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Abstract— A self-replicating robot is one that has the ability
to actively assemble basic components or subsystems to form
an exact functional copy of itself. Measures of reliability
and task complexity for modular self-replicating systems are
introduced and applied here to a physical prototype. We
define a reliability ratio based on the probability that a robot
successfully replicates itself. In order to quantify the task
complexity of the replication process, the amount of Sanderson’s
parts entropy that is reduced during the replication process
is computed. A fully automated self-replicating robotic system
composed of six subsystems with distributed electronics is
presented to demonstrate the concept of robotic self-replication.
The reliability ratio and task complexity are computed for this
prototype.

I. INTRODUCTION

John von Neumann [1] developed the first theoretical

framework for self-replicating machines in the early 1950s.

His concepts of self-replicating systems have been applied

in many research areas such as cellular automata, nanotech-

nology, macromolecular chemistry and computer simulations

[2]. The first mechanical implementation was presented by

Penrose [3],[4]. He showed that simple units or blocks with

certain mechanical properties could build a self-reproducing

machine (referred to as the Penrose block replicator [5]

throughout this paper), and demonstrated the assembly of

passive elements under external vibration.

A few decades later, NASA became interested in self-

replicating robots as a potential means for space development

and exploration [5], with the long-term goal of constructing

self-replicating factories on the moon [6]∼[8]. More recent

research includes self-assembly, self reconfiguration and self-

repair of modular robots. Algorithms for self-assembly using

modular robots were described by Murata [9]. Tomita ([10],

[11]) and Yim [12] presented physical prototypes of self-

reconfigurable modular robotic systems. A centralized con-

trol algorithm was introduced and simulated [13], featuring

a filter that checks for any isomorphism between the given

state and the known states and then finds an appropriate

mapping. In addition, self-replicating modular cubes with the

self-replication capability were introduced [14]. A distributed

algorithm for self-replicating modular robots and a rein-

forcement learning approach to learning self-reconfigurable

modular robots were developed [16], [17].

Recently, our lab has built several prototypes in order

to develop and demonstrate the concept of robotic self-

Kiju Lee is with the Department of Mechanical Engineering at Johns
Hopkins University, Baltimore, MD 21218, USA. kiju@jhu.edu

Gregory S. Chirikjian is with the Department of Mechanical En-
gineering, Johns Hopkins University, Baltimore, MD 21218, USA,
gregc@jhu.edu

replication and uncover hardware limitations. Robotic self-

replication is viewed as a process in which an initial

functional robot assembles several man-made subsystems

and builds a functional replica. The first generation of our

lab’s prototypes are called semi-autonomous self-replicating

robots [18], [19]. These prototypes are remote-controlled

and contain a microprocessor-based controller in each sys-

tem. We then developed a fully autonomous self-replicating

robotic system in a structured environment [20]. In a sub-

sequent study [21], barcode labels were added to the track

design, which enable the robot to distinguish between sub-

systems by reading the barcode on each location where a

subsystem is placed. Each of the systems has LEGOTM

RCX controller in one of its subsystems. The distinction

between a semiautonomous and a fully autonomous system

is made by whether human intervention is needed during the

self-replication processes or not.

Although several prototypes have been developed, there

was no proper measure to evaluate robotic systems in terms

of the reliability and complexity of the self-replication pro-

cess. A metric of self-replicability was presented by Adams

and Lipson [15], but it was not applicable to physical

systems. In this paper, we introduce a reliability ratio based

on the probability that a system successfully replicates itself,

and a measure of task complexity to be performed by self-

replicating modular robots. A prototype is also presented to

demonstrate the concept and to apply the developed mea-

sures. The physical prototype is composed of six subsystems

that are simple electromechanical parts. In order to keep

the subsystem complexity low, the necessary circuitry is

divided into the number of subsystems, instead of devising

a microprocessor-based controller. The system has no com-

puter or microprocessor, and demonstrates a higher degree of

self-replication (in the sense that the number of subsystems

to assemble is larger) than our previous prototypes with

microprocessor-based controllers [20], [21].

II. MEASURES FOR SELF-REPLICATING SYSTEMS

A simple architecture for robotic self-replication can be

represented with three sets of physical components:

S = (R, M, E)

where R is a multiset1 of initial functional robots, M is

a multiset of subsystems (resources) to be used to form a

replica and E is a multiset of environmental structures. A

1In mathematics, a multiset differs from a set in that each member can
have multiplicity. For example, {a, a, b, b, b, c} is a multiset.



Fig. 1. Example1:self-replication process with n subsystems represented
by a directed graph.

robotic replication function, Φ, is defined such that Φ : S →
S′ where S′ = (R′, M′, E′) satisfying |R| < |R′| (where | · |
denotes the size of the set). An initial robot, or collection

of robots, has sufficient functionality to build a copy of

itself from provided resources. If there exists an external

constructor that actively participates in the self-replication

process, then R is not viewed as a self-replicating system

even if R takes action in the production of a replica of R.

The structured environment may hold important informa-

tion for a functional robot and play the role of the ‘written

instructions’ in the von Neumann’s model. In this case, the

functionality of the robot may be reduced by the amount

of information embedded in the environmental structures.

If an environment is just an open space, i.e. there is no

environmental structures built by human (or a constructor),

then we consider E = ∅, the empty set. The set of envi-

ronmental structures, E, can be categorized as follows: (1) a

completely structured environment when E = E′ 6= ∅ and E

is a strictly ordered set (i.e. no environmental structure can

be either replaced or permuted), (2) a partially structured

environment when E 6= E′, or when E is a partially ordered

or unordered set (i.e. either a robot actively changes its envi-

ronment during self-replication, or environmental structures

have some flexibility on their locations without affecting to

self-replication process) and (3) an unstructured environment

when E = E′ = ∅.

A. Reliability Ratio

In many cases, robotic self-replication or self-assembly

is made by a step-by-step procedure. This procedure often

include some repeated tasks. For example if a robotic system

replicates itself by collecting n parts one by one, then the

robot may repeat the similar process n times. For those kinds

of systems, we can estimate the probability of the system

to replicate successfully from given individual probabilities

for distinctive tasks. The probability of each distinctive task

is obtained by experiments. Fig. 1 shows an example of a

simple self-replication process. The initial robot assembles n

parts in a certain order. The node i represents the completion

of assembling the ith part, and the weighted edge shows the

time required from node i − 1 to node i, which is denoted

by ti−1,i. The probability that the robot assembles the ith

part successfully given that the first i − 1 parts are already

assembled is denoted by pi−1,i.

We define the reliability ratio as the probability that a

robot can assemble every subsystems correctly to build a

replica. In the case of Fig. 1, if each step is statistically

independent from the others, the reliability ratio is computed

Fig. 2. Example2: if the robot fails to collect any of the first k subsystems,
then it repeats the procedure until it completes the process successfully

as

Ks =
n∏

i=1

pi−1,i (1)

where 0 < Ks ≤ 1. If Ks = 0, then the system is not

able to self-replicate. One can design a robotic system to

repeat the same task when it fails. In this case, in general,

the reliability ratio of a system can be increased given more

time. Fig. 2 shows an example that a robot is allowed to

repeat failed procedures for the first k steps. We note that

pi−1,i = 1−pi−1,i and ti,i is the time for the robot to return

to the previous stage. If the robot fails to collect the jth

subsystem for j ≤ k, pj−1,j goes to 1 as t goes to ∞. Given

unlimited time and energy, the reliability ratio for the system

in Fig. 2 is

Ks|∞ =
n∏

i=k+1

pi−1,i. (2)

For given t, such that ts ≤ t ≤ ∞, Ks is bounded as

Ks|ts
≤ Ks|t ≤ Ks|∞

where ts =
∑n

i=1
ti−1,i. The equalities hold when a robot

is not allowed to repeat the failed process or a robot never

fails.

The reliability ratio provides an estimate (or at least upper

and lower bounds) on the success ratio of a self-replication

process for a given amount of time by testing individual steps

rather than performing many experimental trials of the whole

procedure. Once we get the success ratio of each step from

partial experiments, we can compute lower and upper bounds

on Ks. If the time-efficiency is the main consideration,

then a higher value of Ks|ts
for a minimum ts would be

desirable. In that case, the optimal trajectory of the robot

during the self-replication process and high sensing accuracy

are important factors to achieve a high time-efficiency. If

the reliability is the main consideration rather than time,

then by designing the process to have closed loops at each

step, i.e. the system will return to one of the previous steps

when it fails to go to the next step, the system would obtain

Ks|∞ → 1.2

In biology, self-replication processes are much more com-

plicated than that in robotic systems and often include

parallel procedures and random factors. Also in robotic

systems, if a robot replicates by a random process (e.g. a self-

replication made by an external agitation of a box containing

subsystems), then we cannot determine the reliability of the

2In fact, the robot cannot run for t = ∞. Therefore the maximum running
time will depend on the lifetime of the robot, and Ks|∞ may be viewed
as the maximum reliability ratio of the system for its lifetime.



system with the presented method. Otherwise, for a modular

self-replicating system in which a self-replication process is

viewed as a step-by-step procedure, and the success ratio of

each step is measurable by experiments, the reliability ratio

can be computed for the total self-replication process over

time.

B. Task Complexity

The number of tasks (or amount of work) done by a robotic

system during a self-replication process varies according to

each system. From an information theoretic point of view,

robotic self-replication can be viewed as a process reducing

uncertainty on unassembled parts by collecting and assem-

bling them to make a functional copy of an initial robot. All

machinery associated with control and manipulation during

the process is solely made by an initial robot. Then, how

can we quantify the difficulty of tasks done by a robot for

self-replication? We compute the entropy reduction made

by self-replication using Sanderson’s parts entropy concept

[22]. The parts entropy for subsystems before self-replication

and that after self-replication are calculated and compared

to get difference between two results. This difference tells

the amount of uncertainty reduced by the self-replication

process, and we call this as the task complexity of the system.

Entropy is a useful statistical measure that can be ad-

dressed by a modular system or a self-replicating (or self-

assembly) system. Given a discrete space consisting of points

x1, · · · , xn, and a discrete probability distribution fi = f(xi),
such that

∑
i fi = 1, the corresponding discrete entropy is

defined as

Hx = −
∑

xi

f(xi)logf(xi). (3)

A property of discrete entropy is that Hx ≥ 0. For a

uniform probability density distribution, i.e. f(xi) = 1

n
for

i = 1, · · · , n, Eq. (3) is simply computed as

Ĥx = log n.

According to the parts entropy concept for robotic as-

sembly planning described in [22], for an object on the

2-dimensional plane, its positional and orientational uncer-

tainty can be described as a joint probability distribution

f(x, y, θ). In the case when x, y, and θ are statistically inde-

pendent, f(x, y, θ) = f(x)f(y)f(θ), and the part entropy for

the ith subsystem is given by Hi = Hi(x)+Hi(y)+Hi(θ).
For n objects, the total entropy can be computed as

H =
n∑

i=1

Hi. (4)

For a self-replicating system in a structured environment,

each subsystem is located properly in a structured environ-

ment with some tolerance. If the pose of the ith subsystem,

denoted as gi = (xi, yi, θi), is bounded by xi ∈ [0, ai],
yi ∈ [0, bi] and θi ∈ [0, ci], the tolerance is given by

δgi = (ai, bi, ci).

Assuming that the variables are statistically independent, the

part entropy of this subsystem in a structured environment

is

Hi = −
αi∑

j=1

fj(xi)log2fj(xi) −

βi∑

k=1

fk(yi)log2fk(yi)

−

γi∑

l=1

fl(θi)log2fl(θi)

where, for some positional accuracy εp and rotational accu-

racy εr,

αi =
ai

εp

; βi =
bi

εp

; γi =
ci

εr

.

The objects may each have different tolerance values. Thus,

the tolerance for each object and the part entropy should be

computed individually. The total parts entropy of n objects

in a structured environment is H =
∑n

i=1
Hi. In general, if

we do not allow overlapping of the objects, then the total

parts entropy will be slightly smaller. Neglecting overlap

makes the entropy computation much simpler, so we make

the assumption that the reduction in entropy resulting from

preventing overlap is negligible when the number of parts is

small compared to the size of the environment.

Now we compute the parts entropy when all the subsys-

tems are assembled. If the ith subsystem has some tolerance

when it is assembled, δg′i = (δx′

i, δy
′

i, δθ
′

i), such that

δx′

i < δxi; δy′

i < δyi; δθ′i < δθi

for all i = 1, · · · , n, then the part entropy of the ith object

is computed by

H ′

i = −

α′

i∑

j=1

f ′

j(x
′

i)log2f
′

j(x
′

i) −

β′

i∑

k=1

f ′

k(y′

i)log2f
′

k(y′

i)

−

γ′

i∑

l=1

f ′

l (θ
′

i)log2f
′

l (θ
′

i)

where

α′

i =
δx′

i

εp

; β′

i =
δy′

i

εp

; γ′

i =
δθ′i
εr

.

If there is no overlapping allowed, the total parts entropy

of the system after assembly process is given by H ′ =∑n
i=1

H ′

i .

We define the task complexity of a robotic system as the

entropy reduction by the assembly process, such as

∆H = H − H ′. (5)

If a system is capable of self-replication in an unstructured

environment, we compute the parts entropy for the subsys-

tems randomly placed in a bounded area and compare it to

the parts entropy when the subsystems are assembled. The

entropy reduction by the structured environment is smaller

and therefore the entropy reduction by the assembly process

should be bigger in a less-structured environment than that

in a more-structured environment.



Fig. 3. A self-replicating robot: front-side views of the prototype ((a),(b))
and (c) six subsystems unassembled.

TABLE I

COMPONENTS IN EACH SUBSYSTEM

Module Components

M1 Line tracking circuit/metal detector

M2 Line tracker sensor

M3 Motor driver circuit/left motor

M4 Barcode reader/right motor

M5 Power supply/3 contact sensors/touch sensor

M6 State machine/3 contact sensors

We note that εp and εr must be carefully chosen to satisfy

that

εp ≤ min{δx, δy}; εr ≤ min{δθ}

where min{δx, δy} and min{δθ} are the smallest value of

the positional tolerance and the rotational tolerance.

III. PHYSICAL PROTOTYPE

We present a robot prototype demonstrating robotic self-

replication from several prefabricated subsystems. The robot

(Fig.3) consists of six subsystems. Mechanical and electrical

connections among the subsystems are made through perma-

nent magnets and spring/metal contacts. Components in each

subsystem are listed in Table I. The trajectory of the robot is

determined by the track and 12 landmarks (6 barcodes and 6

metal contact codes). The self-replication process of the pro-

totype over the lapse of time is shown in Fig. 6. The robotic

self-replication of this prototype can be represented by R =
{(M1 + · · · + M6)}, M = {M1,M2,M3,M4,M5,M6} and

E = {tracks, 6 barcodes, 6 contact codes, wall, metal line}
with a self-replication function Φ: S →S′, where R′ =
{(M1 + · · ·+ M6), (M1 + · · ·+ M6)}, M′ = ∅ and E′ = E.

Thus we have |R| = 1 and |R′| = 2.

A. Reliability Ratio

The self-replication process is composed of six similar

procedures (collecting six subsystems) and each procedure

has two different steps, reading a barcode and detecting

Fig. 4. Directed graph representing the self-replication process. The steps
that the robot can repeat the process when it fails are indicated with blue
edges. The time required for returning process is about 180 [sec].

contact patches. Thus the total procedure can be represented

by 12 independent steps as shown in Fig. 4. In order to

estimate pm and pb, we performed 20 trials for each metal

contact sensor or barcode reader. The robot failed to read or

misread the metal contact code twice and failed to detect

the barcode once among each 20 trials. The experiments

are made in the same structured environment for reading

a specific barcode or contact code. Based on experimental

data, we have pb = 0.95, the probability for the robot to read

the barcode correctly, and pm = 0.9, the probability for the

robot to read the metal contact code correctly. We assume

that the probability for the same kind of sensors to read the

information embedded in the environment is the same.

If the robot fails in reading any barcode, it returns to the

previous step after making a full round around the outer

track. This processes are marked with blue directed loops in

Fig. 4. The time required to return to the previous step is tr =
180[sec]. If the robot replicates without missing any barcode,

then the time required for this process is ts = 718[sec]. Each

step in the graph is independent each other, therefore, the

reliability ratio of the system for given t = ts is computed

as

Ks|ts
= (pm)6 · (pb)

6 = 0.3907.

The reliability ratio in general increases over time. If the

given time is t = ts + tr, the success ratio is increased

because if the robot fails to read one of the barcodes, it is

allowed to come back and try to read it once again. There

the reliability ratio is computed as

Ks|t = Ks|ts

{
1 +

〈
6
1

〉
pb

}
,

where

〈
n

k

〉
is the multiset coefficient given by

〈
n

k

〉
=

(n + k − 1) · · · (n)

k!
.

For t = ts + n · tr,

Ks|t = Ks|ts

n∑

i=0

〈
6
i

〉
pb

i

and for given t = ∞, we can simply calculate the reliability

ratio as

Ks|∞ = (pm)6 · 16 = 0.5314.

Fig. 5 shows a graph of Ks vs. t. Ks increases for given

more time t, and converges to Ks|∞ for t ≥ 1258[sec].



Fig. 5. The green square boxes indicate Ks|t for t=718:180:2338[sec]. The
red line (connecting the values of Ks) converges to the maximum reliability
ratio, Ks|∞, for a given time t ≥1258[sec].

B. Task Complexity

Now we compute the task complexity of the system.

Subsystems are not identical in size and shape, and therefore

the tolerance for each subsystem is obtained from experi-

mental observation. The tolerance of each subsystem in the

structured environment is given by

δg1 = δg2 = (55, 13, 0.30); δg3 = (40, 13, 0.20);

δg4 = (40, 13, 0.10); δg5 = δg6 = (45, 13, 0.20)

where δgi = (xi[mm]3, yi[mm], θi[radian]). Each subsystem

is assumed to have a uniform probability distribution within

the tolerance. In addition to possible positions and orienta-

tions within the tolerance, there are 6! possible permutations

to place subsystems in the environment. As shown in the

first picture in Fig. 6, six subsystems are initially located in

six spots in the environment. Therefore, the entropy resulting

from the permutations must be included in the parts entropy.

For εp = 0.5 and εθ = 0.01, the total parts entropy of the

system in a structured environment is computed as

Ĥ =
6∑

i=1

Ĥi + Ĥperm ' 102.97.

The assembled subsystems have a fairly small tolerance of

δg′i = (1, 1, 0.01) for all i = 1, · · · , 6, then the parts entropy

for an assembled subsystem is Ĥ ′

i = log22+log22+log21 =
2 for a uniform distribution. The total parts entropy for the

assembled subsystems is Ĥ ′ = 2×6 = 12, and therefore the

task complexity of the prototype, is given by

∆H = Ĥ − Ĥ ′ ' 90.97.

C. Discussion

The reliability ratio can be applied to any modular self-

replicating or assembly system if the self-replication process

can be represented by a directed graph and the probability of

each step can be computed or given by experiments. If the

3[mm]=[millimeter]

self-replication procedure is not composition of independent

events, then the computation for the reliability ratio would

be much more complicated than the prototype presented.

We computed the task complexity under the assumption

that the probability density functions (pdfs) are uniform

within the tolerance and there is no overlapping among

subsystems. In the prototype, initial locations for six sub-

systems are far from each other, so the assumption of no

overlapping is true in this case. In general, however, pdfs

may not be uniform and some entropy reduction may occur

by prohibiting overlapping among subsystems.

As an example of other self-replicating systems, we con-

sider the Penrose block replicator [3] composed of two

simple blocks A and B with certain mechanical properties.

The initial system (A+B) in a box containing A’s and B’s

replicate copies of itself with random agitation applied to the

box. We can draw a simple graph with two vertices named

‘start’ and ‘end’. Ks can be obtained by experiments, such

that for varying t,

Ks|t =
|successful self-replication in time t|

|total trials|
.

We assume that the size of the box containing parts is

given by x ∈ [0, 1000]. For ε = 0.5 and for a uniform

distribution, the parts entropy for two blocks is given by

H = 2 log2 1000 ' 21.93. If the parts entropy when two

blocks are assembled is simply zero, then ∆H ' 21.93.

One of our previous prototypes [21] is composed of

five subsystems with an LEGOTM RCX controller in one

of subsystems. For the same εp and εr, the initial parts

entropy before self-replication is about 50.80 and that after

self-replication is 20. Therefore, the task complexity of

the RCX system is computed as ∆H = 30.80. Without

any data obtained by experiments on this prototype, we

cannot compute Kc for this system. Only from the provided

information in [21], the process collecting one subsystem

is made by (reading barcode indicating each subsystem),

(reading barcode leading the robot to the center of the

track), (reading barcode indicating the location to release

the collected subsystem). The robot repeats this process until

it assembles all four subsystems (except of one subsystem

originally placed at the center where the replica is made).

Therefore, if the probability of the robot to read a barcode

is given by experiments, then we can estimate the overall

success ratio (the reliability ratio) of the system over time.

IV. CONCLUSION

Measures of reliability and task complexity were presented

and applied to a physical prototype consisting of six prefab-

ricated subsystems. The prototype autonomously replicates

a copy of itself by assembling six subsystems located in a

partially structured environment. Although the environmental

structures hold important information about subsystem loca-

tions and the robot’s trajectory, all actions associated with the

self-replication process are made solely by the initial robot.

Much work remains in developing systems capable of self-

replication in a less-structured or unstructured environment.



Such systems would increase adaptability to the environment,

as well as overall system robustness.
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Fig. 6. Self-replication process: the red circles indicate initial locations of
six subsystems and the blue rectangle is the station where the replica will
be assembled.


