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We present a Lie-group-theoretic method for the kinematic and dynamic analysis of stiff chiral polymers with end constraints.
The first is to determine the minimum energy conformations of stiff polymers with end constraints and the second is to
perform normal mode analysis based on the determined minimum energy conformations. In this paper, we use concepts from
the theory of Lie groups and principles of variational calculus to model such polymers as inextensible or extensible chiral
elastic rods with coupling between stiffnesses. This method is general enough to include any stiffness and chirality
parameters in the context of elastic filament models with the quadratic elastic potential energy function. As an application of
this formulation, the analysis of DNA conformations is discussed. We demonstrate our method with examples of DNA
conformations in which topological properties such as writhe, twist and linking number are calculated from the results of the
proposed method. Given these minimum energy conformations, we describe how to perform the normal mode analysis. The
results presented here build both on recent experimental work in which DNA mechanical properties have been measured and
theoretical work in which the mechanics of non-chiral elastic rods has been studied.
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1. Introduction

This paper presents Lie-group-theoretic descriptions of

stiff chiral polymers. The subject presented in this paper

represents the confluence of three research areas: (1)

mechanics-based models of end-constrained elastic thin

rods; (2) the theory of Lie groups and Lie algebras,

(especially as it has been applied in geometric control

theory); and (3) experimentally motivated stiffness

models used in modern statistical mechanics of stiff

polymers. In the subsections of this section, a brief review

of relevant literature is presented and notation and

terminology from the theory of Lie groups are reviewed.

In subsequent sections, we develop the following: a

general model of chiral elastic filaments; a variational

calculus formulation for deriving the filament shape under

end constraints; a numerical procedure for solving these

equations; and normal mode analysis of a continuous rod

model for stiff chiral polymers given minimum energy

conformations. These techniques are demonstrated with

numerical results.

1.1 Literature review

A number of recent studies on chiral and uncoupled end-

constrained elastic rod models of DNAwith circular cross-

section have been presented [1–4]. These models use

classical elasticity theory of continuum filaments with

or without self-contact constraints to model the stable

conformations of DNA in plasmids, in chromosomes and

during transcription. That work is related to studies on

DNA topology [5–12] in the sense that the topological

constraint of no self-interpenetration is enforced. In some

works, Euler angles are used in parametrizing equations of

the Kirchhoff thin elastic rod theory to obtain minimum

energy conformations of DNA and determine its stability

[13–15]. Also, theworm-like chainmodel has been used to

model the equilibrium behavior of DNA [16]. More recent

works involve the modeling of DNA as an anisotropic

inextensible rod and also include the effect of electrostatic

repulsion for describing the DNA loops bound to Lac

repressor, etc. [17,18]. Another recent work includes

sequence-dependent elastic properties of DNA [19]. All of

these aforementioned works are based on Kirchhoff’s thin
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elastic rod theory [20]. This theory, as originally

formulated, deals with non-chiral elastic rods with circular

cross-section. Another example is the special Cosserat

theory of rods [21], which can be viewed as an extension of

Kirchhoff’s theory in that it includes extensible and

shearable rods. Several researchers in elasticity have

employed this rod theory to describe the static and dynamic

characteristics of rods. For example, Simo and Vu-Quoc

formulated a finite element method using rod theory [22].

Dichmann et al. employed a Hamiltonian formulation

using the special Cosserat theory of rods for the purpose of

describing DNA [23]. Coleman et al. [24] reviewed

dynamical equations in the theories of Kirchhoff and

Clebsch. Steigmann and Faulkner [25] derived the

equations of classical rod theory using a parameter-

dependent variational approach. Recently, Gonzalez and

Maddocks [26] devised a method to extract sequence-

dependent parameters for a rigid base-pair DNA model

from molecular dynamics simulation. In their paper, they

used a force moment balance equation from Kirchhoff’s

rod theory to extract stiffness and inertia parameters.

Another recent work includes the application of Kirchhoff

rod theory to marine cable loop formation and DNA loop

formation [27]. In contrast to these uncoupled chiral

models of DNA based on the elasticity of thin rods with

isotropic or anisotropic cross-sectional properties, a

number of stiffnessmodels used in the statisticalmechanics

of stiff polymers have been presented over the years [28–

32]. These models address the chirality, anisotropic

elasticity and coupling between stiffnesses in stiff polymers

like DNA, though end-constrained minimum energy

conformations for such models have not been obtained

previously. Other models based on DNA structure [29,33–

38] and experimental measurements in which DNA is

manipulated [39–42] have also contributed to the

development of anisotropic and coupled stiffness models

of chiral macromolecules. Recently, Wiggins et al. [43]

developed a theory based on nonlinear elasticity, called the

kinkable wormlike chain model, for describing spon-

taneous kinking of polymers including DNA. Also there

have been many studies on the extensible properties of

DNA [8,44–49] including a twist–stretch coupling factor.

Normal mode analysis has been a major tool for the

study of large motions of biopolymers (see, e.g. [50,51]

and references therein). It has been mainly applied for the

description of large motions of macromolecules such

as proteins. It has also been shown that normal mode

analysis can be used to determine statistical mechanical

properties of DNA supercoiling such as free energy,

enthalpy, entropy and so on [52]. In that work, DNA was

modeled as an inextensible elastic rod with circular-

shaped configuration. On the other hand, there have been

another approaches to normal mode analysis of DNA.

First, people have considered a DNA chain as a set of

rigid plates each of which represents the base pair

consisting of DNA [53–55]. In this sort of study, there are

six parameters to describe the motion of DNA: tilt, roll,

twist, rise, shift and slide. The first three are related to the

orientation and the latter three are to the relative rigid-

body translation of each rigid base-pair plate. Secondly,

one can consider full atoms in the chain and solvent such

as in Ref. [56]. That work is an example of how normal

mode analysis can help to understand biological processes

such as DNA–protein recognition.

In this paper, we propose a Lie-group-theoretic

method to determine the minimum energy conformations

of general elastic model of stiff chiral polymers with

appropriate end constraints and describe how to

perform normal mode analysis given the conformations

determined by the proposed method. More specifically in

this study, the theory of rotation and rigid-body motion

groups is used. The main differences between previous

works and our approach are: (1) unlike previous works

on DNA modeling, which are based on rod theory (i.e.

rods with uncoupled/diagonal stiffness tensor in a local

frame of reference with one axis tangent to the filament

in the shearless case), our approach applies to the chiral,

anisotropic and coupled case. That is, we consider the

most general small-strain model either inextensible or

extensible, which is also the most accurate reflection of

recent experimental measurements; (2) previous modeling

works either use the balance equations for momentum

and angular momentum from continuum mechanics

and/or weak forms of these equations such as FEM/Ga-

lerkin methods. In contrast, we use a Lie-group-based

variational approach based on the Euler–Poincaré

equation, which is different from previous works. With

this approach, the number of resulting differential

equations becomes smaller, which is easy to deal with.

In subsequent sections of this paper, a model of elastic

filaments that incorporates these stiffness properties is

presented in which the theory of rotation and motion

groups is used. For this reason, the following subsection

reviews mathematical notation and terminology that is

necessary to understand the formulation of this paper.

Ideas from the theory of Lie groups have been applied

in recent years in the fields of mechanics [57,58] and

robotics/systems theory [59–63]. The material in the

following subsection is motivated by these previous

works on applications of Lie theory and is presented in a

way so as to be directly applicable to the mechanics of

end-constrained chiral and coupled rods.

1.2 Notation and terminology

The terminology necessary to understand the formulation

in subsequent sections is now reviewed. The focus here is

Lie-group-theoretic notation for describing spatial rigid-

body motions. For more detailed explanation, see [62,64].

Translations (and positions) are described as vectors in

3D Euclidean space: a [ R3: Translational motions have

the property of being commutative, a1 þ a2 ¼ a2 þ a1.

This is not a property that is generally shared by spatial

rotations or full rigid-body motions. The general and

rigorous definition of Lie groups can be found in many

books on group theory. In this paper, we are especially
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interested in Lie groups which correspond to rotation

and rigid-body motion in 3D space, i.e. SOð3Þ and SEð3Þ,

respectively.

Orientations and rotational motions in 3D space are

described as elements of the rotation group, or “special

orthogonal” group, SOð3Þ. This is the set of 3 £ 3 real

matrices that satisfy the conditions ATA ¼ I and

detðAÞ ¼ þ1, where I denotes an identity matrix. The

group law is matrix multiplication. Rotations (or orien-

tations) are often parameterized using ZXZ Euler angles:

Aða;b; gÞ ¼ ROT½e3;a�ROT½e1;b�ROT½e3; g�;

where ROT½ei;w� denotes the rotation matrix describing

counterclockwise rotation byw about the natural basis vector

ei which has elements ðeiÞj ¼ dij. Each of these basic

rotations can be written as the matrix exponential

ROT½ei;w� ¼ expðwEiÞ

where

E1 ¼

0 0 0

0 0 21

0 1 0

0
BBB@

1
CCCA;

E2 ¼

0 0 1

0 0 0

21 0 0

0
BBB@

1
CCCA; E3 ¼

0 21 0

1 0 0

0 0 0

0
BBB@

1
CCCA:

Any 3 £ 3 skew symmetricmatrix can bewritten as a linear

combination of these three basic matrices.

There is a close relationship between 3 £ 3 skew

symmetric matrices and the vector cross product. Namely,

given a vector v ¼ ½v1;v2;v3�
T [ R3, then

ðv1E1 þ v2E2 þ v3E3Þx ¼ v £ x:

In this context, we use the notation

v ¼
X3
i¼1

viEi

 !_
: ð1Þ

If one defines the following inner product on the vector

space formed by all 3 £ 3 skew-symmetric matrices,

ðV ;WÞ ¼
1

2
trðVW TÞ; ð2Þ

where trð·Þ denotes the trace of a matrix, then it is clear that

ðEi;EjÞ ¼ dij and

v·ek ¼ Ek;
X3
i¼1

viEi

 !
¼ vk:

Similarly, one can define the matrix commutator as

½V ;W� ¼ VW 2WV : ð3Þ

Whereas large rotations are elements of SOð3Þ, small

rotations can be associated with the set of 3 £ 3 skew

symmetric matrices. When endowed with the above

inner product and commutator, this set of matrices is

called soð3Þ. Exponentiating any element of soð3Þ

produces an element of SOð3Þ and every element of

SOð3Þ can be viewed as the exponential of an element of

soð3Þ. Another important relationship between SOð3Þ and

soð3Þ is that given AðtÞ [ SOð3Þ and _A W dA=dt, the

matrix products AT _A and _AAT are both elements of soð3Þ.

ðAT _AÞ_ and ð _AATÞ_ have the meaning of angular velocity

as seen in the body-fixed and space-fixed frames of

reference, respectively. We will exclusively use the

body-fixed perspective, in which

v ¼ ðAT _AÞ_ ð4Þ

One observes that

½E1;E2� ¼ E3; ½E2;E3� ¼ E1; ½E3;E1� ¼ E2:

The above commutator relations are written all together as

½Ei;Ej� ¼
X3
k¼1

Ck
ijEk ð5Þ

where Ck
ij are called the structure constants of the Lie

algebra soð3Þ. Note that most of the structure constants are

equal to zero, with all the others equal to ^1. Since

½Ei;Ej� ¼ 2½Ej;Ei�, it must be the case that Ck
ij ¼ 2Ck

ji.

The Euclidean motion group (or “special Euclidean”

group), SEð3Þ, is the semidirect product of R3 with the

special orthogonal group, SOð3Þ. Physically, it represents

the rigid-body motion, or the rotation and the translation,

in 3D space. Knowing that rotation can be expressed with

an element of SOð3Þ and translation with an element ofR3,

we denote elements of SEð3Þ as g ¼ ða;AÞ [ SEð3Þ where

A [ SOð3Þ and a [ R3. The group law is written as

g1+g2 ¼ ða1 þ A1a2;A1A2Þ and g21 ¼ ð2ATa;ATÞ: Any
element of SEð3Þ can be written as the product of a pure

translation and pure rotation as ða;AÞ ¼ ða; IÞ + ð0;AÞ.
One may represent any element of SEð3Þ as a 4 £ 4

homogeneous transformation matrix of the form:

g ¼
A a

0T 1

 !

Given a rigid-body motion gðtÞ, the quantity

g21 _g ¼
AT _A AT _a

0T 0

 !
ð6Þ

is a rigid-body velocity as seen in the body-fixed frame. It

is also an element of the Lie algebra seð3Þ associated with

SEð3Þ. This velocity can be described with the 6D vector

j ¼ ðg21 _gÞ_ ¼
ðAT _AÞ_

AT _a

 !
¼

v

v

 !
ð7Þ

The vector j contains both the angular and translational

velocity of the motion gðtÞ as seen in the body-fixed frame

of reference. As similarly done for SOð3Þ, this g21 _g can be
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expressed as a linear combination of the basis elements of

seð3Þ as

g21 _g ¼
X6
i¼1

ji ~Ei ð8Þ

where ~Ei denotes the basis element of seð3Þ defined as

~E1 ¼

0 0 0 0

0 0 21 0

0 1 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA; ~E2 ¼

0 0 1 0

0 0 0 0

21 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA;

~E3 ¼

0 21 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA; ~E4 ¼

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA;

~E5 ¼

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA; ~E6 ¼

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

0
BBBBB@

1
CCCCCA:

As similarly done with the case of SOð3Þ, linear

combination and exponentiation of these matrices

produces elements of SEð3Þ. The products of exponentials

of elementary motions can be used to generate any

rigid-body motion, much like the Euler angles do for pure

rotation.

Finally, one can define the adjoint operator, for a given

g ¼ ða;AÞ [ SEð3Þ, as

AdðgÞ ¼
A 03£3

âA A

 !

where â corresponds to the skew-symmetric matrix

associated with a, i.e. ðâÞ_ ¼ a. This adjoint operator

changes the view of a 6D rigid-body velocity or an

element of seð3Þ from the body frame to the spatial frame

of reference.

2. Elastic energy of chiral rods

In this section, we discuss an energy functional which,

when subject to certain constraints, defines the minimum

energy conformations of chiral elastic rods.

2.1 Inextensible rods

A number of authors have derived potential energies of

bending and/or twisting of a stiff inextensible chain that

are of the form

E ¼

ðL
0

UðvðsÞÞ ds

where L is the length of the macromolecule and

U ¼
1

2
vTBv2 bTvþ b

0

: ð9Þ

Here B ¼ BT [ R3£ 3 is a positive semi-definite stiffness

matrix, b [ R3 and b0 [ R. v is the “angular velocity”

(with arclength s replacing time) of a frame of reference

ðaðsÞ;AðsÞÞ which is affixed to the duplex-axis curve of the
DNA at each value of arclength s. If there are no end-

constraints, the minimal energy conformation is defined

by vðsÞ ¼ B21b, which defines a helix (including straight

lines and circles as degenerate cases).

As well-known examples of equation (9) from the

polymer science literature, consider:

The Kratky–Porod model [29]

B ¼

a0 0 0

0 a0 0

0 0 0

0
BB@

1
CCA; b ¼

0

0

0

0
BB@

1
CCA; b

0

¼ 0:

The Yamakawa model [32]

B ¼

a0 0 0

0 a0 0

0 0 b0

0
BB@

1
CCA; b ¼

0

a0k0

b0t0

0
BB@

1
CCA;

b
0

¼
1

2
b0t

2
0 þ a0k

2
0

� �
:

The Marko–Siggia DNA model [38,40]

B ¼

a0 þ b20=c0 0 b0

0 a0 0

b0 0 c0

0
BB@

1
CCA; b ¼

b0v0

0

c0v0

0
BB@

1
CCA;

b
0

¼
1

2
c0v

2
0:

The Yamakawa and Kratky–Porod models can be

viewed as special cases of classical rod theory, with the

Kratky–Porod model being degenerate in the sense that it

has no twist stiffness and no chirality. The most general

model is, therefore, the Marko–Siggia model which

includes anisotropy, chirality and twist–bend coupling.

For this reason, we employ the Marko–Siggia model for

the purpose of simulation, although our method described

below can be applied to any of these three models.

Under the constraint that the molecule is inextensible

and all the frames of reference are attached to the

backbone with their local z-axis pointing in the direction
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of the next frame, one observes

aðLÞ ¼

ðL
0

uðsÞ ds and uðsÞ ¼ AðsÞe3: ð10Þ

2.2 Extensible rods

Experimental evidence suggests that DNA is an extensible

chain [44] and there is coupling between torsional and

extensional stiffnesses [45]. The most general continuum

elastic filament model that can capture this scenario is one

in which equation (9) is replaced with

U ¼
1

2
jTKj2 kTjþ b

0

: ð11Þ

where j ¼ ½vT; vT�T is defined in equation (7). The

minimum energy conformation of such a chain without

end constraints or self-contact is defined by jðsÞ ¼ K21k.
As a defining equality for k one observes strictly from

geometry that

K21k ¼
2pne3

e3

 !

for DNA, where n is the number of revolutions per unit

length of the double-helix. This defines a straight (as

opposed to helical) backbone curve with a superimposed

twist. A different definition for k can easily be substituted

for helical wormlike chains.

The matrix K can be modelled in a number of ways, all

of which will be of the form

K ¼
B C

C T D

 !

where B is the stiffness matrix discussed previously.

If one assumes that in addition to the couplings in the

Marko–Siggia DNA model discussed in the previous

section, there is only twist–extension coupling then

C ¼

0 0 0

0 0 0

0 0 t

0
BB@

1
CCA

(where t is the twist–extension coupling stiffness

parameter) and

D ¼

s1 0 0

0 s2 0

0 0 d

0
BB@

1
CCA

where s1 and s2 describe the stiffness due to transverse

shearing of the filament and d is the extensional

(longitudinal) stiffness. Of course, if there is reason to

include additional coupling parameters in either C or D

this can be done easily.

Other than the increase in dimension of the stiffness

matrix and the use of SEð3Þ terminology rather than

SOð3Þ, a notable difference in the extensible case is that

there is no need for an integral constraint equation

analogous to equation (10).

3. Determination of minimum energy conformations

In this section, we describe how to determine the

minimum energy conformations of stiff chiral polymers

with appropriate end constraints. More specifically, we

apply variational calculus on Lie groups to obtain the

Euler–Poincaré equation. A detailed derivation of this

equation is given in Appendix A. This section writes

equation (A9) explicitly for the energy in equations (9)

and (11) and describes a technique for solving these

equations for given boundary conditions and other

constraints.

3.1 Inextensible rods

Considering the case of equation (9) with the kinematic

constraint of inextensibility (10), one writes equation (A9)

with f ¼ U for i ¼ 1; 2; 3 together as the vector equation

B
dv

ds
þv £ ðBv2 bÞ ¼

2lTAe2

lTAe1

0

0
BB@

1
CCA ð12Þ

where a dot represents differentiation with respect to

arclength s, l [ R3 is the vector of Lagrange multipliers

necessary to enforce the vector constraint in equation (10)

and the right-hand-side of equation (12) results from the

fact that

ER
i ðl

TAe3Þ ¼
d

dt
lTAðIþ tEiÞe3jt¼0 ¼ lTAEie3

¼ lTAðei £ e3Þ:

Equation (12) is solved iteratively subject to the initial

conditions vð0Þ ¼ m which are varied together with the

Lagrange multipliers until aðLÞ and AðLÞ attain the desired

values. AðsÞ is computed from vðsÞ in equation (12) by

integrating the matrix differential equation

dA

ds
¼ A

X3
i¼1

viðsÞEi

 !
;

and aðLÞ is then obtained from equation (10).

Let h ¼ ½mT;lT�T [ R6 be the vector of all the

undetermined coefficients. Denote the distal frame of

reference of the rod for a given value of h as gðh; LÞ.
Denote the desired position and orientation of the distal

frame of reference as gd. Let h0 be an initial guess for the

value of h and g0 ¼ gðh0; LÞ. Theoretically, One can drive
the updates of h as follows. First define gpðtÞ to be a rigid-

body trajectory (or path) such that gpð0Þ ¼ gðh0; LÞ and
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gpð1Þ ¼ gd. See figure 1 for a pictorial explanation. Then

by forcing h to update such that the reference frame of the

distal end stays on the path, the velocity condition

dgp

dt
¼
X6
i¼1

›g

›hi

dhi

dt

must hold in order for gpðtÞ ¼ gðhðtÞ; LÞ.
We can write the velocity condition in the form

g21
p

dgp

dt

� �_

¼ JRðhÞ
dh

dt
; ð13Þ

where

JRðhÞ ¼ g21 ›g

›h1

� �_

; g21 ›g

›h2

� �_

; . . . ; g21 ›g

›h6

� �_� �

is a 6 £ 6 matrix called the right Jacobian for SEð3Þ

associated with the parameters h [64].

Equation (13) is a differential equation that defines hðtÞ.
This equation can be solved by inverting JR at each time

step and integrating numerically. This can be achieved

only if we know the position and orientation of the distal

end as an explicit function of hðtÞ. However, since we do
not know that function, direct numerical integration of

equation (13) always contains numerical error, which

leads to the failure of reaching the desired value because

the error becomes larger as time increases. To circumvent

this problem, we devise the following numerical

algorithm.

First define an artificial rigid-body trajectory, gpðtÞ

which satisfy the conditions gpð0Þ ¼ g0 and gpð1Þ ¼ gd.

Here gpðtÞ is defined as

gpðtÞ ¼ aðt 0Þ þ tðad 2 aðt 0ÞÞ;Aðt 0Þ exp½t·logðATðt 0ÞAdÞ�
� �

;

where gðt0Þ ¼ ðaðt0Þ;Aðt0ÞÞ is the distal frame at time t0

and t0 ¼ t, but when it comes to differentiation with

respect to the artificial time parameter t, t0 is treated as

a constant. Also gd ¼ ðad;AdÞ represents the desired

position and orientation. The function gpðtÞ generates a

left-invariant geodesic in SEð3Þ which is formed from

the current distal frame to the desired one and pushes

the distal end to the desired pose of the distal frame of

reference.

At the kth step, we apply the velocity condition

dhk

dt
¼ J21

R Adðg21gpðtkÞÞ g21
p ðtkÞ

dgp

dt
ðtkÞ

� �_

ð14Þ

to calculate the increment of h. In the above equation,

Adðg21gpÞ, including the one in the equation below,

changes the view of a velocity or an element of seð3Þ so

that it can be viewed from the current frame of reference,

[65]. Since this relation only contains a velocity-tracking

term, we need the position correction term defined as

hc
k ¼ J21

R Adðg21gpðtkÞÞ log g21ðtkÞgpðtkÞ
� �� �_

: ð15Þ

Then we obtain h at the ðk þ 1Þth step as

hkþ1 ¼ hk þ Dt
dhk

dt
þ hc

k: ð16Þ

In practice, the partial derivatives in the definition of JR
are computed approximately as

›g

›hi

<
1

e
½gðhþ eei; LÞ2 gðh; LÞ�

for a small number e such as e ¼ 10210. Together with e

and Dt which are small enough, the feedback information

of the current distal end frame included in the above

scheme leads to the convergence to the desired frame of

reference.

3.2 Extensible rods

From equations (A9) and (11), one can obtain the

following equation for the extensible case:

K
dj

ds
þ ðKj2 kÞ ^ j ¼ 0 ð17Þ

where ^ is the product of infinitesimal rigid-body motions

defined by

v1

v1

 !
^

v2

v2

 !
¼

v2 £v1 þ v2 £ v1

v2 £ v1

 !
:

This wedge operator is related to the “ad” operator as

j1 ^ j2 ¼ 2adðj2Þ
Tj1 ð18Þ

Conformation
resulting from
initial guess

gp(0)

gp(1) = gd

Conformation
satisfying end

constraints

Desired rigid-body
trajectory, gp(t)

g (t k)

gp(tk)

g (t k+1)

Actual rigid-body
trajectory, g(t)

Figure 1. Schematic diagram explaining the concept of rigid-body
trajectory. gpð0Þ is the position and orientation of the distal end in the
conformation resulting from the initial guess and gpð1Þ should be
the desired one of the distal end, i.e. gpð1Þ ¼ gd. At time tk, gpðtÞ forms
the geodesic from the current frame, gðtkÞ, to gd.
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where ji ¼ ½vT
i ; v

T
i �

T, i ¼ 1; 2 and the matrix of the “ad”

operator is defined as [66]

adðjÞ ¼
v̂ 03£3

v̂ v̂

 !
:

Equation (17) is solved subject to the initial conditions

jð0Þ ¼ h [ R6. This, together with the kinematic

condition

dg

ds
¼ g

X6
i¼1

ji ~Ei

 !
;

is integrated for 0 # s # L to define gðj; LÞ. From this

point everything follows in exactly the same way as for the

inextensible case.

It is worth noting that since in this case there is no

integral constraint, there are no Lagrangemultipliers on the

right-hand-side of equation (17), but there are six rather

than three initial conditions. This also means that s is no

longer the arclength of the filament. Rather, s denotes what

the arclength of the filament would be in its referential

(undeformed conformation), but when the chain bends,

twists and extends, s can deviate from being arclength.

4. Normal mode analysis

After one obtains the minimum energy conformations, one

can perform normal mode analysis given those minimum

energy conformations. Normal mode analysis has been

widely used as a tool for describing thermal fluctuations.

Thermodynamic and statistical mechanical properties

related to thermal fluctuations can be expressed using

normal modes and corresponding natural frequencies

obtained by normal mode analysis [52,53]. In this section,

we formulate the method of normal mode analysis using

the concept of Lie groups. Here we present normal mode

analysis using the extensible rod model. The reason to

employ the extensible rod model is that, first it is easier to

implement than the inextensible-rod model due to the fact

that there is no kinematic constraints in the extensible rod

model and secondly it can describe local deformations

including extension during the fluctuation, as in normal

mode analysis treating each base pair as a rigid plate. We

note that we can obtain the same minimum energy

conformations using both inextensible and extensible rod.

Let gEðsÞ [ SEð3Þ denote an minimum energy confor-

mation obtained by the aforementioned approach. Let also

gPðs; tÞ [ SEð3Þ represent conformations which are vibrat-

ing or fluctuating around the minimum energy confor-

mation. Here s denotes the referential arclength. If we

assume small fluctuation, then gPðs; tÞ ¼ gEðsÞðIþ Sðs; tÞÞ.

Here

Sðs; tÞ ¼

0 2v3 v2 v1

v3 0 2v1 v2

2v2 v1 0 v3

0 0 0 0

0
BBBBB@

1
CCCCCA

is an element of seð3Þ representing small deviations or

displacements from the minimum energy conformation. It

can be related to a 6 £ 1 vector s ¼ ½vT;yT�T where

v ¼ ½v1;v2;v3�
T and y ¼ ½v1; v2; v3�

T, with ðSÞ_ ¼ s.
Now let us assume

viðs; tÞ ¼
Xn
j¼1

aðiÞj ðtÞFjðsÞ

viðs; tÞ ¼
Xn
j¼1

bðiÞj ðtÞFjðsÞ

ð19Þ

where {FjðsÞ} is a set of geometrically compatible

functions which have the properties of completeness and

orthogonality and also satisfy the boundary conditions

Fjð0Þ ¼ FjðLÞ ¼ 0, where L denotes the total length of the

stiff polymer. In this work, we choose

FjðsÞ ¼ sin
pjs

L

� �
:

This approach is very similar to Rayleigh–Ritz approxi-

mation method [67].

The kinetic energy of a polymer has two parts. One is

linear velocity part and the other is rotational velocity part.

The former is defined as ð1=2Þr0
Ð L
0
k›rP=›tk

2
ds if we

assume the uniformmass density. Note that r0 ¼ rSwhere

S is the cross-sectional area of a rod and r is a uniform

mass density. The latter part can be expressed, using

moment of inertia I, as ð1=2Þ
Ð L
0
_vT I _v. In practice, in the

thin elastic rod cases, we can only consider torsional term,

which has the form of ð1=2ÞrIzz
Ð L
0 _v

2
3 ds, where Izz denotes

the area moment of cross section and for a circular cross-

sectional rod case, Izz ¼ pr 4=4. Here r denotes the radius
of a circular cross section. Hence the total kinetic energy

can be expressed as

T ¼
1

2
r0

ðL
0

›rP

›t

				
				
2

dsþ
1

2
rIzz

ðL
0

›v3

›t

� �2

ds: ð20Þ

Note that gPe4 ¼ ½rTP ; 1�
T. Then

›rP

›t

				
				
2

¼
›gP

›t
e4

				
				
2

¼ gEðsÞ
›S

›t
e4

				
				
2

¼
›y

›t

				
				
2

: ð21Þ

Letting q ¼ ½· · ·; qTj ; · · ·�
T where qj ¼ ½að3Þj ; bð1Þj ; bð2Þj ;

bð3Þj �T, the kinetic energy can be expressed in matrix

form as

T ¼
1

2
_qTM _q ð22Þ
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where M is a block-diagonal matrix, expressed as

M ¼ diagðMjÞ, whose diagonal element Mj is defines as

Mj ¼

rIzzL
2

0 0 0

0 r0L
2

0 0

0 0 r0L
2

0

0 0 0 r0L
2

0
BBBBBB@

1
CCCCCCA
: ð23Þ

Here we use the notation ›=›tð·Þ ¼ ð·Þ.

Now let us consider the potential energy term. Note that

we cannot consider Sðs; tÞ as a small deformation which

is denoted as v in the definition of the potential energy.

The small deformation or the “body-fixed velocity” jP is

defined as

jP ¼ ðJPÞ
_ ¼ g21

P

›gP

›s

� �_

: ð24Þ

From this point of view, if we compute the small

deformation or the “angular velocity” of a chain, then

together with gP ¼ gEðIþ SÞ, it becomes

JP ¼ g21
P g0P ¼ JE þ ½JE;S� þ S0 ð25Þ

or in vector form as

jP ¼ jE þ adðjEÞsþ s 0 ð26Þ

up to the first order. Here d=dsð·Þ or ›=›sð·Þ ¼ ð·Þ0 and

ðJEÞ
_ ¼ jE ¼ ½vT

E; v
T
E�

T denote the deformations or the

“body-fixed velocity” of the minimum energy confor-

mation. That is to say, the perturbed deformation is

defined as d ¼ jP 2 jE ¼ adðjEÞsþ s 0, which leads to

the following potential energy

V ¼

ðL
0

1

2
dTKd2 kTd

� �
ds: ð27Þ

Let u ¼ ½· · ·; uTj ; · · ·�
T where uj ¼ ½aTj ; b

T
j �

T wherein bj ¼

½bð1Þj ; bð2Þj ; bð3Þj �T and aj ¼ ½að1Þj ; að2Þj ; að3Þj �T. Then the

potential energy is expressed as the following quadratic

form

V ¼
1

2
uTKtu2 kTt u: ð28Þ

Here the stiffness matrix is defines as

Kt ¼

K1 K1;2 · · · K1;n

KT
1;2 K2 · · · K2;n

..

. ..
. . .

. ..
.

KT
1;n KT

2;n · · · Kn

0
BBBBBBB@

1
CCCCCCCA

ð29Þ

where

Kj ¼
j 2p2

2L
K þ

ðL
0

F2
j ad

TðjEÞKadðjEÞ
n

þ adTðjEÞK þ KadðjEÞ
� �

F0
jFj

o
ds

Kj;k ¼

ðL
0

FjFkad
TðjEÞKadðjEÞ

�

þFjF
0
kad

TðjEÞK þF0
jFkKadðjEÞ



ds:

ð30Þ

kTt is defined as

kTt ¼ · · ·; kT

ðL
0

adðjEÞFj þ IF0
j

� 

ds; · · ·

� �
ð31Þ

where I denotes an 6 £ 6 identity matrix. Note that, in

equation (11), if we define ja ¼ j2 K21k, then the

potential energy has only quadratic term as

V ¼ 1=2
Ð L
0
jTaKja ds, which eliminates kt in the above

equation.

Now we rearrange the parameters and the matrices. If

we define u ¼ ½qT; qTr �
T where qr ¼ ½· · ·; að1Þj ; að2Þj ; · · ·�T

instead of u, then we need to rearrange Kt. This can be

done simply by changing the corresponding rows and

columns in Kt and kt. Now let Kt and kt denote the

stiffness matrix and the forcing vector of which rows and

columns are changed appropriately. Then the Lagrangian

L ¼ T 2 V becomes

L ¼
1

2
_uT

M 04n£2n

02n£4n 02n£2n

 !
_u

2
1

2
uT

K11 K12

KT
12 K22

 !
uþ kTt u: ð32Þ

Lagrangian equation gives the equation of motion as

M 04n£2n

02n£4n 02n£2n

 !
€q

€qr

 !
þ

K11 K12

KT
12 K22

 !
q

q
r

 !
¼ kt:

ð33Þ

The main issue now is to solve the eigenproblem

M 04n£2n

02n£4n 02n£2n

 !
€q

€qr

 !
þ

K11 K12

KT
12 K22

 !
q

q
r

 !
¼ 0:

ð34Þ

This can be divided into two matrix equations as

M €qþ K11qþ K12qr ¼ 0 ð35Þ

and

KT
12qþ K22qr ¼ 0: ð36Þ

The second one defines the angular (or bending)

deformation. Substituting the lower equation into the
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upper one gives

M €qþ K11 2 K12K
21
22 K

T
12

� �
q ¼ 0: ð37Þ

Solving this eigenvalue problem gives the normal modes

of interest.

5. Numerical results

In this section, we present numerical examples to apply

our method. Specifically, we generate conformations of

DNA in which one segment binds to the cylindrical

histone protein and the other is a free segment. We use the

basic physical data from the work of Swigon et al. [2].

First we demonstrate how to determine the minimum

energy conformations and then select one exemplary

case to demonstrate normal mode analysis. As for the

minimum energy conformations, since parameters regard-

ing inextensible rod model are available, we present the

results from the inextensible rod modeling, though we can

do the same with the extensible rod model.

The schematic picture is depicted in figure 2. As for the

physical model of DNA, we employ the Marko–Siggia

DNA model. The physical parameters used in this

example are shown in table 1. In the first example, we

set b0 ¼ 0. The fact that b0 ¼ 0 means that we treat DNA

as an isotropic elastic filament. In order to determine the

minimum energy conformation of a free section, we need

to know: (1) the number of base pairs in the entire DNA

section, which we call N, (2) the number of wraps, w, of

DNA around the cylindrical histone molecule and (3)

the end constraints, which can be obtained from the

information of the DNA section which binds to the

histone. Basically if we have exact data for the bound part,

for example those from the protein data bank (PDB), then

the end constraints may easily be determined. Since

precise experimentally determined end constraints appear

to be unavailable at the current time, we need to assume

the appropriate end constraints for the demonstration of

our method. We therefore treat the backbone curve of the

bound segment as a helix, which means that we can obtain

the conformation of that backbone curve simply from

the geometric parameters such as pitch and diameter of

the cylinder, which are shown in figure 2. Here, we use the

pitch value of 2.7 nm and a diameter of 8.6 nm [2]. As for

the twist density of the bound section, it is experimentally

shown that the helical repeat length (HRL) of the bound

section has three different values [68]. Two outer segments

have 10.0 bp/turn as a HRL and the middle one has a

HRL of 10:4 , 10:7 bp/turn. For this reason, it seems that

Swigon et al. [2] made an assumption that the length of

a middle segment corresponds to w ¼ 1:45 and when

w ¼ 1:70, the remaining parts form the two outer

segments. We employ their aforementioned assumption

in our paper to determine the length of each segment of

the bound section. Moreover, in each of the segments, the

twist density can be expressed as

vb ¼
2p

0:34hb
;

where, hb ¼ 10:40 bp/turn for the middle segment [2] and

hb ¼ 10:0 bp/turn for two outer segments [68]. Given the

appropriate end constraints and the above parameters, we

can determine the minimum energy conformations of the

DNA by the proposed method. After that, we can calculate

the topological values such as the writhe Wr, twist Tw and

the linking number Lk of the entire DNA segment. Elastic

energy also can be calculated. Let xðsÞ be the coordinates
of the DNA backbone curve. Then the writhe is defined by

the Gaussian integral as [64]

Wr ¼
1

4p

þ
ds1

þ
ds2½_xðs1Þ £ _xðs2Þ�·

xðs1Þ2 xðs2Þ

kxðs1Þ2 xðs2Þk
3
:

The twist is defined similarly as

Tw ¼
1

2p

þ
v3ðsÞ ds:

Then the linking number is calculated as

Lk ¼ Wr þ Tw:

Another important issue before the discussion of the

resulting minimum energy conformations is how to

obtain multiple solutions. As one can imagine, there can

be a great number of conformations which meet the

given end constraints. Amongst various possible

methods for obtaining these conformations, we utilize

Table 1. The physical parameters for the Marko–Siggia model. Here,
a0 is related to the bending stiffness of DNA, b0 is the bending–twisting
coupling factor, c0 is related to the torsional stiffness and v0 is the
intrinsic twist density of a straight DNA. b0 ¼ 0 means that we treat DNA
as an isotropic rod.

a0 ðpNnm2Þ b0 ðpN nm2Þ c0 ðpN nm2Þ v0 ðnm
21Þ

205.72 0 or 2:4c0 1:4a0 1.85

Free section

Binding section

Pitch

Diameter

Figure 2. Schematic diagram of DNA in the example. Free section and
the section, which binds to the cylindrical histone, are shown. In this
geometry, we use a value of pitch of 2.7 nm and a value of diameter of
8.6 nm.
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the following method. First we assume eight different

initial guesses. Our goal is to obtain the minimum

energy conformations of which the twist density is close

to the intrinsic twist density of DNA, called v0. This

leads to the assumption that the initial angular velocity

should be ½0; 0;v0�
T. As for the Lagrange multiplier, we

assume the eight different values such as ½0:1; 0; 0�T,
½0; 0:1; 0�T, ½0:1; 0:1; 0�T, ½20:1; 0; 0�T, ½0;20:1; 0�T,
½20:1;20:1; 0�T, ½0:1;20:1; 0�T, ½20:1; 0:1; 0�T. Since

the physical meaning of Lagrange multiplier is the force

acting on the distal end to keep the geometric constraint,

the above assumption gives the initial conformations

which has the intrinsic twist density along the backbone

curve and are slightly bent to eight different directions.

Some initial guesses can return the same resulting

conformations and others can return highly twisted

conformations, which we exclude from our paper. We

have verified that the above method can generate the

minimum energy conformations that we want. We show

the values of those topological parameters and the

elastic energy of the free section based on our

calculation in table 2 and each conformation of DNA

is depicted in figure 3 as a light curve. These results

coincide well with those of Swigon et al. [2]. One can

see that there is no self-contact in those conformations.

As for the next numerical example, let us consider the

case when b0 is not zero. One can find the twist–bend

coupling factor b0 to have the value such that b0 ¼ 2:4c0
[40]. In this case, the DNA is treated as an elastic rod with

anisotropic and coupled stiffnesses. In such a case, unlike

the isotropic rod case, the twist density along the backbone

curve is not constant any more. Hence one should include

this anisotropy in the determination of the free section

conformation. We employ the same end constraints as

described in the above isotropic cases. Then we apply our

method to describe the conformations of the free section

with nonzero b0. As a result, we have generated a set of 10

different conformations, including eight different ones,

which have the same linking numbers as in the isotropic

cases. We have shown the calculated physical parameters

in table 3. In figure 3, we show the conformations in both

the cases when b0 ¼ 0 or 2:4c0 are superimposed for

eight overlapping situations. Since we include the effect

of anisotropy, one can imagine that the resulting minimum

energy conformations should be different from those for an

isotropic case, which can be verified in figure 3, except the

cases when the number of base pairs is 341 and the number

of wraps is 1.70 for which isotropic and anisotropic

conformations are very similar. Looking at others, one can

see that the orientation of each loop is much different from

the isotropic case. Hence these may explain the effect of

anisotropy, which causes the difference of the resulting

loop conformations between the isotropic and the

anisotropic case when those loops share the same end

Table 2. Calculated physical values when b0 ¼ 0. In this table, N
represents the number of base pairs in the DNA, w is the number of times
DNAwraps around the cylindrical histone, Lk is the linking number of the
entire DNA and E is the elastic energy of the free section.

N (bp) W Lk Wr E (kcal mol21)

341 1.45 31 21.1631 6.7813
341 1.45 32 20.8127 6.5656
341 1.70 31 21.5440 6.5349
341 1.70 32 20.7031 10.9133
359 1.45 33 21.0524 4.9821
359 1.45 34 20.6050 8.1118
359 1.70 33 21.4462 6.5069
359 1.70 32 21.9324 9.1095

Figure 3. The superimposed conformations for different b0’s. We show
duplex-axis curve and double helix around the duplex-axis curve together
in this figure. The light line corresponds to the case when b0 ¼ 0 and the
heavy black line to the case when b0 ¼ 2:4c0. Below, N is the number of
base pairs in the DNA, w is the number of wraps of DNA around the
cylindrical histone and Lk is the linking number of the DNA. (a) N ¼ 341,
w ¼ 1:45, Lk ¼ 31; (b) N ¼ 341, w ¼ 1:45, Lk ¼ 32; (c) N ¼ 341,
w ¼ 1:70, Lk ¼ 31; (d) N ¼ 341, w ¼ 1:70, Lk ¼ 32; (e) N ¼ 359,
w ¼ 1:45, Lk ¼ 33; (f) N ¼ 359, w ¼ 1:45, Lk ¼ 34; (g) N ¼ 359,
w ¼ 1:70, Lk ¼ 33; and (h) N ¼ 359, w ¼ 1:70, Lk ¼ 32. Except (c) and
(d), the loop region, i.e. the free section of the DNA for each
conformation when b0 ¼ 2:4c0 does vary compared with the case when
b0 ¼ 0.

Table 3. Calculated physical values for b0 ¼ 2:4c0. In this table, all the
symbols have the same meaning as in the previous table.

N (bp) W Lk Wr E (kcalmol21)

341 1.45 31 21.0037 5.1342
341 1.45 32 20.9519 5.2822
341 1.70 31 21.5268 6.5340
341 1.70 32 20.5968 10.9784
359 1.45 33 20.9881 4.6762
359 1.45 34 20.9330 5.3949
359 1.70 33 21.5257 6.1629
359 1.70 32 21.5796 6.4107
341 1.45 33 20.1302 10.9081
359 1.70 34 21.4618 8.1228
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constraints. In any case, our results together with isotropic

and anisotropic cases explain the experiments that linking

number 32 and 31 are dominant when the number of base

pairs is 341 and 33 is dominant when the number of base

pairs is 359 as the work of Swigon et al. did [2,69].

Recent experimental data has been published on

conformations of DNA–histone complexes [70]. In that

work experiments for 11 different DNA’s were studied

with lengths from 351 base pairs to 366 base pairs and

wrapping numbers of either 1.40 or 1.75. The results from

two relaxation experiments show that the linking number

for all 11 is predominantly in the range from 32 to 34. As

another application of our method, we present the

corresponding computational results. All assumptions,

such as the HRL of the bound part and geometrical

parameters, are the same as in the previous example. One

difference between these simulations and the previous

ones is that the numbers of wraps are now w ¼ 1:40 and

1.75 rather than the old values of w ¼ 1:45 and 1.70. We

use these numbers because they are consistent with the

most recent experimental data [70]. The resulting

conformations are depicted in figure 4, in which we

show the superimposed conformations for the cases when

b0 ¼ 0 and 2:4c0 in eight different situations selected from
the entire results, of which the calculated parameters such

as linking number and elastic energy of the loop are shown

in table 4 for the isotropic case and in table 5 for the

anisotropic case. Our results show that from the minimum-

energy viewpoint, in both the isotropic and anisoptro-

pic/coupled cases, the linking numbers of 32 and 33 are

dominant when the number of base pair is around 350 ,
360 and that of 33 and 34 are dominant over 360, which is

the same as the experimental results. However, as can be

seen, the corresponding minimum energy conformations

predicted in the isotropic case and those in the

anisotropic/coupled case can be quite different.

Now we demonstrate how to perform normal mode

analysis with one exemplary case: the case of N ¼ 341,

w ¼ 1:45, Lk ¼ 32 in the first numerical example. In order

to perform normal mode analysis explained in Section 4,

we need physical parameters related to the extensibility, as

well as those used in inextensible rod model. As for the

stretching stiffness and stretch–twist coupling factor,

there is still some variability though one can see that those

are roughly in good agreements. For the purpose of

simulation, in this paper, we adopt the values published in

Refs. [46] or [47] such as the extension stiffness d ¼ 1100

(pN) and the stretch–twist coupling factor t ¼ 22kBT.

However, there have been no studies on determining the

values of shear stiffnesses of DNA molecules. For this

reason, since we model DNA as a thin elastic rod with

circular cross section, we assume that the rod has 0.3 as

Poisson’s ratio though this assumption is not true. Then we

obtain s1 or s2 ¼ d=2ð1 þ nÞ, where n denotes assumed

Poisson’s ratio. We use the same values in the previous

examples for the bending stiffness, torsional stiffness and

bending–twist coupling factor as in table 1. Another

parameters necessary for this simulation is geometrical

information on the circular rod. As is well known, the

radius of circular cross section of DNA is 1 nm. From this,

we can compute the circular cross-sectional area S ¼ pr 2

and the area moment of inertia Izz ¼ pr 4=4. The last

important parameter is mass density of a DNA chain. We

employ data shown in Ref. [52]. More specifically, total

weights of all the atoms in the cylindrical section whose

volume is pr 2ds, where the spacing between adjacent base

pairs ds ¼ 0:34 (nm), is 1:0960 £ 10224 (kg). This

enables us to compute uniform mass density of a DNA

rod.

Figure 4. The superimposed conformations for different b0’s for the
new experimental data. We show duplex-axis curve and double helix
around the duplex-axis curve together in this figure. The light line
corresponds to the case when b0 ¼ 0 and the black line to the case when
b0 ¼ 2:4c0. The symbols have the same meaning as in previous figures.
(a) N ¼ 353, w ¼ 1:40, Lk ¼ 33; (b) N ¼ 354, w ¼ 1:75, Lk ¼ 33; (c)
N ¼ 356, w ¼ 1:40, Lk ¼ 33; (d) N ¼ 358, w ¼ 1:75, Lk ¼ 33; (e)
N ¼ 361, w ¼ 1:40, Lk ¼ 34; (f) N ¼ 362, w ¼ 1:75, Lk ¼ 34; (g)
N ¼ 363, w ¼ 1:40, Lk ¼ 34; and (h) N ¼ 366, w ¼ 1:75, Lk ¼ 34.
Except (c), the loop region, i.e. the free section of the DNA for each
conformation when b0 ¼ 2:4c0 does vary compared with the case when
b0 ¼ 0.

Table 4. Calculated physical values for b0 ¼ 0 for the new
configuration. In this table, all the symbols have the same meaning as
in the previous table. We only show eight different configurations.

N (bp) W Lk Wr E (kcalmol21)

353 1.40 33 20.8729 5.2214
354 1.75 33 21.2559 10.4960
356 1.40 33 20.9422 4.4306
358 1.75 33 21.4987 7.2721
361 1.40 34 20.7874 6.5229
362 1.75 34 20.6601 11.5992
363 1.40 34 20.8549 5.2834
366 1.75 34 21.3865 8.8330
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There is one practical issue for normal mode analysis of

a DNA chain molecule. Even if we approximate a DNA

molecule with a elastic rod, there should be a practical

limit on the normal modes. That is to say, the smallest

wavelength, equivalently the wavelength of the highest

normal mode, should not be smaller than double the

spacing between adjacent base pairs, 2 £ ds. Let nlim
denotes the maximum limit of n. From our formulation,

we can get 4n normal modes. Since we assume sine

functions, the relation for determining nlim should be

nlim ,
L

4ds

where L denotes the total length of DNA in a free section.

Since we only have minimum energy conformations by

means of inextensible rod modeling, what we have is

information on the angular velocity vEðsÞ along a curve.

In order to apply normal mode analysis to this inextensible

rod model, we assume that jEðsÞ ¼ ½vT
EðsÞ; 0; 0; 1�

T,

because the tangent vector along a curve should be

½0; 0; 1�T due to the inextensibility. Note that we could

generate very similar minimum energy conformations

with extensible rod modeling. However, the fact is that jE
from the extensible rod model does not match exactly with

½vT
E; 0; 0; 1�

T from the inextensible rod model. Also when

it comes to normal mode analysis, the knowledge of

stiffness parameters may affect the determination of each

mode. All these together may lead to different mode

shapes and frequencies. We believe that after possessing

accurate stiffness parameters regarding extensibility, we

can evaluate normal modes more accurately. For now, we

utilize minimum energy conformations from inextensible

rod modeling. Another advantage of using the extensible

rod model is that it can incorporate the sequence-

dependent elastic properties by treating these stiffnesses as

functions of arclength to analyze the deformation such as

rise, slide and shift as done in [53–55].

In figures 5 and 6, we show some of exaggerated normal

modes in the case of isotropic and anisotropic rod

modeling, respectively. Generally one can see the

expected normal modes that can be inferred from non-

chiral elastic rod cases, such as bending modes. However,

those two cases show some differences in each normal

mode shapes. First, looking at the lowest modes, the

Figure 5. Some of exaggerated normal mode shapes when DNA is
treated as an isotropic rod. (a) The first mode shape; (b) The second mode
shape; (c) The third mode shape; (d) The fourth mode shape; (e) The
seventh mode shape; and (f) The 15th mode shape. The light line
corresponds to the minimum energy conformation and the black line to
each mode shape. We show only duplex-axis curve here.

Table 5. Calculated physical values for b0 ¼ 2:4c0 for the new
configuration. In this table, all the symbols have the same meaning as in
the previous table. Only eight different configurations are shown.

N (bp) W Lk Wr E (kcal mol21)

353 1.40 33 20.9381 4.6305
354 1.75 33 21.5655 7.0435
356 1.40 33 20.9466 4.4347
358 1.75 33 21.5829 6.3217
361 1.40 34 20.9289 4.7634
362 1.75 34 21.5601 7.3264
363 1.40 34 20.9348 4.5247
366 1.75 34 21.5775 6.4216

Figure 6. Some of exaggerated normal mode shapes when DNA is
treated as an anisotropic rod. (a) The first mode shape; (b) The second
mode shape; (c) The third mode shape; (d) The fourth mode shape; (e)
The seventh mode shape; and (f) The 15th mode shape. The light line
corresponds to the minimum energy conformation and the black line to
each mode shape. We show only duplex-axis curve here.
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isotropic rod case has more global motions than the

anisotropic rod case. A few lowest modes in the isotropic

rod case are similar to swinging of a loop, whereas that in

the anisotropic rod case is not. Secondly, the normal

modes of an anisotropic rod exhibit more coupling

between bending and twisting modes. Comparing two

figures, one can see that the seventh mode of an isotropic

rod is similar to the first mode of an anisotropic rod, which

means that the anisotropic rod is dynamically stiffer than

the isotropic rod. These are possibly due to the effect of

twist–bending coupling. From this, we can infer that

twist–bending coupling has an influence on the dynamical

properties, which shows the possibility of its existence. A

better knowledge of stiffness parameters may help to

reveal more accurate dynamical phenomena of chiral

polymer structures.

It is worth noting that we can make use of normal mode

analysis as a criterion of whether the minimum energy

conformation is truly energy-minimal one. Specifically, if

some of eigenvalues are complex, then one can say that the

corresponding minimum energy conformation is not a

truly stable or energy-minimized one.

6. Conclusions

Amethod for obtaining the minimal energy conformations

of stiff polymers with end constraints has been presented in

this paper. This method is general enough to include any

stiffness and chirality parameters in the context of elastic

filament models either inextensible or extensible/shear-

able. A variational calculus formulation is used in

conjunction with concepts from the theory of Lie groups

and Lie algebras. Differential equations that describe the

shapes of end-constrained polymers are derived. These

equations evolve on the group of rotations and rigid-body

motions. A general solution technique has also been

presented, including a new “inverse kinematics” procedure

for enforcing end constraints. With the minimum energy

conformations determined by the aforementioned method,

we have described how to perform normal mode analysis.

The extensible rod model has been used for normal mode

analysis. We have verified our method with appropriate

numerical examples by reproducing results of others for the

case of isotropic bending stiffness and no twist–bending

coupling. We have also demonstrated that our method can

be applied to the anisotropic model with finite twist–

bending coupling. By comparing the results of anisotropic

case with those of isotropic cases, we have shown that the

anisotropic DNA stiffness model with twist–bending

coupling may generate conformations which are different

from the isotropic case. With our method, we also verified

the other experimental results published. If one wants to

find the equilibrium or average conformation over the

entire of all possible conformations, then one could apply

the methods in this paper to multiple solutions of the

Euler–Poincaré equation, perform normal mode analysis

on each and weight results by an appropriate Boltzmann

factor. We have also performed normal mode analysis with

a specific example. We have shown that in case of treating

DNA as an anisotropic chiral rod, bending modes mostly

tend to be coupled with torsional modes given end

constraints possibly due to the influence of twist–bending

coupling. By comparing the resulting normal modes of two

different cases, we have suggested that first the anisotropy

of DNA structure makes its structure dynamically stiff

and there might exist twist –bending coupling in

DNA structure, which has not yet been detected

experimentally. Future work includes the determination

of stiffness parameters related to the extensibility and

incorporating sequence-dependent properties into the

extensible rod model, etc.
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Appendix A: Variational calculus on Lie groups

The calculus of variations is a method that is commonly

used in classical mechanics to find paths which extremize

functionals subject to boundary and other conditions. In

the current context, the functional of interest is equation

(9) for inextensible rods and equation (11) for extensible

rods. If one parameterizes rotations using Euler angles,

then both of these energy functions become functions of

Euler angles and their rates and classical variational

calculus can be used to obtain the necessary conditions for

minimum energy conformations (without accounting for

contact) [71]. However, the Euler angles (as well as every

other three-parameter description of orientation) artifi-

cially introduce singularities in the problem. For this

reason, we use a coordinate-free group-theoretic modifi-

cation of variational calculus. This formulation is

particularly natural in the current context because the

conformation of an inextensible elastic rod bears a one-to-

one correspondence with a path in the rotation group

SOð3Þ and that of an extensible elastic rod with a path in

the rigid-body motion group SEð3Þ.

The elastic energy in equation (9) is an example of a

more general functional of the form

J ¼

ðt2
t1

f ðg; g21 _g; tÞ dt ðA1Þ

where gðtÞ is an element of a matrix Lie group G (see Ref.

[64] for definition). In particular, we assume g [ RN£N

and it has n generators (i.e. it is an element of an

n-dimensional group represented as an N £ N matrix). The

identity element is the N £ N identity matrix, I and any

small motion around the identity can be expressed as

gsmall ¼ Iþ
Xn
i¼1

giEi ðA2Þ
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where jgij ! 1 and Ei is a unit basis element of the Lie

algebra G, which is also represented as an N £ N matrix.

For small deviations from the identity, g21
small < I2Pn

i¼1 giEi. Furthermore, exponentiation of any linear

combination of Lie algebra basis elements results in an

element of the Lie group G and equation (A2) can be

viewed as the truncated version of this exponential for

small values of gi.

Given a functional of the form equation (A1) and

constraint equations of the formðt2
t1

hkðgÞ dt ¼ Ck ðA3Þ

one can use the structure of the Lie groupG and Lie algebra

G to find a natural analogue of the Euler–Lagrange

equations. Only in this context, the concept of addition

(which was used heavily in the classical deviations of

variational calculus) is replaced by the group law and

certain operations in the Lie algebra. In particular, the

analogue of xi ! xi þ aie i for i ¼ 1; . . . ; n in the classical
variational calculus is

g! g + exp
Xn
i¼1

aie iEi

 !
< g+ Iþ

Xn
i¼1

aie iEi

 !

where expð·Þ is the matrix exponential and g1+g2 is simply

matrix multiplication(which will be written as g1g2
henceforth). The product rule of elementary calculus then

dictates that

_g!
d

dt
gðIþ

Xn
i¼1

aie iEiÞ

 !
¼ _g Iþ

Xn
i¼1

aie iEi

 !

þ g
Xn
i¼1

ai _e iEi:

Substituting these into the functional (A1) and

incorporating the constraint (A3) using Lagrange multi-

pliers, the goal becomes the minimization of

J 0ða1; . . . ;an;l1; . . . ;lmÞ

¼

ðt2
t1

f g Iþ
Xn
i¼1

aie iEi

 !
; I2

Xn
i¼1

aie iEi

 ! 

� g21 _gþ
Xn
i¼1

ai{e i _gþ _e ig}Ei

 !
; t

!
dt

þ
Xm
k¼1

lk

ðt2
t1

hk g Iþ
Xn
i¼1

aie iEi

 !
; t

 !
dt2Ck

 !
ðA4Þ

In analogy with classical variational calculus, we

compute

›J 0

›ai

jai¼0 ¼ 0 ðA5Þ

and

›J 0

›lj
¼ 0 ðA6Þ

for i ¼ 1; . . . ; n and j ¼ 1; . . . ;m. Equation (A6) is

nothing more than equation (A3).

By defining f 0 ¼ f þ
P

k lkhk, one finds that the

integration by parts and using the localization argument

on equation (A5) produces the following ordinary

differential equations:

ER
i f

0 þ 7g21 _g f
0; ½g21 _g;Ei�

� �
2

d

dt
7g21 _g f

0;Ei

� �
¼ 0

ðA7Þ

where for any function F [ C1ðGÞ

ER
i FðgÞ W

d

dt
Fðg + expðtEiÞÞjt¼0 ðA8Þ

is the ‘right’ derivative of F with respect to the ith Lie

algebra basis element. ½·; ·� is the Lie bracket (which in this
case is the matrix commutator ½A;B� ¼ AB2 BA). 7X is a

directional derivative in the Lie algebra in the direction

X [ G. And ð·; ·Þ is the inner product for the Lie algebra G
such that ðEi;EjÞ ¼ dij.

By observing that for any Lie group (not only SOð3Þ or

SEð3Þ), we can define j ¼ ðg21 _gÞ_, then

½g21 _g;Ei� ¼
Xn
j¼1

jjEj;Ei

" #
¼
Xn
j¼1

jj½Ej;Ei�

¼
Xn
j¼1

jj 2
Xn
k¼1

Ck
ijEk

 !
;

ð7g21 _g f ;EiÞ ¼
Xn
j¼1

›f

›jj
Ej;Ei

 !
¼
Xn
j¼1

›f

›jj
ðEj;EiÞ

¼
›f

›ji
;

and

7g21 _g f ; ½g
21 _g;Ei�

� �
¼

Xn
l¼1

›f

›jl
El;2

Xn
j;k¼1

jjC
k
ijEk

 !

¼ 2
Xn
j;k;l¼1

›f

›jl
Ck
ijjjðEl;EkÞ

¼ 2
Xn
j;k¼1

›f

›jk
Ck
ijjj:

Equation (A7) can then be written in terms of the

functions f and hk as

d

dt

›f

›ji

� �
þ
Xn
j;k¼1

›f

›jk
Ck
ijjj ¼ ER

i ð f þ
Xm
l¼1

llhlÞ ðA9Þ
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This is a modified version of the Euler–Poincaré equation

[57,58,72–74].
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