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A Jacobian-Based Algorithm for
Planning Attitude Maneuvers
Using Forward and Reverse
Rotations
Algorithms for planning quasistatic attitude maneuvers based on the Jacobian of the
forward kinematic mapping of fully-reversed (FR) sequences of rotations are proposed in
this paper. An FR sequence of rotations is a series of finite rotations that consists of initial
rotations about the axes of a body-fixed coordinate frame and subsequent rotations that
undo these initial rotations. Unlike the Jacobian of conventional systems such as a robot
manipulator, the Jacobian of the system manipulated through FR rotations is a null
matrix at the identity, which leads to a total breakdown of the traditional Jacobian
formulation. Therefore, the Jacobian algorithm is reformulated and implemented so as to
synthesize an FR sequence for a desired rotational displacement. The Jacobian-based
algorithm presented in this paper identifies particular six-rotation FR sequences that
synthesize desired orientations. We developed the single-step and the multiple-step Jaco-
bian methods to accomplish a given task using six-rotation FR sequences. The single-step
Jacobian method identifies a specific FR sequence for a given desired orientation and the
multiple-step Jacobian algorithm synthesizes physically feasible FR rotations on an op-
timal path. A comparison with existing algorithms verifies the fast convergence ability of
the Jacobian-based algorithm. Unlike closed-form solutions to the inverse kinematics
problem, the Jacobian-based algorithm determines the most efficient FR sequence that
yields a desired rotational displacement through a simple and inexpensive numerical
calculation. The procedure presented here is useful for those motion planning problems
wherein the Jacobian is singular or null. �DOI: 10.1115/1.3007903�

Keywords: attitude control, fully-reversed sequences of rotations, noncommutativity of
finite rigid rotations, Jacobian algorithm, inverse kinematics, motion planning
Introduction

A Jacobian-based algorithm to specify the orientation of a free
igid body undergoing fully-reversed �FR� sequences of rotations
s presented in this paper. An FR sequence of rotations is defined
s a series of rotations that consists of a series of initial forward
otations about the axes of a coordinate frame attached to a rigid
ody and a series of subsequent rotations that reverse the preced-
ng forward rotations �1–4�. Since finite rotations of a rigid body
re not commutative, finite FR rotations lead to a net orientation
hange of the rigid body.

The non-commutative property of finite rigid rotations is illus-
rated in Fig. 1. The cube in Fig. 1 undergoes successive rotations
f 90 deg about the axes x, y, z, −x, −y, and −z. The orientation of
he cube at the end of this fully-reversed operation is not the same
s its initial orientation. We exploit six-rotation FR sequences of
otations to achieve a net orientation change of a rigid body be-
ause six-rotation FR sequence has sufficient degrees of freedom
hat are required to synthesize any possible orientations of the
igid body. Six-rotation FR sequences are composed of three ini-
ial forward rotations and three subsequent rotations in the reverse
irections. The FR operation shown in Fig. 1 is an example of a
ix-rotation FR sequence. In this paper, we are concerned with
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planning a correct FR sequence to re-orient the body to a desired
orientation. The dynamics of the rigid body is beyond the scope of
this paper.

The need for FR sequences of rotations stems from the working
principle of the micro-scale device of Fig. 2�b� developed for
quasistatic orientation control of a spacecraft. Li et al. �1� pro-
posed a microscale pseudo-momentum-wheel as an alternative to
the conventional torque generation mechanisms of spacecraft. The
pseudo-momentum-wheel shown in Fig. 2�b� is an array of radi-
ally projecting microscale electro-thermal-compliant �ETC� actua-
tors and generates a torque from the elastic deformation of its
U-shape structure, as shown in Fig. 2�c�. Upon application of a
voltage to the ETC actuator, non-uniform temperature distribution
on the actuator caused by Joule heating effects leads it to bend, as
shown in Fig. 2�c�. Therefore, when the pseudo-wheels are
mounted on the surface of a rigid-cube, as shown in Fig. 2�a�, the
activation of the pseudo-wheel produces a torque to conserve the
angular momentum of the system. However, when the actuators
are deactivated quasistatically, they recover their original unde-
formed shape, which causes reverse directional rotations follow-
ing the initial forward rotations. Therefore, the reverse rotations
are inevitable when the rigid-cube is maneuvered by ETC pseudo-
wheels. This provides the motivation for studying the kinematics
of a rigid body that reorients its orientation through fully-reversed
rotations according to the non-commutativity of finite rotations.
According to the experiments with prototype pseudo-wheels �1�, it
takes about the order of milliseconds for the activation and deac-
tivation of the ETC actuators. Therefore, we assume that the time
required to turn on and off the ETC actuators is 1 ms throughout

the examples presented in this paper. Since the moment of inertia
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Downlo
f pseudo-wheels is considerably smaller than that of the rigid-
ube, the amount of input-rotations that can be obtained from the
seudo-wheels is limited in practice. However, we assume that the
igid-cube is capable of attaining any rotation about each axis of
he body-attached coordinate frame in order to determine all FR
equences that synthesize a desired orientation. The realization of
he FR motion determined in this manner is another issue because
e need to consider the dynamics of the system that involves the
oment of inertia of the system and the amount of torque that can

e provided by physical torque generation mechanisms. Although
e have studied the fully-reversed rotational motion to plan the
otion of a miniature spacecraft, its kinematics is useful for the

eorientation of any type of neutrally buoyant airborne and under-
ater vehicles maneuvered through fully-reversed rotations.
A large body of literature has been devoted to studying the

rientation control of fully-actuated systems, and many robust and
table control algorithms have been developed �5–9�. In contrast
o the conventional fully-actuated systems, the systems undergo-
ng FR sequences of rotations have drawn attention since Li et al.
1� developed the pseudo-momentum-wheel. Using fully-reversed
otations for the reorientation of a rigid body, it is important to
nderstand its forward kinematics and inverse kinematics in order
o maneuver the rigid body with the particular motion. The for-
ard kinematics of fully-reversed rotations was analyzed to ex-
lore the existence of solutions to the inverse kinematics problem
y Koh et al. �3�. They also developed numerical and analytical
echniques to solve the inverse kinematics problem �4�. While the
olutions to a given inverse kinematics problem suggest a direct
ay of planning the orientation of a rigid body, this may not be a
ractical way to accomplish the given task if the magnitude of
nput-rotation is limited. In an attempt to develop efficient and
ractical motion planning algorithms, Koh et al. �2� proposed the
air-wise and single-sequence algorithms based on the leading
rder approximation of fully-reversed infinitesimal rotations. In
his paper, we propose Jacobian-based algorithms that synthesize
R sequences for a given desired orientation through a simple
umerical calculation.

Jacobian-based algorithms have been shown to be useful for
lanning the motion of the end effectors of robotic manipulators

Fig. 1 Fully-reversed 90 deg rotations ab
body-fixed coordinate frame

Fig. 2 Mechanisms for implementing FR rotat

body, „b… ETC pseudo-wheel, and „c… ETC actuato
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�10� and for the determination of the orientation of spherical mo-
tors �11�. However, it is difficult to apply the Jacobian algorithm
to a fully-reversed motion because the Jacobian can be singular in
this case, as well as being a null matrix at the identity, which is
usually taken as the initial configuration of a rigid body. In order
to resolve this problem, we move the initial orientation from the
identity to an arbitrary orientation using an FR sequence. The
Jacobian at the chosen new initial orientation should not be sin-
gular. The path from the identity to the selected initial orientation
is known because we selected the initial orientation using a spe-
cific FR sequence. Then, we need to determine the remaining path
from the initial to final orientations. The remaining path is deter-
mined by applying the Jacobian algorithm from the selected initial
orientation to the final orientation. The Jacobian algorithm imple-
mented using six-rotation FR sequences attains the desired desti-
nation through either single step or multiple steps. It turned out
that the Jacobian algorithm implemented using six-rotation FR
rotations identifies exact solutions to the inverse kinematics prob-
lem. This feature of the Jacobian algorithm allows it to be faster
for implementation in practice and more practical than existing
algorithms such as the pair-wise and single-sequence algorithms.

The remainder of this paper is divided into several sections.
Section 2 presents the background and the notation of FR se-
quences of rotations. Section 3 introduces a formulation of the
Jacobian method using six-rotation FR rotations. Section 4 ex-
plores the performance of the single-step and multiple-step Jaco-
bian methods. In Sec. 5, the performance of the Jacobian algo-
rithm using six-rotation FR sequences is investigated in
comparison with the pairwise and single-sequence algorithms.
The contributions of the Jacobian algorithms are summarized in
Sec. 6.

2 Definitions and Notation
A six-rotation fully-reversed rotation is mathematically defined

as a mapping FRabca−b−c− :��T3→Rabca−b−c− �SO�3�, where

Rabca−b−c− = Ra��a�Rb��b�R��c�Ra�− �a�Rb�− �b�Rc�− �c� �1�

t the x-, y-, z-, −x-, −y-, and −z-axes of a

s: „a… ETC pseudo-wheels attached to a rigid-
ou
ion

r †2‡
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nd T3 is a product space of three copies of the circle �or one-
orus�, defined by the angles �= �−���a�� ,−���b��,
���c���; SO�3�= �R�R3�3 �RRT=I ,det�R�= +1� is the spe-
ial orthogonal group whose elements describe orientations of a
igid body in a three-dimensional space. Ra represents a rotation
bout the a-axis of the body-fixed coordinate frame by an angle �a
nd I�SO�3� denotes the identity matrix. The variables a, b, and
can take any labels indicating the axis of the body-fixed coordi-

ate frame such as x, y, and z. Note that the order of rotations of
abca−b−c− in Eq. �1� takes into account the fact that the rotations

ake place about the axes of the body-fixed coordinate frame but
he overall resulting rotational displacement is expressed in a
pace-fixed coordinate frame.

According to the Euler theorem �10,12�, any rotational dis-
lacement R�SO�3� is equivalent to a rotation about the axis of
otation ŵ�so�3� by the angle of rotation �� �0,2��. so�3� is a
et of 3�3 skew-symmetric matrices. This equivalence between
he rotational displacement R�SO�3� and the rotation defined by

and ŵ leads to a mapping between R�SO�3� and �ŵ�so�3�,
hich parameterizes the entire orientations in SO�3�. The expo-
ential mapping exp:�ŵ�so�3�→R�SO�3� enables the rota-
ional displacement R to be determined for a given rotation about
he axis ŵ by the angle �, and hence �ŵ�so�3� is the exponen-
ial coordinate established for SO�3�. As a result, any orientation
n SO�3� can be expressed by the matrix exponential of �ŵ

so�3�. On the other hand, the inverse of the exponential map-
ing determines the direction of rotation ŵ and the angle of rota-
ion � for a given rotational displacement R�SO�3�. The log

apping log:R�SO�3�→�ŵ�so�3� allows us to identify the
xponential coordinate �ŵ that yields the rotational displacement
�SO�3�. The rotation angle � and the rotation axis ŵ for a

iven rotational displacement R�SO�3� are determined as fol-
ows:

� = arccos� trace�R� − 1

2
	 �2�

ŵ =
1

2 sin �
�R − RT� �3�

he vector form of the rotation axis ŵ�so�3� is denoted by either
ŵ�V or w�R3, and may be represented as follows:

ŵ = 
 0 − w3 w2

w3 0 − w1

− w2 w1 0
� ⇔ �ŵ�V = w = 
w1

w2

w3
� �4�

here the superscript V indicates the vector form of the skew-
ymmetric matrix.

The Jacobian Algorithm Using Six-Rotation FR
equences
In our planning algorithm, which finds the FR sequence to ro-

ate a body through a finite rotation, we will use an “artificial
ime” parameter to parameterize an artificial path connecting the
urrent and desired orientations of the body. Then, we will obtain
he desired angles in the FR sequence by letting them vary with
his artificial time parameter. Hence, when we refer to angular
elocity, time derivative, or any dynamical quantity, it is only in
he sense of this artificial time construct.

The Jacobian of the forward kinematics mapping of six-rotation
R rotations associates the angular velocity �̂�so�3� of a rigid
ody with the rate of change of the angles ��T3 �10,12�. In order
o establish a physically meaningful relationship between � and �̂
ased on the Jacobian of the mapping FRabca−b−c−, we consider the

dentity
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RRT = I �5�

which signifies that R is an element of SO�3�. The time derivative
of Eq. �5� leads to

ṘRT + RṘT = 0 �6�

which implies that an instantaneous angular velocity �̂= ṘRT

�so�3� in a spatial coordinate frame is represented as a skew-
symmetric matrix. If the angle of rotation in a fully-reversed mo-
tion traverses along a path ��t��T3, the corresponding angular
velocity �̂ can be written as

�̂ = ��RRT�̇ = � �R

��a
RT�̇a +

�R

��b
RT�̇b +

�R

��c
RT�̇c
 �7�

where �= ��a ,�b ,�c�T is the angle of rotation in FR sequences of
rotations.

By defining the Jacobian J��� as follows:

J = �� �R

��a
RT	V

,� �R

��b
RT	V

,� �R

��c
RT	V
 �8�

Equation �7� may be written in a vector form as follows:

��t� = J����̇ �9�

where �̇= ��̇a , �̇b , �̇c�T is the speed of rotation and ��R3 is the
vector form of �̂�so�3�. As shown in Eq. �9�, the Jacobian J���
defines a relationship between the speed of rotation �̇ in fully-
reversed rotations and the instantaneous angular velocity �.
Therefore, Eq. �9� allows us to determine the angular velocity of
the rigid body for a given speed of rotations. Note that the Jaco-
bian J is dependent upon the instantaneous configuration of the
rigid body, which is decided by the angle of rotation ��T3. If J is
invertible, the following ordinary differential equation is con-
structed and the angle of rotation � corresponding to the angular
velocity � can be determined without solving the inverse kine-
matics problem:

�̇ = J���−1��t� �10�

Once ��t� that defines a path of the rigid-body orientation to a
desired orientation is established, the angle of rotation � f that
achieves a desired orientation is decided by solving the ordinary
differential equation in Eq. �10�. In this study, we solve Eq. �10� in
an artificial time frame t� �0,1��R in order to determine an FR
sequence that achieves a desired rotational displacement R f. Note
that Eq. �10� determines an FR sequence where its resulting rota-
tional displacement can be attained by rotating the rigid body at
the angular velocity ��t� for a unit time period. Once the FR
sequence for R f is determined, a physical time during which the
FR sequence is executed can be estimated accounting for the dy-
namics of the system.

Let us define a Riemannian metric for SO�3� by �ṘṘ�R=�T�,
where ��R3 and consider a curve R�t� between the initial ori-
entation Ri=I and the final orientation R f. Defining the length of
the curve as follows:

l =�
0

1

�Ṙ�t�Ṙ�t��1/2dt =�
0

1

��T��1/2dt �11�

an optimal path, geodesic, between Ri and R f refers to a curve
with minimum length. This optimal path follows a rotation indi-
cated by �ŵ=log�R f�, where the direction of rotation ŵ and the
rotation angle � are determined by Eqs. �2� and �3�. In order for a
rigid body to achieve a rotational displacement indicated by �ŵ,
Eq. �10� is solved for a constant angular velocity �opt= ��ŵ�V

=�w�R3. Since an FR rotational operation is accomplished over
a unit time period in the artificial time frame, �w is equivalent to

the angular velocity of the rigid body, �opt, in this case. Then, Eq.

JANUARY 2009, Vol. 4 / 011012-3
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10� determines � such that the rigid body achieves a rotational
isplacement that can be attained by the rotation exp��ŵ� per-
ormed over a unit time period about the rotation axis ŵ by the
otation angle � in Eqs. �2� and �3�. Therefore, it is assured that
he final rotation angle at t=1 determined by Eq. �10� synthesizes
he FR rotation that yields the rotational displacement exp��ŵ�.
ote that a real path constructed by the FR motion determined by
q. �10� is not the same as the optimal path defined by exp��ŵ�.
he final orientation achieved at the end of the FR rotational
peration is identical with the rotational displacement exp��ŵ�.
A difficulty in applying the conventional Jacobian algorithm to

ully-reversed rotations arises from the fact that the Jacobian of
he forward kinematics mapping FRabca−b−c− is singular and a null

atrix at the identity on SO�3�. The singularity of Jabca−b−c− at the
dentity can be understood by exploring the rotational displace-

ent of a rigid body for a given infinitesimal ���T3. When
otations are infinitesimally small, elements of rotation matrices
an be approximated with the relationships sin������� and
os�����1. Then, the rotational displacement �Rabc

Ra���a�Rb���b�Rc���c� following the Euler parameterization
10,12� is approximated as

�Rabc � 
 1 − ��c ��b

��c 1 − ��a

− ��b ��a 1
� �12�

imilarly, the infinitesimal approximation of the FR rotation
abca−b−c− is represented as

�Rabca−b−c− � 
 1 ��a��b ��a��c

− ��a��b 1 − ��b��c

− ��a��c ��b��c 1
� �13�

As shown in Eq. �12�, an infinitesimal rotational displacement
y the Euler parameterization is dominated by first order terms,
hereas infinitesimal FR rotation is governed by second order

erms. This can be explained by a commutative property of infini-
esimal rotations. Unlike finite rotations, infinitesimal rotations of
rigid body are commutative, and the first order terms in Eq. �12�

re nullified by the first order effect of the subsequent rotations in
q. �13�. Therefore, FR sequences of infinitesimal rotations are
pproximated by the leading second order terms in Eq. �13�. On
he other hand, the tangent plane to R�SO�3� at �=0 is defined

Fig. 3 Translation of the configurati
orientation Ri and the final orientation
tively, so that the rotation angle � a
evaluated by Eqs. „2… and „3….
s
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R���� � I + J · �� �14�

In the case of FR rotations, as shown in Eq. �13�, �Rabca−b−c−

=Rabca−b−c−����−I contains only second order terms, which ex-
plains why Jabca−b−c− is a null matrix at the identity. Equation �14�
implies that J indicates the rate of change of R�SO�3� up to first
order for a given infinitesimal ���T3. Since Jabca−b−c− =0 due to
the commutativity of infinitesimal rotations, there is no rotational
displacement by the first order effect, which is decided by the rate
of change of Rabca−b−c− at the identity

In describing a rigid-body motion, the identity is usually taken
as an initial orientation. However, as the Jacobian of FRabca−b−c− is
singular at the identity, the Jacobian equation in Eq. �9� does not
hold at the identity, which makes the conventional Jacobian algo-
rithm break down. Here, we suggest that any arbitrary orientation
Ri at which the Jacobian is not singular and the angle of rotation
�i corresponding to Ri is already known can be selected as an
initial orientation. Note that we determine Ri using a particular FR
sequence. Therefore, once Ri is chosen using the FR sequence, we
are aware how the orientation of the rigid body changes from the
identity to the selected initial orientation Ri. Then, the angle of
rotation � f corresponding to R f is determined by integrating Eq.
�10� from the selected initial orientation Ri��i�. The final angle of
rotation � f attained in this manner enables adjustment of orienta-
tion from the identity to the desired orientation R f. Therefore, the
desired angular velocity ��t� in Eq. �9� should indicate the orien-
tation change from Ri to R f. We obtain the desired angular veloc-
ity ��t� from the exponential coordinate of the rotational displace-
ment from Ri to R f, and it is maintained constant while
integrating Eq. �10� over the time period t� �0,1��R.

The evaluation of the quantities defining the rotational displace-
ment from Ri to R f requires extra numerical computation. There-
fore, we translate Ri and R f to I and Ri

TR f, respectively, as shown
in Fig. 3. This translation facilitates the evaluation of the rotation
angle � and the rotation axis w of log�Ri

TR f� for which a formu-
lation is already well established in Eqs. �2� and �3�. The Jacobian
equation translated by Ri

T is

Ri
T��t� = Ri

TJ����̇ �15�

Therefore, in solving Eq. �15�, although the angle of rotation var-
ies from �i to � f, the rotation matrix describing the orientation of
the rigid body traverses from the identity I to the translated de-

T

of a rigid body in SO„3…. The initial
are translated to I and Ri

TRf, respec-
rotation axis ŵ of log†Ri

TRf‡ can be
on
Rf

nd
sired orientation Ri R f. The performance of the proposed Jacobian
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lgorithm is verified through a number of numerical simulations
hat will be presented in the next section.

Performance of the Jacobian Algorithm Using
ix-Rotation FR Rotations
Two algorithms based on the Jacobian equations in Eqs. �10�

nd �15� are presented in this section. The angle of rotation � that
ields a desired rotational displacement through FR rotations can
e determined from Eq. �15�. This algorithm is referred to as the
single-step Jacobian method” because the FR sequence obtained
y solving Eq. �15� reaches the desired orientation in a single
ix-rotation FR sequence. According to the results of several nu-
erical computations, the numerical solutions of the single-step

acobian method converge to the analytical solutions developed
or the synthesis of FR rotations �4�. On the other hand, the de-
ired orientation can also be reached through an incremental path
onstructed in an optimal manner. Using this approach, the angle
f rotation at each step is determined by the single-step Jacobian
lgorithm, and an incremental desired orientation is updated at
ach step such that the converged orientation at the current step is
tilized as an initial orientation for the next step. This algorithm is
eferred to as the “multiple-step Jacobian method.”

4.1 Single-Step Jacobian Method. The performance of the
ingle-step Jacobian method is investigated through numerical
imulations in this section. Among 24 possible non-trivial six-
otation FR rotations, we consider the FR sequence Ryzxz−y−x−

Ry��y�Rz��z�Rx��x�Rz�−�z�Ry�−�y�Rx�−�x� as Koh et al. �3� has
lready verified that any feasible orientations of a rigid body can
e attained through the FR operation Ryzxz−y−x−. The formulation
f the Jacobian-based algorithm addressed in Sec. 3 is imple-
ented, as shown in the flow chart in Fig. 4. The variables shown

n the flow chart in Fig. 4 are consistent with those in Sec. 3. The
ingle-step Jacobian method is implemented in MATLAB �13� as it
ontains a built-in solver for an ordinary differential equation such
s the Jacobian equation in Eqs. �10� and �15�. As indicated in Eq.
15�, it is convenient to evaluate the rotation angle � and rotation
xis ŵ of the angular velocity �̂ when the current orientation is
ranslated by Ri

T. Hence, the Jacobian equation in Eq. �15� is
olved for a desired orientation Ri

TR f in Fig. 4. Note that the

nalytic form of Ryzxz−y−x−
T Ṙyzxz−y−x− is used for the evaluation of

yzxz−y−x− in Eqs. �10� and �15�. If Jyzxz−y−x− becomes almost sin-
ular, then the pseudoinverse of Jyzxz−y−x− is used to construct the
acobian equation in Eq. �15�. The singularity of Jyzxz−y−x− is esti-
ated by a condition number. As shown in Fig. 4, if the condition

umber of Jyzxz−y−x− indicates that Jyzxz−y−x− is almost singular, the

acobian equation �̇=Jpseudo
T �̂ is solved instead of Eq. �15�.

pseudo
T denotes the pseudoinverse of Jyzxz−y−x− and Jtrans

T represents

yzxz−y−x− translated by Ri
T.

Not all 24 six-rotation FR rotations can synthesize all possible
rientations in SO�3�. According to the analysis of Koh et al. �3�,
ome FR rotations are capable of synthesizing only certain por-
ions of orientations in SO�3�. If the orientation of a rigid body is
djusted through such an FR rotation, some orientations in SO�3�
re infeasible, and a boundary between feasible and infeasible
rientations is formed. It was proven by Koh et al. �3� that the
acobian of such FR rotations is singular on the boundary. There-
ore, if a desired orientation is located in the infeasible region,
lthough the orientation of the rigid body is initially driven in the
easible region, it eventually crosses the boundary to reach the
esired orientation in the infeasible region. Therefore, the Jaco-
ian algorithm fails on the boundary as the Jacobian equation in
q. �10� can be established only when J is invertible. In order to
xplore how the Jacobian algorithm performs in this case, we

mplemented it using the FR rotation Rxyzx−y−z−, which covers only
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certain portions of orientations in SO�3�. The existence of singu-
larities of Jacobian is verified by examining the determinant of
Jxyzx−y−z−, which is represented as

det�Jxyzx−y−z−� = 2 sin �y�cos �x sin �y − cos �z sin �y

− cos �y sin �x sin �z� �16�
Therefore, the set of angles where the determinant in Eq. �16� is
zero, and hence where Jxyzx−y−z− is singular, is defined when any of
the following conditions hold:

�y = 0, �y = �, �y = tan−1� sin �x sin �z

cos �x − cos �z
	 �17�

A numerical visualization of the image of Rxyzx−y−z− verifies that
Rxyzx−y−z− corresponding to �y in Eq. �17� are located on the
boundary between feasible and infeasible orientations �3�.

We plot the time history of � during the process for solving Eq.
�15� in Figs. 5�a� and 5�b� to demonstrate how the Jacobian algo-

Fig. 4 Flow chart of the single-step Jacobian-based algorithm
rithm fails when the Jacobian becomes singular. Note that � in
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igs. 5�a� and 5�b� does not represent how the angle of rotation in
he FR rotation varies while the rigid body is being driven toward

desired orientation. After solving Eq. �15�, we use the final
otation angle � f at t=1 to synthesize the desired orientation. Fig-
re 5�a� shows the variation of the rotation angle in the FR rota-
ion Rxyzx−y−z− with time during the process for solving Eq. �15�.
n this example, the Jacobian algorithm is run for the desired
rientation R f =Rxyz��x=−1.9422,�y =2.1605,�z=−2.0488� from
he initial orientation Ri=Rxyzx−y−z−��x=� /6,�y =� /6,�z=� /6�.
s shown in Fig. 5�a�, while the Jacobian algorithm is being run,

y approaches �y =�, where Jxyzx−y−z− is singular. Once the Jaco-
ian Jxyzx−y−z− becomes singular, the Jacobian program is termi-
ated because Jxyzx−y−z− that constructs Eqs. �10� and �15� is not
nvertible. The Jacobian program shown in Fig. 5�a� was stopped
t t=0.3249 s. In contrast to Rxyzx−y−z−, Ryzxz−y−x− covers the entire
O�3� and can attain any possible orientations of a rigid body.
igure 5�b� shows variations in the angle of rotation �
��x ,�y ,�z� versus time while solving Eq. �15� for a given desired
rientation R f. We solved Eq. �15� from the initial orientation
i=Ryzxz−y−x−��x=� /6,�y =� /6,�z=� /6� to the final orientation

f =Ryzxz−y−x−��x=� /3,�y =� /3,�z=� /3�. Unlike the example of

xyzx−y−z− shown in Fig. 5�a�, the solution to Eq. �15� using

yzxz−y−x− provides the angle of rotation that synthesizes the de-
ired final orientation R f. This example explains why the FR ro-
ation Ryzxz−y−x− is selected for the implementation of the
acobian-based algorithm.

A number of numerical simulation results verify that the con-
erged angle of rotation is identical with the closed-form solutions
o the inverse kinematics problem found by Koh and Anantha-
uresh �4�, as shown in Fig. 5�b�. The closed-form solutions iden-
ify the FR sequence that synthesizes the desired orientation in a
eterministic way. If the desired orientation R f =Ryzxz−y−x−��x

� /3,�y =� /3,�z=� /3� is given, the closed-form solutions de-
ermine the four-rotation angles in Table 1 that synthesize R f.

Fig. 5 The angle of rotation �„t…= †�x ,�y ,�z‡ of
=−1.9422,�y=2.1605,�z=−2.0488… and „b… Ryzxz−y−x− for the d

able 1 Four-rotation angles that synthesize Rf=Ryzxz−y−x−„�x
60 deg, �y=60 deg, �z=60 deg…

Solution No. �x �deg� �y �deg� �z �deg�

1 60 60 60
2 60 −120 120
3 −159.68 −150.7 3.3
4 −159.68 29.29 176.7
11012-6 / Vol. 4, JANUARY 2009
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In order to examine the relationship between the numerical so-
lutions obtained using the single-Jacobian method and the closed-
form solutions to the inverse kinematics problem, we imple-
mented the single-step Jacobian method for 50 random initial
orientations and the desired orientation R f =Ryzxz−y−x−��x

=� /3,�y =� /3,�z=� /3�. Then, we plotted the trajectories of � in
the space of rotation angles T3, as shown in Fig. 6. The four-
rotation angles determined by the closed-form solution are repre-
sented by squares, and the angle of rotation defining each initial
orientation is represented by circles. The straight paths connecting
each circle and one of the four squares in Fig. 6 imply that all the
numerical solutions of the single-step Jacobian method converge
into one of the four FR sequences shown in Table 1. Therefore,
this numerical simulation result verifies that the single-step Jaco-
bian method is capable of converging to the analytical solutions
regardless of given initial orientations. Both the closed-form so-
lution and the single-step Jacobian method provide a direct way to
achieve a desired orientation. However, after finding all the solu-
tions indicated in Table 1, we have to select an FR sequence
composed of the smallest rotations among the four solutions for
an efficient maneuvering of the rigid body. On the other hand, the
single-step Jacobian method determines an FR sequence com-
posed of small rotations just by using an initial orientation deter-
mined by small rotation angles. Note, however, that these rota-

Rxyzx−y−z− for the desired orientation Rf=Rxyz„�x
red orientation Rf=Ryzxz−y−x−„�x=� /3 ,�y=� /3 ,�z=� /3…

Fig. 6 Trajectories of � in T3 converged from 50 random initial
orientations. � represents analytical solutions to the inverse
kinematics problem in T3. � represents the angle of rotation
corresponding to the initial orientations provided to the single-
„a…
esi
step Jacobian algorithm.
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ions may still not be small enough for practical implementation,
hich leads to the motivation for developing the multiple-step

acobian algorithm that will be discussed in the next section.
In order to examine the convergence property of the single-step

acobian algorithm, we solve the Jacobian equation in Eq. �15� for
00 random desired orientations and plot the trajectory of �
�log�R��V�R3 in log space. The three dimensional space where
�R3 is plotted is referred to as log space due to the fact that
�R3 is acquired by the logarithm of a rotational displacement.
or this numerical simulation, the FR motion Ryzxz−y−x−��x

� /6,�y =� /6,�z=� /6� is selected as an initial orientation Ri
nd represented by circles in Fig. 7. Although we provide one
xed initial orientation Ri to Eq. �15�, it is distributed at multiple

ocations in log space because it is translated by the desired ori-
ntation so that the converged orientations are located at the origin
f the orientation is converged to the desired orientation. There-
ore, the identity located at the origin �= �0,0 ,0�T represents the
andom desired orientations. The initial orientation and the con-
erged orientations are connected by a straight line in Fig. 7.
ince the single-step Jacobian method achieves the desired orien-

ation in a single FR rotation, there are no intermediate orienta-
ions between the initial and converged orientations. The straight
ines in Fig. 7 exhibit how the initial orientation Ri is associated
ith the converged orientations. The paths converged to the ori-

ntations at the origin demonstrate that all the solutions converge
o the desired orientations located at the origin and verify the
obust convergence property of the single-step Jacobian method.

4.2 Multiple-Step Jacobian Method. In practice, the amount
f input rotation provided to a rigid body could be limited depend-
ng on the moment of inertia of the system and physical torque-
eneration-mechanisms mounted on the system. In order to plan
ractical paths for such systems, we need to plan the motion of the
igid body using only small rotations. We explore a new approach
n which a rigid body’s orientation is adjusted by the single-step
acobian method applied multiple times through an incremental
ptimal path between initial and final orientations. The implemen-
ation of the single-step Jacobian method at each step requires
nitial and desired orientations, which are referred to as local ini-
ial and local final orientations, respectively, to distinguish them
rom global initial and global final orientations that describe the
lobal orientation change of the rigid body along its entire path.

To drive the rigid body through feasible orientations on the
ptimal path, we divide the entire path into a series of small
ntervals and maneuver the rigid body such that the desired incre-

ental orientations on the optimal path are achieved at each step.
n order to find an FR sequence that reorients the body to R f, we
olve the Jacobian equation in Eq. �15� for the desired orientation

d=Ri
TR f. The optimal path in SO�3� between the initial orienta-

ˆ

ig. 7 Trajectories of �= †log†R‡‡

V converged into 100 random
esired orientations. The random desired orientations are lo-
ated at the origin, and the initial orientation Ri is represented
y �.
ion I and the desired orientation Rd is constructed by exp��w�
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and �ŵ=log�Rd�. The path exp��ŵ� determined in this way de-
fines the rigid body’s optimal orientation change between the ini-
tial and desired orientations. In order to discretize the optimal
orientation change, which also signifies dividing the optimal path,
we divide the optimal path into a series of small intervals using a
fixed incremental rotation angle ��. The incremental desired ro-
tational displacement �Rd=exp���ŵ� is acquired by replacing
the rotation angle � in �ŵ with the small rotation angle ��.
Then, �Rd represents a local desired rotational displacement at an
interval of the path.

Once �R̃ that approximates the incremental rotational displace-
ment �Rd is determined by the single-step Jacobian algorithm
using a constant angular velocity ��opt= ���ŵ�V, a new desired
orientation Rd

new is established for the next step. For a given de-
sired orientation Rd and approximated rotational displacement

�R̃, the new desired orientation Rd
new required for evaluation of

the next desired incremental rotational displacement is Rd�R̃T.
Then the incremental rotation for the next step is decided by di-

viding log�Rd�R̃T� in the same manner as for �R f.
The formulation of the multiple-step Jacobian method is imple-

mented, as shown in the flow chart in Fig. 8. The multiple-step
Jacobian algorithm is implemented for a given initial orientation
Ri and final orientation R f. In Fig. 8, the Jacobian equation in Eq.
�15� is solved for an incremental desired orientation �Rd until the
distance between the desired orientation Rd and the current orien-
tation R is less than the tolerance, Tol. The distance between two
orientations is measured by the Frobenius matrix norm D defined
by

D = �Rd − R�t�� = �trace��Rd − R�t��T�Rd − R�t����1/2 �18�

where R�t� indicates the rigid body’s orientation at time t. If the
convergence criterion �Rd−R��Tol is not satisfied, the Jacobian
equation is solved for a new desired orientation Rd

new to drive the
rigid body further toward the given desired orientation Rd.

The convergence property of the multiple-step Jacobian method
is explored through numerical simulations that are carried out for
a number of randomly selected desired orientations. In Fig. 9, the
trajectory of �= �log�R��V�R3 converged to 100 random orienta-
tions are plotted in log space. In this example, Ri=Ryzxz−y−x−��x

=� /6,�y =� /6,�z=� /6� is chosen as an initial orientation and is
translated such that a desired orientation is located at the origin of
the log space.

Therefore, the origin in Fig. 9 represents the global desired
orientation R f in all numerical simulations. Although we use only
one fixed global initial orientation, it is distributed in many dif-
ferent locations represented by circles, as it is translated so as to
be located at the origin if the orientation converges to the desired
orientation. As the multiple-step Jacobian method reaches the de-
sired orientation through incremental desired orientations located
on the optimal path, the path connecting the initial orientation and
the converged orientations in Fig. 9 exhibits a real trajectory of
the rigid body in log space. Figure 9 shows that all the numerical
solutions of the multiple-step Jacobian method converged to the
100 random global desired orientations. This numerical simulation
result demonstrates the robust convergence ability of the multiple-
step Jacobian algorithm.

The features of the multiple-step and the single-step Jacobian
methods are clearly captured when their distance errors are com-
pared. Figures 10�a� and 10�b� show the distance error of the
single-step and the multiple-step Jacobian algorithms in time, re-
spectively, when both are implemented for the desired orientation
Ryzxz−y−x−��x=� /3,�y =� /3,�z=� /3�. The monotonically de-
creasing tendency of the distance error of the multiple-step Jaco-
bian method, shown in Fig. 10�b�, demonstrates that the orienta-
tion traverses the optimal path. In contrast, the distance error of

the single-step Jacobian method shown in Fig. 10�a� shows that
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he path constructed by the solution of the single-step Jacobian
ethod is not optimal as it does not show a monotonically de-

reasing behavior.
Although the single-step Jacobian method does not adjust ori-

ntation along the optimal path and may require large rotations to
chieve the desired orientation, it is more efficient than the
ultiple-step Jacobian method in the sense that the single-step

acobian method reaches the desired orientation through a shorter
otational path. The rotational path length L used in this paper is
efined as

L =�
0

tf

�
i=1

6

��i�dt � �
k=1

Nt

�
i=1

6

��i
k��tk �19�

here ��i� is the angle of the ith rotation in the FR sequence of
otations and ��i

k� represents the angle of the ith rotation at the kth

Fig. 8 Flow chart of the multip
ime interval. The integration in Eq. �19� is approximated as a

11012-8 / Vol. 4, JANUARY 2009
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Fig. 9 Trajectories of � converging into 100 random desired
orientations. � represents an initial orientation Ri, and random

desired orientations are located at the origin.
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iemann sum of the angle of rotation over a discrete time domain
14�. As mentioned in Sec. 1, we assume that each rotational
peration in FR rotations is completed over the time period �tk
1�10−3 s.
In order to investigate the efficiency of the single- and the
ultiple-step Jacobian algorithms, we compare the rotational path

ength of the single-step Jacobian algorithm with that of the
ultiple-step Jacobian algorithm that accomplishes the same task

ver two steps. This numerical experimentation will demonstrate
hich algorithm takes a longer rotational path to complete iden-

ical tasks. It has already been demonstrated that the single-step
acobian algorithm identifies exact solutions to the inverse kine-
atics problem discussed in Sec. 4.1. If Ryzxz−y−x−��x=� /3,�y

� /3,�z=� /3� is selected as a desired orientation R f, it is appar-
nt that the angle of rotation that synthesizes the desired orienta-
ion R f over a single step is ��x=� /3,�y =� /3,�z=� /3�T. For a
air comparison of the two control algorithms, the multiple-step
acobian algorithm is run over two steps for the identical desired
rientation R f. The desired incremental rotation for the first step is
ecided such that the incremental rotation angle is half of the total
otation angle of the desired orientation change R f so that the
esired orientation can be achieved over two steps. As the total
otation angle � of the desired orientation Ryzxz−y−x−��x=� /3,�y

Fig. 10 Distance error D of „a… the single-step and „b… the
orientation Ryzxz−y−x−„�x=� /3 ,�y=� /3 ,�z=� /3…

Fig. 11 „a… Rotational path length L of the single-step Jac

„��=0.0001 rad… that are run for the desired orientation Ryzxz−y
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=� /3,�z=� /3� is � f =1.2447 rad, the intermediate desired orien-
tation R f/2 are determined by exp�� f/2w�, where � f/2=� f /2
=0.6223 rad. According to the closed-form solutions �4�, the
angles of rotation that achieve the intermediate orientation R f/2 is
��x=0.5487,�y =0.5234,�z=1.1598�T and the same angles of ro-
tation are required to cover the remaining path to the desired
destination R f.

The relative path length of the Jacobian-based algorithms is
evaluated using the rotational path length defined in Eq. �19�. As
shown in Fig. 11�a�, it turns out that the multiple-step Jacobian
algorithm run over two steps takes a longer rotational path than
the single-step Jacobian algorithm. While the rotational path
length of the single-step algorithm is 0.0377 rad s, the multiple-
step Jacobian algorithm takes a longer path 0.0536 rad s to con-
verge to the same destination over two steps. This result implies
that the Jacobian-based algorithm tends to take a longer rotational
path when it is run over multiple steps along an incremental path
to the same desired orientation. This feature becomes more appar-
ent when the single-step Jacobian method is compared with the
multiple-step Jacobian method run for an incremental rotation
angle. In Fig. 11�b�, the rotational path length of the multiple-step
algorithm, which is run for the incremental rotation angle ��

ultiple-step Jacobian methods that are run for the desired

an, two-step Jacobian; „b… multiple-step Jacobian methods
m

obi

−x−„�x=� /3 ,�y=� /3 ,�z=� /3…
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 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



=
2
J
s
o
r
m
i
b
t
r
J
f
g
a
i
m

5
S

s
p
a
b
t
t
l
a
d
v
r
t

s
r
l
i

of �

0

Downlo
0.0001 rad and R f =Ryzxz−y−x−��x=� /3,�y =� /3,�z=� /3�, is
.68 rad s. This consequence clearly shows that the multiple-step
acobian algorithm takes a longer rotational path than the single-
tep algorithm that travels 0.0377 rad s to reach the same desired
rientation, as shown in Fig. 11�a�. This numerical analysis indi-
ectly signifies that the single-step Jacobian algorithm could be
ore efficient than the multiple-step Jacobian algorithm depend-

ng on the mechanisms of the system because the single-step Jaco-
ian algorithm takes a shorter rotational path to a desired orienta-
ion. However, the single-step Jacobian method may require large
otations to reach a desired destination while the multiple-step
acobian method is capable of maneuvering a rigid body using
easible small rotations. Therefore, the multiple-step Jacobian al-
orithm suggests an alternative and practical way of maneuvering
rigid body through fully-reversed motions when the amount of

nput rotation is limited and hence the rigid body needs to be
anipulated via only small rotations.

Comparison With the Pair-Wise and
ingle-Sequence Algorithms
In this section, we investigate the performance of the multiple-

tep Jacobian algorithm by comparing it with existing motion
lanning algorithms developed for fully-reversed rotations. Koh et
l. �2� developed the pair-wise and single-sequence algorithms
ased on the leading order approximation of fully-reversed rota-
ions in Lie algebra so�3�. In order to explore the performance of
hese algorithms, their convergence rate and the rotational path
ength are compared. Comparisons of convergence rates provide
n estimation of how rapidly a numerical algorithm converges to
esired orientations, and the rotational path length indirectly re-
eals which motion planning algorithm is more efficient. We car-
ied out a number of numerical simulations under identical condi-
ions to compare the performance of these algorithms.

FR sequences of rotations can be expanded in a series form on
o�3�. Then, the net orientation change of a rigid body by fully-
eversed infinitesimal rotations can be approximated using the
eading order terms in the series �2�. The first order effect of FR
nfinitesimal rotations is nullified as infinitesimal rotations are

Fig. 12 Multiple-step Jacobian method: „a… trajectory
Fig. 13 Pair-wise method: „a… trajectory of �, „b… d

11012-10 / Vol. 4, JANUARY 2009
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commutative. Therefore, the orientation changes by fully-reversed
infinitesimal rotations are governed by the leading second order
terms in its series expanded by the Campell–Baker–Hausdorff for-
mula �2,15�. The orientation of the rigid body is adjusted by either
pair-wise rotations or single-sequence rotations. The pair-wise ro-
tation refers to four-rotation FR rotations, and the single-sequence
rotation refers to six-rotation FR rotations. A four-rotation FR se-
quence of rotations is composed of initial two rotations about the
axes of the body-fixed coordinate frame and subsequent two rota-
tions that undo the proceeding two rotations. According to its
leading order effect, FR rotations about two body-fixed axes,
Ra��a�Rb��b�Ra�−�a�Rb�−�b�, are equivalent to a rotation about
the remaining third axis, Rc��a�b�. The pair-wise algorithm makes
use of the fact that Euler rotations such as RaRbRc can achieve
any orientations in SO�3�. Each rotation constituting the Euler
rotation is approximated by the corresponding pair-wise rotation.
Therefore, the pair-wise algorithm performs 12 successive rota-
tions to reach an incremental desired orientation. On the other
hand, the single-sequence algorithm approximates the desired ori-
entation using six-rotation FR sequences of rotations. While the
pair-wise algorithm is featured by its robust convergence capabil-
ity, the single-sequence algorithm accomplishes the same task in
an efficient manner as it performs only six rotations to reach the
same incremental desired orientation �2�.

For a fair comparison of the these motion planning algorithms,
the numerical simulations of the multiple-step Jacobian, pair-wise,
and single-sequence algorithms are undertaken for the same glo-
bal desired orientations using the same incremental rotation angles
on a single-processor desktop computer. For a global desired ori-
entation R f, a local incremental desired orientation �R f is estab-
lished using a fixed incremental rotation angle �� at each step.
For all examples presented in this section, the orientation
Ryzxz−y−x−��x=� /3,�y =� /3,�z=� /3� is provided as a desired ori-
entation. Although we have performed a number of numerical
simulations for various incremental rotation angles to explore the
performance of these motion planning algorithms, here we present
an example in which the incremental rotation angle ��

, „b… distance error D, and „c… rotational path length L
istance error D, and „c… rotational path length L
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0.0001 rad is used. Other simulations carried out for various
ther incremental rotation angles also show the features high-
ighted in this example.

The characteristics and strengths of the multiple-step Jacobian,
air-wise, and single-sequence methods are investigated by com-
aring the trajectory of �, distance error, and rotational path length
hile the rigid body is being driven toward the desired destina-

ion. In Figs. 12�a�, 13�a�, and 14�a�, the trajectory from the initial
o the final orientations is drawn in log space to explore how the
rientation travels in log space. While the trajectories by the
ultiple-step method and the single-sequence method appeared as
straight line �Figs. 12�a� and 14�a��, the trajectory determined by

he pair-wise method takes a curved path, as shown in Fig. 13�a�.
his implies that the pair-wise algorithm takes a longer path than

he multiple-step and single-sequence algorithms.
Comparing the time cost for convergence in Table 2, the pair-

ise method takes 112.8840 s while the multiple-step method
pends 0.9108 s and the single-sequence method costs 70.02 s to
onverge to the desired orientation. As mentioned in the Introduc-
ion, it is assumed that it takes 6 ms for completing a six-rotation
R sequence as one rotation in FR motion is accomplished in
ms. This result demonstrates that the pair-wise method takes
ore time than the other two algorithms for convergence. The

air-wise algorithm performs 12 successive rotations at each step
o achieve incremental desired local orientations while the

ultiple-step and single-sequence methods require six rotations to
ccomplish the same task. As the pair-wise algorithm performs
ore rotations at each step than the other two algorithms, it usu-

lly takes a greater time to reach the same desired orientation
ompared to the multiple-step and single-sequence algorithms.
he rotational path lengths of each numerical simulation are com-
ared in Table 2 and Figs. 12�c�, 13�c�, and 14�c� suggest that the
air-wise method takes the longest rotational path among all the
hree algorithms.

According to the plots and data in Figs. 12�b�, 13�b�, and 14�b�,
nd in Table 2, the multiple-step Jacobian method shows a faster
onvergence rate than the other two control algorithms. This fast
onvergence rate of the multiple-step method is attributed to the
eature of the single-step Jacobian method that identifies exact
esired orientations on the path. The pair-wise and single-
equence methods approximate desired orientations based on the
econd order effect of FR sequences of rotations. In contrast, a
igid body maneuvered by the multiple-step Jacobian method
oves through exact optimal intermediate orientations at each

Fig. 14 Single-sequence method: „a… trajectory of �

able 2 Numerical simulation results obtained for ��
0.0001 rad

Criterion Multiple-step Pair-wise Single-sequence

Time cost �s� 0.9108 112.8840 70.02
Rotational path length

�rad s�
1.5709 6.4312 0.1184
ournal of Computational and Nonlinear Dynamics
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step, which makes the Jacobian-based algorithm take fewer steps
than the pair-wise and single-sequence algorithms to reach the
desired orientation. The data shown in Table 2 confirms that �i� the
multiple-step algorithm possesses the fastest convergence prop-
erty among the three algorithms, and that �ii� the pair-wise method
requires the most number of steps for convergence and costs the
most amount of time.

6 Conclusions
We propose two motion planning algorithms that are based on

the Jacobian of the forward kinematics mapping of fully-reversed
rotations. The single-step Jacobian algorithm determines a specific
FR sequence of rotation that synthesizes a desired orientation and
is also one of the closed-form solutions to the inverse kinematics
problem. While the closed-form solutions �4� require not-
necessarily-small rotations to realize a given desired orientation,
the single-step Jacobian algorithm identifies an FR sequence that
is composed of the smallest rotations among the four analytical
solutions without intensive computation. The multiple-step Jaco-
bian method enables maneuvering a rigid body along an optimal
path with a series of feasible rotations determined by the single-
step Jacobian method. The robust convergence ability of the
single- and multiple-step Jacobian methods was demonstrated
through a number of numerical simulations run for random de-
sired orientations. The fast convergence property of the multiple-
step Jacobian algorithms was verified in comparison with the pair-
wise and single-sequence algorithms on a single-processor
desktop computer. Therefore, it is preferable to use the Jacobian
algorithm if a rapid manipulation of a rigid body is required.

In summary, the Jacobian algorithm provides a fast and conve-
nient means of planning maneuvers for a rigid body undergoing
FR rotations. We would like to stress that these features of the
Jacobian algorithm allow it to be more useful than the pair-wise
and single-sequence algorithms depending on given tasks. The
Jacobian algorithm performs better than the existing algorithms
when a fast manipulation of a vehicle is required. In the future, we
will explore the possibility of using the Jacobian-based algorithm
for motion planning for a rigid body undergoing four-rotation FR
sequence of rotations. The algorithm presented here may also be
useful to other problems where the Jacobian is a singular or null
matrix.
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