interdependent

pair-wise energy model. For this reason, we describe the basic

mathematics required to understand the formulation in the first

section. In subsequent sections, we formulate the proposed

method according to three different models, and demonstrate
the efficient implementation of the method and its application

to polypeptide chains. Finally, numerical examples follow

thereafter.
2. Notation and terminology

In this section, we present the basic mathematics, which will

be used in our entire paper.
2.1. Fourier transform for SE(3)

In this section, we give a brief review of the Fourier

transform for the rigid-body motion group. For detailed

definitions and explanations, see Ref. [13].

The special Euclidean group, SE(3), is defined as a set which

contains translations and rotations in 3D Euclidean space. Let g

be an element of SE(3), then gZ(r,R) can be written in matrix

form as

g Z
R r

0T 1

 !

Multiplication of any two such matrices results in a matrix

of the same form. SE(3) is a Lie group under matrix

multiplication. Here, R2SO(3) is a rotation in three-

dimensional space, and is parametrized using ZXZ Euler angles

as

Rða; b;gÞ Z ROT½e3;a�ROT½e1;b�ROT½e3;g�

where ROT[ei,4] denotes the rotation matrix describing the

rotation by 4 about the axis parallel to the unit vector ei. r2R
3

represents translation in three-dimensional space, and is also

parametrized by means of spherical coordinates as

r Z

r cos f sin q

r sin f sin q

r cos q

0B@
1CA

Matrix elements of the irreducible unitary representations of

SE(3), Us
l0;m0;l;mðr;R; pÞ, are defined as [13,36]

Us
l0;m0;l;mðr;R; pÞ Z

Xl

jZKl

½l0;m0jp; sjl; j�ðrÞ ~U
l
j;mðRÞ (1)

In the above definition, the rotational part, ~U
l
m;n are matrix

elements of the irreducible unitary representations for SO(3),

which are defined as [37,38]

~U
l
m;nðRða; b;gÞÞ Z ðK1ÞnKmeKiðmaCngÞPl

m;nðcos bÞ (2)

where a, b, and g are ZXZ Euler angles and Pl
m;nðcos bÞ is a

generalized associated Legendre function, which can be

calculated by the following integral
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Pl
m;nðcos bÞ Z

inKm

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlKmÞ!ðl CmÞ!

ðlKnÞ!ðl CnÞ!

s

!

ð2p

0

cos
b

2
eif=2 C isin

b

2
eKif=2


 �lKn

! cos
b

2
eKif=2 C isin

b

2
eif=2


 �lCn

eimfdf

(3)

or one can obtain by the following relation using the Jacobi

polynomials

Pl
m;nðcos bÞ Z

ðlKmÞ!ðl CmÞ!

ðlKnÞ!ðl CnÞ!

� �1=2

!sinmKn b

2
cosmCn b

2
PðmKn;mCnÞ

lKm ðcos bÞ

(4)

The translational part in Eq. (1) is expressed as

½l0;m0jp; sjl;m�ðrÞ Z

ðp
QZ0

ð2p

FZ0

Ql0

s;m0 ðcos QÞeKiðm0CsÞFeKip$r

!Ql
s;mðcos QÞeKiðmCsÞFsin QdQdF

(5)

where

p Z

p cos F sin Q

p sin F sin Q

p cos Q

0B@
1CA

and

Ql
Ks;mðcos QÞ Z ðK1ÞlKs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l C1

4p

r
Pl

s;mðcos QÞ

Here, we use iZ
ffiffiffiffiffiffi
K1

p
as an imaginary unit to distinguish it

from the index i. One can also use the following series form to

calculate the translational part of the matrix elements of IURs

for SE(3):

½l0;m0jp; sjl;m�ðrÞ Zð4pÞ1=2
Xl0Cl

kZjl0Klj

ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 C1Þð2k C1Þ

ð2l C1Þ

s
jkðprÞ

!Cðk; 0; l0; sjl; sÞ

!Cðk;mKm0; l0;m0jl;mÞYmKm0

k ðq;fÞ

(6)

where C(k,0;l 0, sjl, s), C(k,mKm 0; l 0,m 0jl,m) are Clebsch–

Gordan coefficients, YmKm0

k ðq;fÞ are spherical harmonic

functions, and jk(pr) is the kth spherical Bessel function.

According to [37], Clebsch–Gordan coefficients are defined as
Cðl1;m1; l2;m2jl;mÞ Z ðK1Þl1Cl2Kl
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l C1

p
Dðl1; l2; lÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1Km1Þ!ðl1 C

p
!
X

s

ðK1Þs½s!ðl1 C l2KlKsÞ!ðl2Km2 KsÞ!
where

Dðl1; l2; lÞ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1 C l2KlÞ!ðl1Kl2 C lÞ!ðl2Kl1 C lÞ!

ðl1 C l2 C l C1Þ!

s
Finally, we are at the stage of defining the Fourier transform

for SE(3). Based on the above formulae, the matrix elements of

the Fourier transform of a function F(g), wherein gZ
(r,R)2SE(3), is obtained by the following relation

F̂
s
l0;m0;l;mðpÞ Z

ð
SEð3Þ

FðgÞUs
l;m;l0;m0 ðg; pÞdg (8)

where dgZdRdr with dRZ(1/8p2) sin bdadbdg and drZ
r2 sin qdrdqdf.

The inverse Fourier transform is defined as

FðgÞ Z
1

2p2

XN
sZKN

ðN
0

p2dp traceðF̂
s
UsÞ (9)

or in component form as

FðgÞZ
1

2p2

XN
sZKN

XN
l0Zjsj

XN
lZjsj

Xl0

m0Zl0

Xl

mZl

ðN
0

p2dp F̂
s
l;m;l0;m0 ðpÞUs

l0;m0;l;mðg;pÞ

(10)

The convolution of two functions on rigid-body motion group

F1(g), F2(g) is defined as

ðF1 �F2ÞðgÞZ

ð
SEð3Þ

F1ðhÞF2ðh
K1+gÞdh (11)

where h, g2SE(3). The geometric meaning of this convolution is

that the second function is swept and weighted by the first. For

example, if the full distribution of positions and orientations of

two adjacent segments of a polymer chain are known (Fig. 1),

then the concatenation of the segments yields a chain with

distribution F1*F2. Note that generally the order of concatenation

matters for inhomogeneous chains and F1*F2sF2*F1 if F1sF2.

This convolution of functions on the group can be calculated by

direct sequential products of Fourier transform of each function as

dF1 �F2

� �
Z F̂2F̂1 (12)

Note that unlike the case of the classical convolution theorem

the order of multiplication matters.
2.2. PDF of end-to-end distance

In this section, we derive the probability density function of

end-to-end distance for discrete-link polymer models using the

Fourier transform obtained in the previous section. The PDF of

end-to-end distance, denoted as f(r), is, in fact, a marginal 1D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1Þ!ðl2 Km2Þ!ðl2 Cm2Þ!ðlKm1 Km2Þ!ðl Cm1 Cm2Þ!

ðlKl2 Km1 CsÞ!ðl1 Cm1KsÞ!ðlKl1 Cm2 CsÞ!�K1 (7)



Fig. 1. Pictorial explanation of the concept of convolution. The second function

is swept and weighted by the first. If the full distribution of positions and

orientations of two adjacent segments of a polymer chain, F1 and F2, are

known, then the concatenation of the segments yields a chain with distribution

F1*F2.
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PDF of the 6D PDF of relative end-to-end position and

orientation, denoted as F(g) where gZ(r, R)2SE(3). The final

form of the result to be derived can be found in the literature

[13,22,23]. However, since those do not contain detailed

derivations, we derive it in this section.

The inverse Fourier transform of F̂ can be obtained using

Eqs. (9) or (10). To obtain the probability density function of

end-to-end distance, let us first consider the integral over SO(3)

of F(g)ð
SOð3Þ

Fðr;RÞdR Z
1

2p2

X
s;l0;l;m0;m

ðN
0

p2dpF̂
s
l;m;l0m0 ðpÞ

!
Xl

jZKl

½l0;m0jp; sjl; j�ðrÞ

ð
SOð3Þ

~U
l
j;mðRÞdR

(13)

If we separate and write for the last integral, then it becomesð
SOð3Þ

~U
l
j;mðRÞdR Z

ð2p

gZ0

ðp
bZ0

ð2p

aZ0

ðK1ÞmKjeKiðjaCmgÞPl
j;mðcos bÞdR

where dRZ(1/8p2)sin bdadbdg. In order for this integral to

have non-zero value, one can easily find that jZ0, and mZ0.

The integral on b, then simply becomesðp
bZ0

Pl
0;0ðcos bÞsin bdb Z

ð1
K1

PlðxÞdx

Here, we use the relation Pl
0;0ðcos bÞZPlðcos bÞ, where Pl is

the lth Legendre polynomial, and substitute cos b into x. The

integral of each Legendre polynomial becomes zero when ls0.
Hence, we find the condition that lZ0. Looking at the range of

summation, one can also find that sZ0 should be satisfied.

Therefore, Eq. (13) can be expressed in a compact form asð
SOð3Þ

Fðr;RÞdR Z
1

2p2

XN
l0Z0

Xl0

m0ZKl0

!

ðN
0

p2dpF̂
0
0;0;l0;m0 ðpÞ½l0;m0jp; 0j0; 0�ðrÞ

(14)

If we integrate Eq. (14) over the surface of a unit sphere and

multiply by r2, then the result will be the probability density

function of end-to-end distance. Let that probability density

function be denoted as f(r), then it is of the form

f ðrÞ Z
r2

2p2

ð2p

fZ0

ðp
qZ0

ð
SOð3Þ

Fðr;RÞdR

8<:
9=;sin qdqdf (15)

Since, [l 0,m 0jp,0j0,0](r) consists of such functions as eimf

and Pl 0(cos q) due to the fact that lZmZsZ0, one can easily

find that l 0Zm 0Z0 by the similar reasoning with that given

previously. Finally, we can get the end-to-end distribution as

f ðrÞ Z
2r2

p

ðN
0

F̂
0
0;0;0;0

sinðprÞ

pr
p2dp

Z
2r

p

ðN
0

F̂
0
0;0;0;0sinðprÞpdp (16)

Here, we use the equality j0(pr)Z(sin(pr))/pr [13].
3. Probability density function of end-to-end distance

As mentioned earlier, we examine discrete-chain polymer

models. In this section, we derive the probability density

function of end-to-end distance for three different discrete-

chain polymer models.

3.1. The freely-rotating model

Let us assume the geometry shown in Fig. 2. Fig. 2 shows a

schematic diagram of the ith link. In that figure, Li corresponds

to the length of the ith bond, ai is the ith dihedral or torsional

angle, and b0 is the ith bond angle. Here, we use the convention

that the local z-axis coincides with each bond. Then the

position of the distal end with respect to the proximal end can

be described by means of spherical coordinates,

rZ ½r cos f sin q; r sin f sin q; r cos q�T.

In this case, rZLi, and qZ0. Torsional and bond angles are

related to the rotation matrix of the distal end of link i with

respect to its own proximal end, and can be described using by

ZXZ Euler angles RZXZ(a, b, g), in which case aZai, bZb0,

and gZ0.

According to the geometry shown, one can find that the

appropriate form of the probability density function for this



Fig. 2. Schematic diagram of one link. Reference frame is attached so that the

local z axis coincides with each link. ai is the ith torsional angle, and b0 is the

ith bond angle. These are described using ZXZ Euler angles.
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single link can be described using Dirac delta functions. If we

express it explicitly, it is of the form

iFðr;Rða;b;gÞÞ Z
4p

r2sin q sin b
dðqÞdðrKLiÞ

1

2p
dðbKb0ÞdðgÞ

(17)

Here, since the position of the distal end has the singularity

associated with spherical coordinates (qZ0), the f value does

not appear in the above equation. Instead, the effect of

integration with respect to f is included in the constant, so that

consequently, the constant term contains 4p/r2 sin q [13]. As

for the a angle, which corresponds to the ith torsional angle ai

of a polymer, we assume that rotation around this angle to be

uniformly distributed, so that the probability density of those

angles is 1/2p. This assumption makes it the freely-rotating

chain model. Then we can take the SE(3)-Fourier transform for

the function in Eq. (17) by using Eq. (8). From Ref. [13], one

sees that

Us
l;m;l0;m0 ðg; pÞ Z ðK1ÞðlKl0ÞðK1ÞðmKm0ÞUs

l;Km;l0;Km0 ðg; pÞ

With the above expression, Eq. (1), the properties of Dirac

delta function, and the fact that
Ð2p

fZ0

eimfdf has non-zero value

only when mZ0, we can derive the probability density

function of the ith link as

i
F̂

s
l0;m0;l;mðpÞ Z ðK1ÞðlKl0Þ½l; 0jp; sjl0; 0�ðr0ÞP

l0

m0;0ðcos b0Þ; m Z 0

(18)
where r0 means the position vector of distal end with respect to

the reference frame attached to the proximal end. In component

form, it can be written as

i
F̂

s
l0;m0;l;mðpÞ Z ðK1ÞðlKl0Þdm;0

!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l C1

2l0 C1

r XlCl0

kZjlKl0j

ikð2k C1ÞjkðpLiÞ

n
!Cðk; 0; l; sjl0; sÞCðk; 0; l; 0jl0; 0ÞPl0

m0;0ðcos b0Þg

(19)

where dm,0 is a Kronecker delta.

Since, we get the Fourier transform of the probability

density function of the ith link derived above, now we can

obtain the Fourier transform of an N-link polymer by utilizing

the generalized convolution on SE(3), which is simply

expressed in Eq. (12). Let us denote the Fourier transform of

an N-link polymer as F̂. This can be obtained simply by

multiplying each Fourier transform in reversed order as

F̂ Z NF̂.1F̂ (20)

when we apply the above arguments to obtain the end-to-end

distance distribution. Since, we only need to consider the case

when sZ0, Eq. (19) can be further simplified to the following

form

i
F̂

0
l0;m0;l;mðpÞ ZðK1ÞðlKl0Þdm;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l C1

2l0 C1

r
!
XlCl0

kZjlKl0 j

ikð2k C1ÞjkðpLiÞðCðk; 0; l; 0jl0; 0ÞÞ2
n

!Pl0

m0;0ðcos b0Þ
o

(21)

where dm,0 is a Kronecker delta. In the above equation, the

Clebsch–Gordan coefficient can be calculated by the following

simple formula [39]

Cða; 0; b; 0jc; 0Þ

Z
ðK1ÞgKc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c C1

p
g!

ðgKaÞ!ðgKbÞ!ðgKcÞ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2gK2aÞ!ð2gK2bÞ!ð2gK2cÞ!

ð2g C1Þ!

s

when aCbCcZ2g, where g is a positive integer. When aC
bCcZ2gC1, the corresponding Clebsch–Gordan coefficients

have zero values. Then by utilizing Eqs. (20) and (16), we can

obtain the probability density function of end-to-end distance

for the N-link polymer chain.
3.2. The independent energy model

In this model, the potential energy is expressed as

Eða1;.;aNÞ Z
XN

iZ1

EiðaiÞ
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With this in mind, we define the PDF of the ith link as

iFðgÞ Z
4p

r2sin q sin b
dðqÞdðrKLiÞ

eKEiðaÞ=kBT

Z
dðbKb0ÞdðgÞ

(22)

where gZ(r,R(a,b,g))2SE(3) and the partition function Z is

defined as ZZ
Ð2p

0

eKEiðaÞ=kBT da. The Fourier transform of this

function becomes

i
F̂

s
l0;m0;l;mðpÞ Z

ð
SEð3Þ

iFðgÞUs
l;m;l0;m0 ðg; pÞdðgÞ

Z

ð
SEð3Þ

1

2p
dðqÞdðrKLiÞ

eKEiðaÞ=kBT

Z

!dðbKb0ÞdðgÞðK1ÞlKl0 ðK1ÞmKm0

!
Xl0

jZKl0

½l;Kmjp; sjl0; j�ðrÞ ~U
l0

j;Km0 ðRÞdrdfdqdadbdg

(23)

Using the fact that
Ð2p

0

eiðjCmÞfdf vanishes except when jZKm,

jmj%l 0 Eq. (23) is further simplified to the following form

i
F̂

s
l0;m0;l;mðpÞ ZðK1ÞlKl0Pl0

m0;mðcos b0Þ

ð2p

0

eKEiðaÞ=kBT eima

Z
da

!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l C1

2l0 C1

r XlCl0

kZjlKl0 j

ikð2k C1ÞjkðpLiÞ

!Cðk; 0; l; sjl0; sÞCðk; 0; l;Kmjl0;mÞ

(24)

only when jmj%l 0. If not, the above Fourier transform becomes

zero. After that, by using Eqs. (20) and (16) we can obtain the

end-to-end distance distribution.
3.3. The interdependent pairwise energy model

As we did in the freely-rotating model and in the

independent energy model, let us assume the geometry

shown in Fig. 2. The difference now is that

Eða1;.;aNÞ Z
XNK1

iZ1

Ei;iC1ðai;aiC1Þ (25)

First, we define the following. Let d(gKa) be ððr2sin q

sin bÞ=8p2Þdrdfdqdbdg, and
Ð

SEð3ÞKaZ
Ð

g

Ð
b

Ð
q

Ð
f

Ð
r, i.e.

only
Ð

að$Þda is missing in the integration and measure. We

also define iFðgÞZ ð4p=ðr2sin q sin bÞÞdðrKLiÞdðqÞðbKb0Þ
dðgÞ. Then referring to [13], we can define

i ^̂F
s

l0;m0;l;mðp;aiÞ Z

ð
SEð3ÞKa

iFðgÞUs
l;m;l0;m0 ðg; pÞdðgKaÞ

Z

ð
SEð3ÞKa

1

2p
dðqÞdðrKLiÞdðbKb0ÞdðgÞðK1ÞlKl0

!ðK1ÞmKm0 Xl0

jZKl0

½l;Kmjp; sjl0; j�ðrÞ

! ~U
l0

j;Km0 ðRÞdrdfdqdbdg

(26)

By the same analogy as in the previous case, due to the fact that

the integral
Ð2p

fZ0

eiðjCmÞfdfhas non-zero value only when jZKm

only for jmj%l 0, it becomes

i ^̂F
s

l0;m0;l;mðp;aiÞ

Z ðK1ÞlKl0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0 C1

2l C1

r
Pl0

m0;mðcos b0Þe
imai

XlCl0

kZjlKl0 j

ik

!ð2k C1ÞjkðpLiÞCðk; 0; l; sjl0; sÞCðk; 0; l;Kmjl0;KmÞ

(27)

Now, let us consider the Boltzmann-weighted convolution of

the ith and iC1st links of the form

i;iC1F Z

ð
SEð3Þ

iFðhÞiC1FðhK1+gÞeKEi;iC1=kBT dh (28)

If we take the SE(3)-Fourier Transform of the convolution, then

it is written as

i;iC1 F̂
s
ðpÞZ

ð
SEð3Þ

ð
SEð3Þ

iFðhÞiC1FðhK1+gÞeKEi;iC1=kBT dhUsðgK1;pÞdg

Z

ð
SEð3Þ

ð
SEð3Þ

iFðhÞiC1Fðg0ÞeKEi;iC1=kBTUsðg0K1;pÞ

!UsðhK1;pÞdhdg0

Z

ð
ai

ð
aiC1

ð
SEð3ÞKa

iC1Fðg0ÞUsðg0;pÞ
T
dðg0

KaÞ

0B@
1CA

!

ð
SEð3ÞKa

iFðhÞUsðh;pÞ
T
dðhKaÞ

0B@
1CAeKEi;iC1=kBT daiC1dai

(29)

Here we use g 0ZhK1+g, dg 0Zdg, Usðg0K1+hK1ÞZUsðg0K1Þ

UsðhK1Þ, and UsðgK1ÞZUsðgÞ
T
. By means of Eqs. (26) and (27),
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Eq. (29) can be written in the compact form

i;iC1F̂
s
ðpÞZ

ð
ai

ð
aiC1

iC1 ^̂F
s
ðp;aiC1Þ

i ^̂F
s
ðp;aiÞe

KEi;iC1=kBT daiC1dai

(30)

Suppose that there are N links, and let the number density of the

distal end be numF, then the Fourier Transform gives

numF̂
s
ðpÞZ

ð
a

N ^̂Fðp;aNÞ
NK1 ^̂Fðp;aNK1Þ.

1 ^̂Fðp;a1Þe
KEðaÞ=kBT da

(31)

where aZ(a1,.,aN) and EðaÞZ
PNK1

iZ1

Ei;iC1ðai;aiC1Þ. Then the

Fourier Transform of the PDF can be obtained by normalization as

F̂
s
Z

numF̂
s

Z
(32)

where the partition function Z is defined as

Z Z

ð
a

eKEðaÞ=kBT da Z

ð
a1

.

ð
aN

eKEðaÞ=kBT daN.da1 (33)

Now, we employ a similar method as in Refs. [13,35]. First, let us

define for iC1 !lK1

^̂F
s
ðp;ai;alÞZ

ð
aiC1

.

ð
alK1

l ^̂F
s
ðp;alÞ

lK1 ^̂F
s
ðp;alK1Þ.

iC1 ^̂F
s
ðp;aiC1Þ

!
i ^̂F

s
ðp;aiÞe

KEi;lðai;.;alÞ=kBTdalK1.daiC1

(34)

Then, for example assuming that we divide the total chain into two

segments (a0,.,ai) and (aiC1,.,aN), the Fourier Transform of the

number density numF becomes

numF̂
s
ðpÞZ

ð
a0

ð
aN

ð
ai

ð
aiC1

^̂F
s
ðp;aiC1;aNÞ

^̂F
s
ðp;a0;aiÞ

!eKEi;iC1ðai ;aiC1Þ=kBTdaiC1daidaNda0

(35)

In practice, we can break the whole chain apart into segments with

2 or 3 monomers. More specifically, let us define

^̂F
s
ðp;ai;aiC1ÞZ

iC1 ^̂F
s
ðp;aiC1Þ

i ^̂F
s
ðp;aiÞe

KEi;iC1=kBT (36)

Then Eq. (34) becomes

^̂F
s
ðp;ai;aiC3ÞZ

ð
aiC1

ð
aiC2

^̂F
s
ðp;aiC2;aiC3Þ

^̂F
s
ðp;ai;aiC1Þ

!eKEiC1;iC2ðaiC1;aiC2Þ=kBT daiC2daiC1

(37)

and we can apply this equation sequentially to reach Eq. (35). After

that, we can apply the same normalization as in Eq. (32). Then the

end-to-end distance distribution f(r) can be calculated from Eq.

(16).

Note that, in order to obtain the partition function Z, we can

apply the same method described above. Specifically, if we use

1 instead of
i ^̂F ðp;aiÞ and

iC1 ^̂F ðp;aiC1Þ in Eq. (36), then the
convolution-like function eventually gives the partition

function.
4. Efficient implementation

In numerical work, computational cost is often a critical

issue. In this section, we mention efficient methods for

calculating the end-to-end distribution with the proposed

method.

Among the three different models presented in this paper,

the computational speed for the freely rotating and the

independent energy model cases is faster than that of the

interdependent energy model. We can store the Fourier

transform of each link in advance as functions of the frequency

factor p, then can apply Eq. (12) to obtain the end-to-end

distribution of a given polymer. This process is nothing more

than matrix multiplication.

However, when it comes to the interdependent energy

model case, the situation is not as simple as the two other

cases. As one can see from Eq. (37), one needs double

integration at each step. For example, assume that we divide

one torsion angle into n cells. Then the number of points in

each ai becomes nC1. Each process of matrix multiplication

and summation in Eq. (37) needs O(n4) computations. The

main problem is that if we use nZ50 or greater than that

(nZ100, for example), which is required in most cases

because one needs a large value of n to avoid aliasing effects

in the Fourier transform, then O(n4) is really a huge number,

which means that the direct implementation of Eq. (37) is

not an efficient way to implement the method for the

interdependent energy model case. For this reason, we

present more efficient ways of implementing the interdepen-

dent energy model.

First, we compute the Fourier series of ui;iC1ðai;aiC1ÞZ
eKEi;iC1ðai;aiC1Þ=kBT . Then it becomes

ui;iC1ðai;aiC1Þ Z
XN

mZKN

XN
nZKN

i;iC1ûm;neimai einaiC1 (38)

In practice, if we use a band width, B, for approximating the

exponential of the energy function, then we can utilize the

exponential of the energy function as

ui;iC1ðai;aiC1Þz
XB

mZKB

XB

nZKB

i;iC1ûm;neimai einaiC1 (39)

Here the Fourier coefficient û is defined as

i;iC1ûm;n Z
1

4p2

ð2p

0

ð2p

0

ui;iC1ðai;aiC1Þe
Kimai eKinaiC1 daidaiC1

Also a closer investigation of Eq. (27) gives

i ^̂F
s

l0;m0;l;mðp;aiÞ Z iDl0;m0;l;mðpÞe
imai (40)
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where

iDl0;m0;l;mðpÞ Z ðK1ÞlKl0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0 C1

2l C1

r
Pl0

m0;mðcos b0Þ

!
XlCl0

kZjlKl0 j

ikð2k C1ÞjkðpLiÞCðk; 0; l; sjl0; sÞ

!Cðk; 0; l;Kmjl0;KmÞ

(41)

for jmj%l 0. Otherwise it becomes zero. If we express it in

matrix form, it becomes

i ^̂F
s
Z iD neimai

n

h i
(42)

where ½neimai
n� means the diagonal matrix whose diagonal

elements are of the form eimai . Let us assume that there are 8

links in a given segment of polymer. We can construct the

following by means of Eqs. (36) and (39)

1;2 ^̂F
s

Z
2 ^̂F

s1 ^̂F
s
u1;2ða1;a2Þ

Z
XB

j1ZKB

XB

k1ZKB

2 ^̂F
s1 ^̂F

s1;2
ûj1;k1

eij1a1 eik1a2 (43)

Similarly, we can construct for the 3rd and 4th links as

3;4 ^̂F
s

Z
XB

j2ZKB

XB

k2ZKB

4 ^̂F
s3 ^̂F

s3;4
ûj2;k2

eij2a3 eik2a4 (44)

Then
1;4 ^̂F

s
can be expressed, by Eq. (42), as

1;4 ^̂F
s

Z
X
j1;k1

X
j2;k2

X
j;k

4D neiðm4Ck2Þa4
n

h i

!

ð
a3

ð
a2

3D neiðm3Cj2Þa3
n

h i
3;4

ûj2;k2

2D neiðm2Ck1Þa2
n

h i

!
1;2

ûj1;k1

2;3
ûj;keija2 eika3 da2da3

1D neiðm1Cj1Þa1
n

h i
(45)

where each mi represents the index in Eq. (42) for the ith link.

Due to the fact that the integral
Ð2p

aZ0

eimada has non-zero value

only when mZ0, this can be simplified further to the following

form

1;4 ^̂F
s

Z
XB

j1ZKB

XB

k2ZKB

4D neiðm4Ck2Þa4
n

h i
2;3Cj1;k2

1D neiðm1Ck1Þa1
n

h i
(46)

where

2;3Cj1;k2
Z
X
j2;k

X
j;k1

3D n2pdj2Ck;Km3 n

h i
2D n2pdjCk1;Km2 n

h i
!

3;4
ûj2;k2

1;2
ûj1;k1

3;4
ûj;k

(47)

where dj,k is a Kronecker delta. Here
1;2

ûj1;k1
;

3;4
ûj2;k2

; and
2;3

ûj;k represent the Fourier coefficients for E1,2(a1,a2),
E3,4(a3,a4), and E2,3(a2,a3), respectively. Similarly,

5;8 ^̂F
s

Z
XB

j0
1
ZKB

XB

k 0
2
ZKB

8D nei m8Ck 0
2ð Þa8

n

h i
6;7Cj0

1
k 0

2

5D nei m5Cj01ð Þa5
n

h i
(48)

With Eqs. (46) and (48), we can obtain the following

1;8 ^̂F
s XB

j1ZKB

XB

k 0
2
ZKB

8D nei m8Ck 0
2ð Þa8

n

h i
2;7Cj1k 0

2

1D neiðm1Cj1Þa1
n

h i
(49)

where

2;7Cj1k 0
2

Z
X
j0
1
;k

X
j;k2

6;7Cj1k 0
2

5D n2pdj0
1
Ck;Km5 n

h i

! 4D n2pdjCk2;Km4 n

h i
4;5

ûj;k
2;3Cj1k2

(50)

Here
4;5

ûj;k is the Fourier coefficient for E4,5(a4,a5). If there are

more than eight links, then one can repeat Eqs. (49) and (50) to

obtain
1;N ^̂F

s
where N is the number of links. At the final step,

we can obtain numF̂
s

by

numF̂
s

Z
X

k 0
2

X
j1

ND n2pdk 0
2
;KmN n

h i2;NK1

Cj1k 0
2

1D n2pdj1;Km1 n

h i
(51)

The partition function Z can be calculated similarly with all
i ^̂F

s
’s replaced by 1 in the above procedure.

The above approach has an advantage compared to the

direct double integration in that we do not need to perform

integration. Instead, we can only select the set of indices which

makes the integration of eima part nonzero. Then, the total

computational cost for each summation and matrix multipli-

cation processes becomes O(B4!a2), where the maximum

value of a is O(B). In practice, the number of B as 4–7 can give

a good approximation of the exponential of energy function.

Another issue is that, since ui,iC1(ai,aiC1) is already expressed

in terms of harmonics, we do not need a large value of Nb,

which is the band width in the Fourier transform for SE(3),

compared with the case where the original energy function is

used. Since the computational cost also depends on the size of

Fourier transform matrix for SE(3), one can find that the

approach presented in this section is much faster than direct

double integration approach.
5. Application to polypeptide chains

We can also apply our proposed method to polypeptide

chains. Polypeptide chains have interesting features compared

with other general chains, such as polyethylene, etc. We depict

the diagram of polypeptide chain structure in Fig. 3. First, the

torsion angle around the C–N bond is fixed to be 1808. The

torsion angle between Ca and C is called j angle, and that

between N and Ca is called f angle. The allowable range of

values for the angle pair (j,f) is obtained from the

Ramachandran plot [40]. This also shows that the behavior



Fig. 3. Schematic diagram of a polypeptide chain. The torsion angle of the C–N

bond is fixed at 1808. In numerical examples, bu and bu1 are assumed 63.88 and

58.38, respectively.
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of a polypeptide chain can be described using interdependent

pairwise energy model. In fact, this is already known as ‘the

Flory isolated-pair hypothesis’ [1,41]. Although it turns out

that this isolated-pair hypothesis requires some modification

[41], it still serves as a good approximation to describe some

features of polypeptide chains. In this section, we apply our

proposed method to obtain end-to-end distance distribution of

polypeptide chain models defined by the Ramachandran plot.

Looking at Fig. 3, as mentioned earlier, unlike other

polymers such as polyethylene, etc. the C–N bond does not

have energy interaction with two adjacent bonds, Ca–C and N–

Ca. Let the probability density function of the C–N bond be uF.

If the torsional angle along the C–N bond is 1808, or p radians,

then uF becomes

uFðgÞ Z
4p

r2sin q sin b
dðaKpÞdðbKbuÞdðgÞdðrKLuÞdðqÞ

(52)

where bu and Lu are bond angle and bond length of C–N bond,

respectively. Here the u angle is assumed to be 1808 or p
radians. The Fourier Transform for SE(3) gives

u
F̂

s
l0;m0;l;m Z eipmPl0

m0;mðcos buÞðK1ÞlKl0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l C1

2l0 C1

r

!
XlCl0

kZjlKl0 j

ikð2k C1ÞCðk; 0; l;Kmjl0;KmÞ

!Cðk; 0; l; sjl0; sÞjkðpLuÞ

(53)

for jmj%l 0. Otherwise, this becomes zero. One can, then, define

the following together with Eq. (26)

^̂F
s
ðp;ai;aiC1Þ Z ^̂F

s
ðp;aiC1Þ

uF̂
s ^̂F

s
ðp;aiÞ (54)

Then we can apply the method in the previous section to this

polypeptide chain model. Note that the polypeptide chain case

has much simpler form than general polymer chains due to the

fact that

EðaÞ Z E1;2ða1;a2ÞCE3;4ða3;a4ÞC. CENK1;NðaNK1;aNÞ

(55)

That is, each pairwise energy becomes independent. Hence, we

can use an energy function with the following form
ui;iC1ðai;aiC1Þ Z
eKEi;iC1ðai ;aiC1Þ=kBT

Z
(56)

where

Z Z

ð
aiC1

ð
ai

eKEi;iC1ðai;aiC1Þ=kBT daidaiC1 (57)

First we consider 8 residues among the polypeptide chain

consisting of N residues. For convenience, let us assume that N

has the form of 2k where k is a positive integer greater than 3.

We can construct the pairwise Fourier Transform-like matrices

as

i;iC1 ^̂F
s

Z
iC1 ^̂F

su ^̂F
si ^̂F

s
(58)

for iZ1, 3. Then

1;4 ^̂F
s

Z 4D neim4a4
n

h i
2;3C1D neim1a1

n

h i
(59)

where

2;3C Z
XB

jZKB

XB

kZKB

uF̂
s3D n2pdk;Km3n

h i
2D n2pdj;Km2n

h i
uF̂

s2;3
ûj;k

(60)

We can do similarly with the subchain consisting of residues

5–8 as

5;8 ^̂F
s

Z 8D neim8a8
n

h i
6;7C5D neim5a5

n

h i
(61)

Then

1;8 ^̂F
s

Z 8D neim8a8
n

h i
2;7C1D neim1a1

n

h i
(62)

where

2;7C Z
XB

jZKB

XB

kZKB

6;7C5D n2pdk;Km5n

h i
4D n2pdj;Km4n

h i
2;3C

4;5
ûj;k

(63)

After that, we can repeat until N links are reached. Finally we

can obtain the Fourier Transform of end-to-end distance

probability density function F(g) as

F̂
s
ðpÞ Z

1

4p2
ND n2pdmN ;0 n

h i
2;NK1C1D n2pdm1;0n

h i
Z ND n

dmN ;0n

h i
2;NK1C1D n

dm1;0n

h i (64)

Here 4p2 in the first line is a normalization factor. Because all

u(ai,aiC1) are normalized according to Eq. (56), the integration

about the final two angles aN and a1 requires a normalization

factor, which becomes
Ð

aN

Ð
a1

da1daN Z4p2.
6. Numerical examples

In this section three kinds of examples are demonstrated: the

freely-rotating chain, the independent energy chain, and the

interdependent pairwise energy chain.



Table 1

The comparison of the mean squares of the end-to-end distance

q From our model From Eq. (66)

p/4 0.2502 0.2502

p/6 0.4687 0.4688
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6.1. The freely-rotating and the independent energy chain

model

First let us take an example for the freely-rotating model. In

order to verify our model, we utilize well-known formulas for

the freely rotating chain model [1]. According to the Flory’s

theory [1], when all the link lengths are the same and denoted

as L, and all the bond angles have the same values as q, then the

average of the square of the end-to-end distance for the N-link

polymer chain can be calculated as [1,13]

hr2i Z NL2ð1 CaÞð1KaÞK1Kð2aL2Þð1KaNÞð1KaÞK2 (65)

where aZcos q. If we further normalize the end-to-end

distance with the total chain length (divide Eq. (65) by

N2L2), the equation becomes

hr2inormalized Z
ð1 CaÞð1KaÞK1

N
K

2a

N2


 �
ð1KaNÞð1KaÞK2

(66)

In Fig. 4 are shown the resulting end-to-end distance

probability density functions for two different cases. Here the

number of links in the polymer chain is fixed to be 20. If we

calculate the area under the curves, it gives 1.0000, which

means that the obtained curves truly represent the probability

density functions. In Table 1 are shown the squares of the end-

to-end distance. One can see that the corresponding results are

in excellent agreement with those from Eq. (66). In the

simulations, as the band width for Fourier transform for SE(3)

and upper limit of integration with respect to frequency factor

p, denoted as Nb and Lp, respectively, NbZ12 and LpZ50 are

used in the case of qZp/4, and NbZ16 and LpZ60 are used in

the case of qZp/6.
end–to–end distance (normalized)
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Fig. 4. Plot of the resulting end-to-end distance probability density functions for

the freely-rotating model. The number of links is set to be 20. q denotes the

bond angle of the polymer chain. The continuous line corresponds to the case

when qZp/4, and the dotted line to the case when qZp/6. In the simulations,

the band width of the Fourier transform for SE(3) and upper limit of integration

with respect to frequency factor p are denoted as Nb and Lp, respectively, and

NbZ12 and LpZ50 are used in the case of qZp/4, and NbZ16 and LpZ60 are

used in the case of qZp/6.
As for the next example, we consider the following potential

energy

EðaÞ Z 11:8 C7:66 cos a C4:64 cos 2a C8:8 cos 3a (67)

in units of kcal/mol, which is the torsional potential energy for n-

butane.[3] In Fig. 5 is shown the torsional potential energy and

exponential of the potential energy. This potential energy has

three minima, gaucheC (near aZ608), trans (near aZ1808), and

gaucheK (near aZ3008). This expression is one general form of

torsional potential energy, which appears in many of polymer

chains. In Fig. 6 is shown the resulting probability density

function of end-to-end distance for this independent energy

model. Looking at part (a), which is the case of the number of

links being 16, one can see that the PDF is described more

accurately as the band width for Fourier transform for SE(3), Nb,

and the upper limit for the integration with respect to the

frequency factor p, Lp, get larger. Especially, NbZ7 appears to

be sufficient for describing the ‘mountain’ part of the PDF, but in

order for the better ‘tail’ description, we need larger Lp such as

40 in that figure. In part (b), we show the PDFs for two different

numbers of links. As one can expect, when the number of links is

128, the resulting end-to-end distance distribution becomes

more concentrated toward the left side.
6.2. The interdependent pairwise energy chain model

We now demonstrate the interdependent pairwise energy

model case. Among various polymers, from natural to artificial

ones, polypeptide chains are of special interest these days.

Hence we take polypeptides as examples of the interdependent
Fig. 5. The plot of torsional potential energy and its exponential used in the

example of the independent energy model. (a) the torsional potential energy,

(b) exponential of the torsional potential energy.



Fig. 6. Plot of the resulting end-to-end distance probability density functions for

the independent energy model. All the monomer chains are assumed to be

identical, with b0Z75.18. (a) The plot of PDFs with different Nb and Lp. It

shows that as Nb and Lp get larger, one can describe the corresponding PDF

better. (b) The plot of PDFs with different number of links. From this figure,

one can see that the PDF for chains with a large number of links gets more

concentrated on the left side.

Fig. 7. The Ramachandran-like plots of approximate models for dipeptide used

in the numerical examples. (a) Alanine dipeptide. (b) Valine dipeptide. Gray

represents allowed regions.
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pairwise energy model. In order to generate end-to-end

distance distributions, we need a 2D energy map. One can

find a way to compute the energy map from first principles

using Lennard–Jones potentials [1], or using MD simulations

[42]. In general, MD simulation can be trusted more than just

using Lennard–Jones potentials. However, in this paper, we

generate Ramachandran-like plots as a probability distribution

of torsional energy. The purpose of this example is to show that

the proposed method can generate end-to-end distance

distributions for any type of pairwise energy function, which

justifies the usage of Ramachandran-like plots. We also utilize

the simplified geometric model for a polypeptide chain based

on the same reason above. All the information about bond

angles and bond lengths of peptide units are borrowed from

Ref. [41]. The hard-sphere contact distances are also borrowed

from Ref. [41]. As for hard-sphere radius for residues (alanine

and valine), we treat CH3 to be approximately of the same size
as C, from the fact that, according to [1], the radius of CH2 are

greater than that of C by only 0.15 Å. Fig. 7 shows the

Ramachandran-like plot for each dipeptide, alanine and valine.

We treat these maps as the exponential of the torsional

potential energy, eEi;iC1ðai ;aiC1Þ=kBT and the height of each allowed

(gray) region is set at 2. In Fig. 8 is shown the resulting end-to-

end distance PDF for a polyalanine chain with 16 residues.

As mentioned earlier, the small value of bandwidth B, which

is for the classical Fourier series approximation of the

exponential of the torsional potential energy, is good enough

for describing the corresponding PDF, and so is the bandwidth

Nb for Fourier transform matrix for SE(3). In order to verify our

method, we performed MC simulation for polyalanine with 16

residues. In the MC sampling, since the probabilities within the

allowable region are the same, we randomly select a set of pairs

of f, j angles to generate as many conformations of a

polyalanine chain as possible given computing/time con-

straints. In practice, we generate 106 conformations to generate

the histogram of the end-to-end distance. In Fig. 9 is shown



Fig. 8. Plot of the resulting end-to-end distance probability density functions for

the interdependent energy model. This corresponds to the case of a polyalanine

chain. The number of residues is 16 in both cases. It shows that lower value of

Nb and B is good enough to describe the corresponding PDF of the end-to-end

distance.

Fig. 10. Comparison of two different polypeptides with the same number of

links. In this figure, the number of residues is set to be 16.
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the comparison between the result from MC simulation and

that from our method. One can observe good agreement

between both the results, though MC is not able to give the

exact PDF in this situation. We believe this happens for two

reasons: first, the conformational space is too large to allow for

sufficient sampling; and second, random number generators in

software packages (in this case Matlab) are not truly random,

and this lack of true randomness becomes noticable as the

number of samples becomes very large. Also in Fig. 10 one can

see that the PDFs corresponding to different energy becomes

different. Looking at Fig. 11, which shows the resulting end-to-

end distance PDF for polyalanine chains with different number

of links, one can also see that when the number of links is 128,

the resulting end-to-end distance distribution becomes more

concentrated toward the left side.
Fig. 9. Comparison of the result from the proposed method with MC sampling.

In MC sampling, 106 conformations are randomly selected to generate

histogram which is equivalent to PDF of the end-to-end distance. Both the cases

correspond to polyalanine with 16 residues.
6.3. The comparison with other chain models

In this section, we demonstrate the comparison between the

end-to-end distance distribution from other chain models

distribution and that from the proposed method.

One can find the formula of the spatial distribution for the

Gaussian chain model and the freely-jointed chain model in

Refs. [1,3]. Following the notation in Ref. [1], the end-to-end

distribution for the Gaussian chain is expressed as

WðrÞ Z
3

2phr2i


 �3=2

exp K
3r2

2hr2i


 �
(68)

and for the N-link freely-jointed chain model

WðrÞ Z
1

2p2r

ðN
0

sinðqrÞ
sinðqlÞ

ql

� �N

qdq (69)
Fig. 11. Plot of the resulting end-to-end distance probability density functions

for the polyalanine chain for different number of links. As one can see, the

larger the number of links, the more concentrated to the left side the resulting

plot becomes.
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where r denotes the end-to-end vector and r denotes the end-to-

end distance. hr2i corresponds to the mean square of the end-to-

end distance. From these functions, one can obtain the PDFs of

the end-to-end distance as

f ðrÞ Z 4pr2WðrÞ (70)

First we compare the freely-jointed chain model and the

Gaussian chain model with the freely-rotating chain model

from the proposed method. In this example, the number of links

is 20 and the bond angle for the freely-rotating chain model is

p/4. Referring to Table 1, we find that hr2iZ0.2502. We

substitute this value in Eq. (68) to obtain the PDF of the end-to-

end distance for the Gaussian chain. When we use hr2iZNL2 in

Eq. (68), the resulting PDF of the Gaussian chain model

becomes in-distinguishable from that of freely-jointed chain

model. In Fig. 12, we show the result of the comparison. As one

can see, the freely-rotating chain model generates a different

PDF than the freely-jointed model with the same number of

links. Also, the PDF of the end-to-end distance of the Gaussian

chain model with the same mean squared end-to-end distance

as the freely-rotating chain model is different than that of the

freely-rotating model.

Next, we compare the Gaussian chain model with our

examples in previous sections. That is to say, we take the

freely-rotating chain model, the independent energy chain

model, and the interdependent pairwise energy chain model to

compare with the Gaussian chain model when the length of a

chain is large. Particularly, in this example we take the number

of links is 128 and the bond angle is p/4 for the freely-rotating

chain model. As for independent energy chain model, we

utilize the same example in the first subsection. Also we take

the polyalanine chain in the second subsection as an example of

the interdependent pairwise energy chain model. As for the

Gaussian chain model, we first compute hr2i from the results of

the proposed method, and then obtain the Gaussian chain

distribution from Eqs. (68) and (70). In Fig. 13 we show
Fig. 13. (a) Comparison between the Gaussian chain and the freely-rotating

chain model. (b) Comparison between the independent energy chain model and

the Gaussian chain model. (c) Comparison between the interdependent pairwise

energy chain model (polyalanine) and the Gaussian chain model. In all cases,

the number of links is set to be 128. It shows that when the length of polymer

chain is very long, then the freely-rotating chain model, the independent energy

chain model, and the interdependent pairwise energy chain model all become

the same as the Gaussian chain.

Fig. 12. Comparison among the Gaussian chain, the freely-jointed chain, and

the freely-rotating chain model. The number of links is set to be 20 in the freely-

jointed and the freely rotating chain models. As one can see, the resulting PDFs

are different according to each model.
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the results of comparison between each of the three different

chain models and the Gaussian chain model. As one can see,

these figures verify that all classical linear chain models behave

as the Gaussian chain as the length of a chain becomes very

large.

7. Conclusions

In this paper, we have presented a unified method to

generate the probability density function of the end-to-end

distance for discrete-chain phantom polymer models. Our

method is based on previous work which utilizes the

generalized convolution and extends it by employing the

Fourier transform for SE(3). The proposed method is general

enough to be applied to any of the classical phantom polymer

chain models. We have formulated the proposed method for

three different discrete polymer chain models: the freely-

rotating model, the independent torsional energy model, and

interdependent pairwise energy model. We have also

developed an efficient implementation method, particularly

for the interdependent pairwise energy model, by approximat-

ing the exponential of the torsional potential function with the

classical Fourier series. We have demonstrated the versatility

of the proposed method by numerical examples. We expect that

this method, which can generate both one-dimensional

marginal PDFs and multi-dimensional PDFs (e.g. PDF for

end-to-end distance and orientation of the distal end of a

polymer chain), can be useful in a wider range of

conformational studies on polymer chains, including artificial

polymer chains and natural ones such as polypeptides and

single-stranded RNA molecules.
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