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Abstract
Research in man-made systems capable of self-diagnosis and self-
repair is becoming increasingly relevant in a range of scenarios
in which in situ repair/diagnosis by a human operator is infeasi-
ble within an appropriate time frame. In this paper, we present an
approach to the multi-robot team diagnosis problem that utilizes
gradient-based training of multivariate Gaussian distributions. We
then evaluate this approach using a testbed involving modular mo-
bile robots, each assembled from four electromechanically separable
modules. The diagnosis algorithm is trained on data obtained from
two sources: (1) a computer model of the system dynamics and (2)
experimental runs of the physical prototypes. Tests were then per-
formed in which a fault was introduced in one robot in the testbed
and the diagnostic algorithm was queried. The results show that the
state predicted by the diagnostic algorithm performed well in iden-
tifying the fault state in the case when the model was trained using
the experimental data. Limited convergence was also demonstrated
using training data from an imperfect dynamic model and low data
sampling frequencies.

KEY WORDS—diagnosis, fault diagnosis, self diagnosis,
team diagnosis, robot team repair, mobile robot, robotics,
multi-robot system, modular robot, gradient-based training,
particle filters.
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1. Introduction

The ability to self-diagnose and self-repair is becoming neces-
sary in a range of man-made systems for which a priori or in
situ repair/diagnosis by a human operator is not feasible within
an appropriate time frame. Interplanetary spacecraft, underwa-
ter vehicles and smart buildings are just a few examples of the
many systems that can benefit from the behavioral flexibility
and autonomy offered by the ability to self-diagnose and self-
repair.

Cooperative multi-robot teams address critical problems
that are beyond the capabilities of current, standalone robotic
systems.

1. In a well designed multi-robot team, a failure in one
member will not result in total system failure. For exam-
ple, the distribution of a mission-critical sensor package
over multiple independent robotic vehicles enables sam-
pling of at least part of a desired dataset despite, in the
worst possible case, the complete loss of one or more
of the robotic delivery platforms. Moreover, the source
of malfunction can be diagnosed by other members of
the team, and possibly repaired in situ using spare parts
carried by the robots. In the future, it is conceivable to
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take this concept even further by producing robots ca-
pable of complex repair procedures utilizing in situ re-
sources. In both scenarios, the overall robustness and re-
liability of the system are greatly improved when multi-
robot teams are used. In comparison, critical failures in
a standalone robotic system can have a dire effect on its
operational capabilities. This, in turn, can result in fail-
ures to achieve mission objectives.

2. In a team-diagnosis and team-repair scheme, using a
combination of spare parts and in situ resource utiliza-
tion (ISRU) robotic teams can, in principle, produce
greatly extended mission lives. When applied with a
high level of autonomy, repair strategies that require
communication with a human operator can be mini-
mized. This is especially applicable to the robotic ex-
ploration of space. These missions carry both a high
cost and a high risk of failure. By sending multiple ro-
bots with capabilities including diagnosis and repair, the
risk of failure following successful deployment in space
or on planetary surfaces is drastically reduced. Further-
more, the resulting extended mission life and hardware
sustainability can make missions like these far more ef-
fective.

The topic of robotic self-repair has been reported by sev-
eral researchers. Various works have used the concept of mod-
ular redundancy to develop reconfigurable robots with repair
capabilities. The work performed by Murata et al. (1994) pro-
duced a series of two-dimensional (2D) building blocks, each
called a Fractum. Using electromagnets, these Fracta were able
to arrange themselves into a series of geometric shapes. Yim
et al. (2001) presented work on the distributed control of a
class of 3D metamorphic robots named Proteo. Chirikjian et
al. (1996) developed the concept of a metamorphic robotic sys-
tem, and proposed methods of bounding the minimal required
movements to achieve desired configurations. Rus (1998) pre-
sented a four-degree-of-freedom (DoF) ‘robotic molecule’ ca-
pable of creating various lattice structures in 3D space. Shen et
al. (2002) presented a hormone-inspired method of active com-
munication and active distributed control that was evaluated on
the CONRO self-reconfigurable robot. Yoshida et al. (1999)
addressed and experimented with both self-assembly and self-
repair in two dimensions on the Fractum robot and in three di-
mensions on a large, DC-motor-driven robot. In essence, all of
these homogeneous modular robots perform repair by discard-
ing a failed module. Once the failed module is discarded, they
return to their original configuration or function. We note that
this repair strategy is specifically tailored to systems compris-
ing homogeneous modules, thereby potentially limiting their
scope.

To our knowledge, the only other report of cooperative ro-
bots attempting self-repair is the work of Bererton and Khosla
(2000). In that work, the authors developed a cooperative team
consisting of two robots. A fork-lift robot, using an ultrasonic

localization system, docks with a stationary robot to remove
a failed module. The work focuses on the methodology of
docking. As such, it does not address the problem of team-
diagnosis, nor does it address the issues regarding complete
disassembly/reassembly using a team of robots with similar
capabilities.

A body of literature is also developing in the area of self-
assembly and self-replication. Specifically, Gracias et al.
(2001) and Bohringer (2003) have presented self-assembly ap-
plied to the meso- and micro-scales. These works rely heav-
ily on passive elements driven by forces that cannot be re-
alistically scaled to macro-systems such as those discussed
in this work. Klavins (2007) demonstrated self-assembly in
a controlled environment using programmable units floating
on an air table. While this work is successful on the macro-
scale, it relies heavily on a controlled environment for passive
assembly. The research performed by Park et al. (2004) and
Chirikjian et al. (2002) is a step towards the development of
macro-scale self-replicating robots. Specifically, a robot in a
structured environment replicated itself by correctly connect-
ing a series of modules. As will be seen shortly, there are some
similarities between the subsystems of the model developed
in that work and the subsystems of the prototype robots de-
veloped here. Zykov et al. (2005) presented an overview of
their work on reproducing robots made up of actuated modu-
lar cubes. While that work addresses autonomous replication,
the use of homogeneous modular systems is similar to the
previously mentioned topics of self-reconfiguration and self-
repair.

Much of the existing research in the area of diagnosis is
concentrated in systems containing a single entity. The use of
particle filters for fault diagnosis specifically has gained pop-
ularity in the area. Dearden and Clancey (2001) present their
application of particle filtering to data collected from the Mar-
sokhod rover. Specifically, they applied particle filtering meth-
ods to determine the most likely values of system variables
and modes of a Marsokhod wheel using sensor data. Wash-
ington (2000) presents the MaKSI method of state estimation
and fault diagnosis, and its application to the Marsokhod rover.
Specifically, he describes the MaKSI method as a combination
of Kalman filtering to represent system dynamics and Markov
model representations to estimate state probabilities.

Doucet et al. (2000) present their work on Rao-Black-
wellized particle filtering. Here, they present a method of
increasing efficiency by exploiting the structure of dynamic
Bayesian Networks, but do not discuss its potential application
to fault diagnosis. Blackmore et al. (2005) present their com-
parison of the Rao-Blackwellized particle filtering to a k-best
enumeration method, and then present a hybrid combination
of the two playing on the strengths of both methods. Verma et
al. (2004) test a series of particle-filter-based methods to di-
agnose wheel states on the Hyperion robotic platform. While
each of these particle-filter-based works presents a method or
series of methods that are successful in the diagnosis of at least
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part of a robotic platform, each focuses on the real-time or
near real-time diagnosis of faults. Further, each requires a de-
tailed model capable of estimating future sensor values used to
weight particles. These methods are inherently different from
our own in that they focus on real-time fault detection, and
require detailed dynamic modeling that includes transient sys-
tem behavior.

Other examples of methods for diagnosing systems contain-
ing a single entity include high-fidelity simulations as a foun-
dation for diagnosis as described by Satish Kumar (2001) and
diagnostic agent techniques described in Fröhlich et al. (1999)
and Roos et al. (2003). A focused survey on single system di-
agnosis as applied to wheeled robots in unknown environments
is documented by Duan et al. (2005). A more general review
of fault detection is presented by Venkatasubramanian et al.
(2003a, b, c).

Of the relatively few published works on fault diagnosis in
multi-robot systems, a multi-robot work in the area of coordi-
nation failures is presented by Kalech et al. (2006). That work
focuses on net team failures and does not specifically address
the diagnosis of physical faults in any individual robot. In a
separate example, Daigle et al. (2006) utilize distributed diag-
nosis techniques based on the analysis of transient signatures
(the mapping of abrupt faults to transients in dynamic system
behavior� Mosterman and Biswas (1999) in a multi-robot sys-
tem. They exploite the physical coupling between robots that
results from the cooperative task of moving a rigid object. Re-
liance on a cooperative task, physical coupling and high data
sampling rates makes their approach and problem statement
different from the present work.

Model-based approaches have been effective in performing
diagnosis of complex systems. Our effort focuses on the ap-
plication of a model-based technique to the domain of multi-
robot teams in which each team member is itself a modular
robot. Our motivation stems from a desire for cooperative sys-
tems to perform diagnosis and reconfiguration, assuming they
exhibit the following properties: (1) they should be composed
of constituent robots whose actions can be enumerated prior to
deployment� (2) the behavior of the robots while performing a
set action can be accurately modeled.

Considering team repair, the interactions between con-
stituent robot pairs should be described through classical dy-
namics, electrical flow (when sharing power), fluid flow (when
sharing propellant), network models (when sharing informa-
tion) and contact mechanics. The combination of discrete non-
linear models and continuous linear models within the same
overall model was partly inspired by the hybrid modeling ap-
proach described by Henzinger (2000). However, unlike meth-
ods relying on high-fidelity simulation where the goal is an
accurate representation of the detailed behavior of the system
as it undergoes a fault, our objective is to represent the mini-
mum amount of behavioral information needed to make an ef-
fective diagnosis in the steady state (ignoring transients). That
is, rather than addressing the inherent complexities associated

with modeling the transition to a fault state, our methods rely
only on observations of the fault state after it has already oc-
curred.

In this paper, we present a method as a first step toward co-
operative team diagnosis. While our approach was developed
for multiple robots, it was demonstrated using observations
taken of a single robot. The full problem of cooperative team-
diagnosis and team-repair will be addressed in future works.

2. Testbed
The testbed for this project consists of four identical two-
wheel independent-drive robots controlled using a tethered
computer. Each robot (Figure 1) consists of four individual
modules physically connected using a series of rare-earth mag-
nets. These magnetic connections, shown in Figure 2, each
have two parts: fixed docking sites and dynamic docking sites.
The combination of a fixed docking site with a dynamic dock-
ing site creates a magnetic connection. Our dynamic docking
sites utilize a switched servo mechanism actuating a sliding se-
ries of the rare-earth magnets. The switched servo mechanism
relies on a micro switch to trigger the sliding action of the
rare-earth magnets. This micro-switch is strategically placed
so that, when the gripper closes on a module, it will press the
switch. The two set positions of the sliding magnets allow the
site to repel and attract a fixed docking site (Figure 2) when
the servo switch is pressed and released.

Our Central Processing Unit labeled CPU (Figure 1) con-
sists of a microprocessor (Lego RCX), communication tower,
a computer (not shown) and three fixed docking sites. The
specific computer-RCX interaction was implemented to sim-
ulate an I/O data acquisition box controlled using Matlab. The
onboard sensory package of each assembled robot consists of
two rotation sensors (one on either wheel assembly) and two
touch sensors on the gripper. The four identical robots were de-
signed so that each can physically attach and remove modules
from another robot as needed.

In the experiments that are reported in this paper, we em-
ploy two of the four robots with one ailing robot being diag-
nosed by one fully functioning robot. For future reference, we
refer to the robot undergoing diagnosis as ailing even though it
is not known if the robot is actually ailing or what its ailment
might be until after the diagnosis is performed by the other
robot.

We would expect that robots deployed in the field would be
outfitted with a camera and vision system capable of produc-
ing observations equivalent to a camera placed overhead. As
a proxy for this capability, any robot performing a diagnosis
in our experimental trials has access to information obtained
from an overhead camera and a computer running our diag-
nostic algorithm. The ailing robot consists of any one member
of the previously mentioned testbed. Figure 3 shows a repre-
sentative view of our experimental setup for diagnosis. The
computer running the diagnostic algorithm begins diagnosis
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Fig. 1. Top view of our modular testbed� left: disassembled and right: assembled.

by sending a command to the computer controlling the mem-
ber of the testbed. As a result, the computer controlling the
member of the testbed sends a prescribed set of inputs X that
are executed by the testbed. Simultaneously, the computer run-
ning the diagnostic algorithm begins viewing the scene using
the overhead camera. Upon completion, the information taken
from the overhead camera is processed by the computer run-
ning the diagnostic algorithm, and converted to a set of obser-
vations Yi that are used to make the diagnosis.

3. General Approach

We define cooperative team-diagnosis as the act of multiple
robots jointly attempting to identify faults in one or more ro-
bots performing a given task. Similarly, we define cooperative
team-repair as the process of determining the correct course
of action based on the identified problem, and completing the
appropriate action to solve the problem. To facilitate in repair,
robots should be modular (i.e. comprising a series of remov-
able subsystems). A description of our modular robotic testbed
is described in Section 2.

Our proposed approach to cooperative team-diagnosis is
shown in Figure 4. For simplicity, only a two-robot system
is shown. Robot A in the figure is a fully functioning robot,
while Robot B is undergoing diagnosis as a result of a diagnos-
tic command being given. We define the diagnostic command
as a command given when there is a reason to suspect that a
fault might have occurred (i.e. when a robot displays unex-
pected or erratic behavior that is observed by other robots). A
diagnostic maneuver is the motion resulting from a prescribed
set of inputs X executed by a robot suspected of not being fully
functional.

In Figure 4, the physical system corresponds to the ailing
robot executing the diagnostic maneuver. We define the avail-
able sensors of an individual robot to be those used to produce

Fig. 2. Examples of fixed and dynamic docking sites of the
modular robot. Top left: wheel module dynamic docking site
in attract position and top right: repel position. Lower: right-
fixed docking site of CPU.

a set of observations Yi of the diagnostic maneuver. The di-
agnostic algorithm contains probabilistic inputs trained using
estimates from the robot system model and/or experimental
observations taken with a known state applied to the robot in
a representative environment. Using observations Yi from the
diagnostic maneuver, the diagnostic algorithm is used to pro-
duce an estimate of the current state � i of Robot B. Team fault
diagnosis then combines the individual diagnoses using their
corresponding probabilities to define the most likely state of
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Fig. 3. Representative view of the experimental setup for diagnosis.

Fig. 4. Presented approach to team-diagnosis. Robot B is performing a diagnostic maneuver while performing a self-diagnosis
and also being diagnosed by Robot A.

Robot B. Finally, team repair coordinates robots to remove ap-
plicable parts and replace them.

The white blocks in Figure 4 are specifically addressed in
this paper, with the emphasis placed on the block that takes in
X and Yi and returns � i . Robot A is used solely as an observer
of the scene, and computationally to provide a diagnosis based
on its observations. In our experimental testbed, Robot A com-

prises the overhead camera (the available sensors) and a com-
puter running our diagnostic algorithm. These can be viewed
as general resources available to any team member performing
a diagnosis. Robot B represents any one robot from our afore-
mentioned testbed. Note that, in the case of a homogeneous
team such as our testbed, the need for robot-specific diagnostic
maneuvers and algorithms as shown in Figure 4 (i.e. ‘Diagnos-
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tic Maneuver for Robot B’ and ‘Diagnostic Algorithm of Ro-
bot B’) is not necessary. Instead, a single diagnostic maneuver
and diagnostic algorithm can be used by each member of the
team.

In the following subsections we describe our approach to-
wards team-diagnosis. Briefly, the approach involves: (1) the
development of a model of the robots and characterization of
the system states, (2) finding an optimal diagnostic maneuver
for the ailing robot given the available sensors on the diag-
nosing robots, (3) model-based training of the diagnostic al-
gorithm using a gradient-descent method, and (4) diagnosis of
the fault(s). In theory, this approach is not limited by the num-
ber or type of modules on each robot, the number of robots
in the team, or the number of simultaneous faults of the ailing
robot.

3.1. Modeling

Following Dearden and Clancey (2001) and Washington
(2000), we create a system model tuned to correspond to
each of the discrete states � i of the system. As a concrete
example, Appendix 2 lists all 43 discrete states that we
have identified for our system. Each discrete state specifies
a continuous model. Given a set of continuous system in-
puts (X = (x1, x2,. . . ,xm)T ) applied from times t = t0 to
t = tF , a model will produce a series of system responses
{y1, y2,. . . ,yS}. The value of S is specified by the method of ob-
servation (e.g. for a rangefinder S = 1 corresponding to a single
distance measurement and for an overhead camera S = 3 for a
planar pose measurement). Using a time step of �t based on
the slowest available sample rates, observations are obtained
at the times tk � t0 � k�t for k � 1� 2� � � � � f where

f �
�

tF � t0

�t

�
�

Our S� f dimensional vector of system observations relative
to the initial values is:

Yi �
�
� y1�t1 � y1�t0� � y2�t1 � y2�t0� � � �

� yS�t1 � yS�t0� � � � � yS�t f
� yS�t0�

�T
�

Given a series of n system states (� 1� � 2� � � � � � n), a global sys-
tem model contains n continuous models, each describing the
system behavior in a specific state as shown in Figure 5.

For a system comprised of modular robots, we define a
series of module states observable by the available sensors.
Referencing our testbed (described in Section 2), and using
an overhead camera as a sole source of observations, we only
consider states that affect the movement of the robot. That is,
we only consider module states that change the robot’s ability
to negotiate its environment (move forward, backward, turn

Fig. 5. The observations of the global hybrid system model
depend on both system inputs X and discrete states � . It com-
prises a series of continuous models, one for each of the n sys-
tem states (� 1� � � � � � n). The state-specific model correspond-
ing to � i is capable of simulating the observation Yi .

clockwise, etc.) or articulate portions of itself (open and close
its gripper). The set of all system states is then defined as the
set of all possible combinations of the module states, lumping
states that result in the same observable behavior together.

Due to the limited observations available with any sens-
ing modality (and an overhead camera in particular), we note
that the total number of diagnosable states is limited. Of the
potentially observable module states (shown in Appendix 1),
we note that certain states are indistinguishable using observa-
tions. For example, using only the observations from an over-
head camera, it is impossible to differentiate between a wheel
slipping on the ground such that it transfers no forces to the ro-
bot, a wheel that is physically stuck and a wheel whose motor
is not responding to commands. As a result, we lump our ob-
servable module states into sets of diagnosable module states,
or states that we can accurately predict using available obser-
vations.

System states are created using all possible combinations
of module states. However, when creating these combina-
tions we again see redundancies in observable behaviors that
we lump into single classes of states. An example of this is
the ‘Unresponsive’ system state. This state lumps together all
combinations of module states containing any one of the fol-
lowing: {‘CPU-Unresponsive’}, {‘Left Wheel-Unresponsive’
and ‘Right Wheel-Unresponsive’}, {‘Left Wheel-Removed’
and ‘Right Wheel-Removed’}, {‘Left Wheel-Unresponsive’
and ‘Right Wheel-Removed’}, or {‘Left Wheel-Removed’ and
‘Right Wheel-Unresponsive’}. Because we limit our observa-
tions to the position and orientation of the robot in plane, full
diagnosis of all observable gripper states was impossible. This
was treated as a non-issue as the later addition of a single sys-
tem variable can produce additional gripper state information
(e.g. distance between gripper arms). As such, the classes of
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Fig. 6. Two-wheel independent-drive robot with position (e1� e2), orientation � and velocities shown.

system states that we consider lump all gripper states by their
effect on the robot’s movement (i.e. only the nominal state and
removed states are considered). A list of our system states is
available in Appendix 2.

We define the state equation of our testbed using equations
similar to Yamamoto et al. (1998) (Figure 6):

�e1 � � cos���

�e2 � � sin���

�� � �	
��r � ur

��l � ul

�� � fi �ur� ul�

�	 � gi �ur� ul� (1)

where fi and gi represent the general state-dependent dynam-
ics with ur and ul (right and left wheel accelerations) depen-
dent on the continuous input states. For this system, we define
our observations as

Yi �
�
�e1�t1 � e1�t0� �e2�t1 � e2�t0�

�� �t1 � � �t0� � � � � � �t f
� � �t0�

�T

where

e1 �
t f�

t0

�e1 and e2 �
t f�

t0

�e2

describe the absolute position of the robot relative to a fixed
coordinate in space, and

� �
t f�

t0

��

describes the rotation about the orthogonal (	e1 
 	e2) taken as
an absolute measure of the angular displacement of the robot’s
heading relative to the positive e1 axis ( 	e1).

3.2. Diagnostic Maneuver

Given a global system model, the purpose of a diagnostic ma-
neuver is to create a set of motions or procedures that will
promote an accurate prediction of an unknown system state
using observations taken during execution. That is, a diagnos-
tic maneuver is ideally chosen to ensure unique observations
(Y1 �� Y2 �� � � � �� Yn) for every system state (� 1� � 2� � � � � � n)
in the absence of noise.

We propose a method of deriving a prescribed set of in-
puts for diagnostic maneuver given a complex system. Fol-
lowing the Design of Experiment (DOE) techniques presented
by Fisher (1990), our proposed algorithm applies a three-step
process to determine which input factors are principal and to
optimize the system response based on the setting of these
principal system inputs. We define a principal system input
as a continuous system input (xi ) that has a notable effect on
the observations of the system.

1. Screening Experiment. In a case where all state-specific
models produce monotonic (strictly increasing or de-
creasing) system responses (y1� y2� � � � � yS), define high
(+1) and low (–1) values for every element of the sys-
tem input, X (for models that are not monotonic, three
or more values may need to be defined). Using these
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high/low values, create a series of 2m experimental run

iterations (X �
�

x1 x2 � � � xm

�T
) where all pos-

sible high/low combinations are addressed. Applying all
run iterations to a single state-specific model will pro-
duce a set of observations that can be used to statisti-
cally sort the relevance of the system inputs with respect
to the observations produced. Running this step through
each of the state-specific models or experimentally us-
ing a testbed with known states applied will create rele-
vant statistical information for every state of the system.
Combining this information, one can expound the statis-
tical relevance of each input factor relative to the output
over the entire generalized system model. This can be
done using standard statistical analysis techniques avail-
able in many statistical software packages (e.g. JMP
6.0, SAS Institute, Cary, NC). Using this information,
screening criteria (i.e. a designated statistical relevance
above some critical value) can be used to select the set
of principal system inputs.

2. Response Optimization. The goal of response optimiza-
tion is to maximize the change in each observation from
state-to-state by defining optimal system input func-
tions. This should be done while applying inputs over
as brief an interval as possible. A typical response op-
timization would be the application of a response sur-
face method that includes a quadratic model with cross-
product terms and three levels of variations for each in-
put term. This is better described by Myers and Mont-
gomery (1995). Noting that all input and output infor-
mation is discretized when applied to the actual sys-
tem, this step requires the consideration of the rates at
which information is sampled and commands are exe-
cuted. Specifically, the shortest interval over which the
input is applied should be at least as large as the time
taken for the system to respond.

3. Verification Test. There exists the possibility that in de-
signing the global system model, one or more of the
principal inputs may have been overlooked and there-
fore may not be included as a factor during the Screen-
ing Experiment. The verification test involves perform-
ing analysis of variance (ANOVA). Such a factor, with
a significant effect on the output of the system, will re-
sult in a larger than necessary standard error and F ratio
for the ANOVA test. In other words, the outputs result-
ing from our designated functions applied to principal
inputs will not be significantly different for two or more
of the system states. At this point the generalized system
model must be modified to include the missing principal
inputs and the previous two steps must be repeated.

Because of the simplicity of the testbed, we defined our
diagnostic maneuver intuitively. Limiting our observations to

Yi �
�
�e1�t1 � e1�t0� �e2�t1 � e2�t0�

�� �t1 � � �t0� � � � �� �t f
� � �t0�

�T

(the position and orientation of the robot in a plane as de-
scribed in Section 3.1), we settled on a diagnostic maneuver
consisting of a counterclockwise spin, followed by a clockwise
spin of the robot. This limited movement uses only the left
and right wheel motor inputs, making them the principal sys-
tem inputs. We then defined the applied levels of our principal
inputs and their durations based on the sample rate and field
of view of our overhead camera. The input level was defined
as the minimum motor voltage applied to a wheel module in
the nominal state that consistently produced observable move-
ment, regardless of the state of the gripper or opposite wheel.
The input duration was defined such that three discrete posi-
tion estimates could be taken for each spin.

3.3. Model-based Training

Given a complicated diagnostic maneuver, a method of model-
based training was devised where the diagnostic maneuver can
be separated into a set of simpler trajectories. The purpose of
performing this separation is to break a large set of observa-
tion data into numerically more manageable subsets. Consider
a system with n distinct system states (� 1� � 2� � � � � � n) with a
well-defined set of prescribed inputs X consisting of a piece-
wise combination of p distinct input functions such that:

X �

�����������������	
����������������


X1 t0 � t � 
 1

X2 
 1 � t � 
 2

���
���

Xi 
 i�1 � t � 
 i

���
���

X p 
 p�1 � t � 
 p

� (2)

Running one of these p distinct partial sets of inputs (Xi )
will produce just part of the diagnostic maneuver which we call
a trajectory. If our diagnostic maneuver is optimally defined to
meet the metrics discussed in Section 3.2, viewing a trajectory
can only result in q unique observations (1 � q � n). This
overlap in observations divides the set � into q subsets diag-
nosable using observations from the trajectory. As a result, we
say that Xi defines an equivalence relation on the set � such
that: �

� 1� � 2� � � � � n

�
�Xi

�
�
	� i

1� 	� i
2� � � � 	� i

j � � � � 	� i
q

�
(3)
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Fig. 7. Global system model where applied Xi produces a set of unique observations (Y i
1� � � � �Y

i
q) where 1 � q � n. The classes

of system states (	� i
1� � � � � 	�

i
q) are defined where each is assigned to a unique observation. Each class of system states 	� i

j is defined
such that it contains one or more element from the set of all system states � .

where

q
j�1

	� i
j �

�
� 1� � 2� � � � � n

�
 i � 1� 2� � � � p�

In other words, the diagnostic command Xi divides the set of
discrete system states into subsets that are equivalent (i.e. in-
distinguishable) with respect to the incomplete and imperfect
observations of the trajectories resulting from Xi . We denote
	� i

j as the jth class of system states induced by Xi . Each Xi -
induced class is assumed disjoint from one another such that

q�
j�k�1

	� i
j
	� i

k � ��

(the empty set) for all j �� k. In addition, the classes induced
by Xi are defined in such a way that:

	� 1
j1

� 	� 2
j2

�
� � �
� 	� p

jp
�

�����	
����


� j� j1� j2���� jp �1�2����p�

or

� �
� (4)

In other words, whereas individual observations result in
classes (subsets) of possible system states that are consistent
with the observation of the trajectory resulting from the com-
mand Xi , if the whole diagnostic maneuver is properly defined
and properly broken down into individual trajectories then
in the end an unambiguous system state should result. The

definition of the q classes of system states induced by Xi is
represented in Figure 7.

Note that an observation (Y i
j ) resulting from the jth class of

system states (	� i
j ) induced by Xi results in the r-dimensional

vector:

Y i
j �

�
� y1�
 i�1��t � y1�
 i�1

� � y2�
 i�1��t � y2�
 i�1
� � � �

� yS�
 i�1��t � yS�
 i�1
� � � � � yS�
 i

� yS�
 i�1
�
�T

where
r � S � 
 i � 
 i�1

�t
�

For every Xi (i � 1� � � � � p), the set of induced classes�	� i �
�	� i

1� 	�
i
2� � � � � 	�

i
q

��
is defined and conditional distrib-

utions are trained, one for each element of 	� i
. For each 	� i

j ,
a multi-variate Gaussian distribution is trained to estimate the
probability density that an observation (Y i

k ) has resulted from

a given state ( 	� i
j ) in terms of a 	� i

j -specific mean (i
j ) and co-

variance (�i
j ). The distribution for 	� i

j is given as:

p
�

Y i
k � 	�

i
j

�
� 1

�2��r�2
���i

j

��1�2

 exp

�
�1

2

�
Y i

k � i
j

�T �
�i

j

��1 �
Y i

k � i
j

��
� (5)

where Y i
k � 

i
j � �r , and �i

j � �r
r is symmetric and positive
definite.
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Note that the mean and covariance (i
j ��

i
j respectively)

are dependent upon 	� i
j . Here, Y i

k is defined as the observa-
tions taken from the trajectory produced from the execution
of the partial diagnostic inputs Xi . The probability density in
Equation (5) should be read as ‘the probability density that a
particular observation will occur if the robot state is in class
	� i

j ’.
Training of the diagnostic algorithm is based on the ideal

that the probability density function (PDF) of the Xi induced

class of system states 	� i
k when evaluated at an observation Y i

k

(attributed to the system with 	� i
k applied) will be larger than the

PDF of the Xi induced class of system states 	� i
j when evalu-

ated at the observation Y i
k . That is, given an observation (Y i

k )

from a known class of system states ( 	� i
k),

max
	� i

j�	�1

�
p
�

Y i
k � 	�

i
j

��
� p

�
Y i

k � 	�
i
k

�

where Y i
k is the observation associated with the known class

of system states 	� i
k when the partial diagnostic inputs Xi are

applied.
Noting the dependence on  and �, the training algorithm

is defined as follows.

1. Assign initial guess to i
j and �i

j for all 	� i
j � 	�

i
where

i
j and �i

j must fit the criteria stated above.

2. For each state 	� i
k � 	�

i
,

(a) generate an observation Y i
k using the system model

associated with 	� i
k or experimental data from the

system with 	� i
k applied�

(b) calculate p
�
Y i

k � � i
j

�
for all 	� i

j � 	�
i
�

(c) if max
	� i

j�	� i

�
p
�

Y i
k � 	�

i
j

��
� p

�
Y i

k � 	�
i
k

�
, do nothing�

(d) if max
	� i

j�	� i

�
p
�

Y i
k � 	�

i
j

��
� p

�
Y i

k � 	�
i
h

�
�� p

�
Y i

k � 	�
i
k

�
,

(i) increase the probability density p
�

Y i
k � 	�

i
k

�
al-

tering i
k and �i

k �

(ii) decrease the probability density p
�

Y i
k � 	�

i
h

�
altering i

h and �i
h .

To increase and decrease probability density estimates
given the defined probability density function, we utilize gra-
dients with respect to the mean and covariance. Specifically,
from the work of Jordan (2003), the gradient with respect to
i

j is

�
i

j

p
�

Y i
k � 	�

i
j

�
� ���Y i

k �
T ��i

j �
�1�T � ��i

j �
�1i

j

� � �r (6)

and the gradient with respect to ��i
j �
�1 is

�
��i

j �
�1

p
�

Y i
k � 	�

i
j

�

�
�

1

2

�
�i

j � �Y i
k � i

j ��Y
i
k � i

j �
T
�� � �r
r � (7)

Probability density is increased by moving the mean and
covariance up their respected gradient (using a positive step)
and decreased by moving the mean and covariance down their
respected gradient (using a negative step).

This algorithm is then iterated multiple times for every tra-
jectory. For better results, the algorithm can be run with a large
set of training data. Note that training data is produced from

two possible sources: (1) from the model for each 	� i
j with

bounded random noise added to either Xi or directly to Y i
j , or

(2) from experimental observations taken of the system with
known states applied. Ideally, as the amount of training data
increases, the values of i

k and �i
k will converge to a point

such that
max
	� i

j�	� i

�
p
�

Y i
k � 	�

i
j

��
� p

�
Y i

k � 	�
i
k

�

for all possible Y i
k .

3.4. Fault Diagnosis

We implement a generic particle filtering algorithm (van der
Merwe et al. 2000) to develop fault diagnosis in multi-robot
systems. For every trajectory, a fixed number of particles (N) is
initially distributed evenly among every class of system states

with N j designated as the number of particles found in 	� i
j .

Each particle, � k (k � 1� � � � � N ), has an associated weight
�k that is initialized to 1/N such that the total weight of all
particles is normalized to

N�
k�1

�k � 1�

Given an observation Y i
h the weight of � k is updated based on

the current class of system states ( 	� i
j ) that the particle is tied

to. Specifically, �k � �k � p
�

Y i
h � 	�

i
j

�
. These weights are then

renormalized such that

�k � �k

N�
k�1
�k

�

The set of particles is then resampled according to the total

weight of particles associated with each 	� i
j . That is, the N par-

ticles are redrawn with probability proportional to the sum of

normalized weights associated with each 	� i
j .

To eliminate sample impoverishment Dearden and Clancey
(2001), an equal number of particles is fixed in each class of

 at JOHNS HOPKINS UNIV on November 18, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Kutzer, Armand, Scheidt, Lin, and Chirikjian / Toward Cooperative Team-diagnosis in Multi-robot Systems 1079

system states such that inf
	� i

j�	� i

�
N j
� � N F

j and N F
h � N F

j for all

	� i
h� 	�

i
j � 	�

i
. The remaining number of particles (N D

j � N j �
N F

j ) are dynamic in that they are free to move between classes
of system states. Accounting for fixed and dynamic particles,
N D particles are randomly redrawn from the set of N particles
(rather than all N particles as described above). This leaves
N F particles fixed to their original class of system states. Note
that by using this method we remove the possibility of any one
class of system states reaching a zero probability.

The above method is then run for every available set of ob-
servations taken of a given trajectory. Once finished, we esti-

mate the probability of a given class of system states 	� i
j based

on the sum of the normalized particle weights tied to 	� i
j . We

denote this discrete probability as

�p
�	� i

j � �Y i
j

�
� N F

j � N D
j

N
�

where �Y i
j is the set of all observations used to calculate the

probability. Note the change of probabilistic variable from

the probability density function p
�

Y i
j � 	�

i
j

�
defined on Y i

j to

the probability distribution �p
�	� i

j � �Y i
j

�
defined on 	� i

j . Given

a sufficient number of observations from the same trajectory,
all dynamic particles should migrate to the most likely class of

system states, 	� i
j . That is, the ideal scenario yields

�p
�	� i

j � �Y i
j

�
� N F

j � N D

N

and

�p
�	� i

h � �Y i
j

�
� N F

h

N

for all h �� j .
Once a probability is calculated for every class of system

states for each trajectory in the diagnostic maneuver, we esti-
mate the probability of each system state using the intersect-
ing property of the classes of system states presented in Equa-
tion (4). Specifically, the intersection of Xi trajectory-induced
classes over i � 1� 2� � � � � p will either yield a unique sys-
tem state or the empty set. From this, we define the proba-
bility of being in any one system state as a joint probability

�p
�
� j � �Y 1

j1
& �Y 2

j2
& � � � �Y p

jp

�
where 	� 1

j1
� 	� 2

j2
� � � � � 	� p

jp
� � j .

We relate �p �� j � �Y i
ji

� � �p
�	� i

ji
� �Y i

ji

�
noting that the ob-

servations in the set �Y i
ji

are dependent solely on the class of

system states 	� i
ji

where � j � 	� i
ji

. Further consideration yields
the joint probability:

�p
�
� j � �Y 1

j1
& �Y 2

j2
& � � � �Y p

jp

�
�

p�
i�1

p
�
� j � Y i

ji

�

�
p�

i�1

p
�	� i

ji
� Y i

ji

�
(8)

where 	� 1
j1
� 	� 2

j2
� � � � � 	� p

jp
� � j .

Using this equation, final diagnosis is defined by finding
the system state associated with maximum joint probability.
Explicitly:

arg max
�k��

�
�p
�
� k � �Y 1

j1
& �Y 2

j2
& � � � �Y p

jp

��

� arg max
�k��

	�1
k1
�	�2

k2
�����	� p

k p
��k

�
�p
�	� 1

k1
� �Y 1

j1

�
� �p
�	� 2

k2
� �Y 2

j2

�

� � � � �p
�	� p

k p
� �Y p

jp

��
�

4. Testing Procedure

To evaluate our methods, we consider a set of thirty observa-
tions taken of each trajectory within the diagnostic maneuver
with each of the system states applied. Of these thirty obser-
vations per trajectory per state, we allocate half (fifteen per
trajectory per state) for training the diagnostic algorithm, and
half to evaluate the diagnostic algorithm. Using this dataset,
we train our algorithm using five, ten, and fifteen observations
per trajectory per state. We then evaluate trained algorithms
and compare the results to the ideal case.

We calculate  and � for each class of system states, us-
ing the 1000 iterations of the training algorithm presented in
Section 3.3. To evaluate training, we use the following two
metrics.

1. Number of Correct States. The number of classes of
states correctly predicted using the trained conditional
distribution after every iteration of the algorithm. We
define a class of states as correctly predicted if

max
	� i

j�	� i

�
p
�

Y i
k � 	�

i
j

��
� p

�
Y i

k � 	�
i
k

�
�

2. Continuous Error Estimate. The difference between the
probability density of the applied class of system states

(	� i
k) evaluated at Y i

k and probability density of the most

probable class of system states ( 	� i
j ) evaluated at Y i

k
summed through every iteration is calculated, i.e.

1000�
l�1

q�
k�1

p
�

Y i
k � 	�

i
k

�
� p

�
Y i

k � 	�
i
j

�
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where q is the total number of classes of system states
associated with the applied trajectory).

Ideally, we expect the number of correct states to converge
to the total number of classes associated with each trajectory,
and the continuous error estimate to converge to zero.

We first evaluate the trained diagnostic algorithms by diag-
nosing each known system state using the observations from
training (i.e. five observations per trajectory per state for the
five-sample training, ten observations per trajectory per state
for the ten-sample training, etc.). The results are presented us-
ing a surface plot of the calculated probability of each sys-
tem state versus the known state of the observations used in
the diagnosis. Note that the ideal case will produce a con-
sistent peak along the diagonal indicating that the predicted
system state matches the applied or observed system state.
Specifically, we used five fixed and twenty dynamic particles
per class of system states associated with each trajectory. As
a result, the highest possible probability of any class for each
of our trajectories is therefore (20 
 25)/(25 
 25) = 0.8. Cal-
culating the joint probability using Equation (8) yields a max-
imum possible probability of any state equal to 0.64. Simi-
larly, the minimum possible probability of any state is equal to
[5/(25 
 25)]2 = 6.4 
 10�5.

We then compare the performance of the five-sample, ten-
sample and fifteen-sample trained algorithms, diagnosing us-
ing a single observation. To do so, we use the ratio of the total
number of correctly predicted states to the total number of in-
correctly predicted states. We define a correctly predicted state
using the following criteria: (1) the state with the maximum
probability matches the state of the applied observations, and
(2) the maximum probability is at least 1.05 times the second
highest probability. We define an incorrectly predicted state
using similar criteria: (1) the state with the maximum proba-
bility does not match the state of the applied observations, and
(2) the maximum probability is at least 1.05 times the second
highest probability. All diagnoses not matching the criteria for
either a correct or incorrect diagnosis are considered inconclu-
sive. Each diagnosis is performed using a single observation.
We calculate the total number of correct and incorrect diag-
noses by summing every diagnosis applied over the entire set
of observations allocated for evaluation.

Finally, we evaluate the ten-sample trained diagnostic algo-
rithm performance using multiple observations. Specifically,
we compare the ratio produced using a single observation (de-
scribed above) to the performance using five and ten obser-
vations. To make our data comparable to the single observa-
tion testing, we use fifteen combinations of five observations
per trajectory per state, and fifteen combinations of ten obser-
vations per trajectory per state from the evaluation data. We
present the results using the same ratios described above.

To evaluate the global system model, we first trained a di-
agnostic algorithm using 100 observations per trajectory per
state produced from the global system model. Over the 100

observations, reasonable noise was added to the model in an
attempt to match the noise experimental. Once trained, we re-
peated the evaluation procedure from the ten-sample trained
diagnostic algorithm performance using multiple observations.

5. Results

The metrics from five-sample training are presented in Fig-
ures 8 and 9. We observed an apparent exponential conver-
gence of both metrics and subsequent plateau in training for
both the clockwise and counterclockwise trajectories. The
maximum number of correct states calculated for the clock-
wise trajectory was 19 out of the 25 classes of clockwise sys-
tem states (Figure 8a). For the counterclockwise trajectory, the
maximum number of correct states was 23 out of the 25 classes
(Figure 9b). After 1000 iterations, the continuous error esti-
mates were –5.72 
 10�4 for the clockwise trajectory (Fig-
ure 8b) and –3.47 
 10�4 for the counterclockwise trajectory
(Figure 9b).

Figure 10 shows results of diagnoses performed using the
five training observations per trajectory per state. This particu-
lar test shows 19 out of the 43 system states correctly predicted
with an associated probability of �1.6 times the second most
likely state. Of the 43 system states, 10 are effectively indistin-
guishable from one another with an associated probability of
�1.05 times the second most likely state.

Applying the same procedures to ten-sample training shows
notable improvement. The maximum number of correct states
calculated for the clockwise trajectory was 25 out of 25 classes
of clockwise system states (Figure 11a). For the counterclock-
wise trajectory, the maximum number of correct states was 23
out of 25 classes (Figure 12a). After 1000 iterations, the con-
tinuous error estimates were –1.58 
 10�2 for the clockwise
trajectory (Figure 11b) and –7.00
 10�3 for the counterclock-
wise trajectory (Figure 12b).

Figure 13 shows results of diagnoses performed using the
ten training observations per trajectory per state. This test
shows a far more consistent peak as 29 out of 43 system states
are correctly predicted with an associated probability of �1.6
times the second most likely system state. Further, this test
shows 34 out of the 43 system states correctly predicted with
an associated probability of �1.5 times the second most likely
system state. Finally, none of the 43 system states are indistin-
guishable, with an associated probability of �1.05 times the
second most likely state.

For fifteen-sample training, the maximum number of cor-
rect states calculated for the clockwise trajectory was 25 out
of the 25 classes of the clockwise system states. For the coun-
terclockwise trajectory, the maximum number of correct states
was 24 out of the 25 classes. After 1000 iterations, the con-
tinuous error estimates were –6.74 
 10�2 for the clockwise
trajectory and –1.03 
 10�2 for the counterclockwise trajec-
tory.
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Fig. 8. Training metrics for five-sample training of the clockwise trajectory. (a) Number of Correct States metric plotted after
every ten iterations of the algorithm and (b) Continuous Error Estimate metric plotted after every ten iterations of the algorithm.

Fig. 9. Training metrics for five-sample training of the counterclockwise subroutine. (a) Number of Correct States metric plotted
after every ten iterations of the algorithm and (b) Continuous Error Estimate metric plotted after every ten iterations of the
algorithm.
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Fig. 10. Surface plot of predicted observation states probability using the five training observations per trajectory versus the
known observation state.

Fig. 11. Training metrics for ten-sample training of the clockwise trajectory. (a) Number of Correct States metric plotted after
every ten iterations of the algorithm and (b) Continuous Error Estimate metric plotted after every 10 iterations of the algorithm.
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Fig. 12. Training metrics for ten-sample training of the counterclockwise subroutine. (a) Number of Correct States metric plotted
after every ten iterations of the algorithm and (b) Continuous Error Estimate metric plotted after every ten iterations of the
algorithm.

Fig. 13. Surface plot of predicted observation state probability using the ten training observations per trajectory versus the known
observation state.

 at JOHNS HOPKINS UNIV on November 18, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


1084 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / September 2008

Fig. 14. The ratios of correct diagnoses to incorrect diagnoses
for five-sample, ten-sample and fifteen-sample training.

The results of diagnoses performed using the fifteen train-
ing observations from each state were 31 out of 43 system
states correctly predicted with an associated probability of
�1.6 times the second most likely system state. Further, this
test produced 35 out of the 43 system states correctly predicted
with an associated probability of �1.5 times the second most
likely system state. Finally, none of the 43 system states are in-
distinguishable with an associated probability of �1.05 times
the second most likely state.

The ratios of correct diagnoses to incorrect diagnoses for
five-sample, ten-sample and fifteen-sample trained algorithms
are shown in Figure 14. We note an initial increase from the
five-sample ratio (approximately 1.5) to the ten-sample ra-
tio (approximately 5.3), followed by decreased ratio (approxi-
mately 4.2) for fifteen-sample training.

The results from the ten-sample trained algorithm perform-
ing diagnosis using one observation per trajectory per state,
five observations per trajectory per state and ten observations
per trajectory per state are shown in Figure 15. Here, we note
an initial increase from the single observation ratio (approxi-
mately 5.3) to the five observation ratio (approximately 9.2).
This is then followed by an apparent plateau with the ten-
observation ratio (approximately 8.8).

For 100-sample model-based training, the maximum num-
ber of correct states calculated for the clockwise trajectory was
25 out of the 25 classes of the clockwise system states. For the
counterclockwise trajectory, the maximum number of correct
states was 25 out of the 25 classes. After 1000 iterations, the
continuous error estimates were –1.35 
 10�1 for the clock-
wise trajectory and –9.74
 10�2 for the counterclockwise tra-
jectory.

The results of diagnoses performed using the 100 model-
based training observations from each state were 43 out of 43
system states correctly predicted with an associated probabil-
ity of >1.6 times the second most likely system state.

Fig. 15. The ratios of correct diagnoses to incorrect diagnoses
using the ten-sample trained algorithm run using a single ob-
servation, five observations and ten observations.

The results from the algorithm trained using 100 model ob-
servations per trajectory per state performing diagnosis using
one experimental observation per trajectory per state, five ex-
perimental observations per trajectory per state, and ten ex-
perimental observations per trajectory per state are as follows.
Using a single experimental observation, the ratio was approx-
imately 1.3. For the five experimental observations, the ratio
was approximately 1.2. Finally, for the ten-experimental ob-
servation, ratio was approximately 1.3.

6. Discussion and Future Research

We have demonstrated a generalized approach for cooperative
team-diagnosis in multi-robot systems. This approach is not
limited by the number of system inputs nor is it limited by the
number of system states.

Our experimental results, while promising, provide addi-
tional challenges to training and diagnosing the system. As
noted in Section 5, we were unable to produce training capa-
ble of predicting all 43 designated system states. Rather, both
increasing the experimental samples used for training and in-
creasing the number of experimental observations used for di-
agnosis showed apparent plateaus in the ratio of the total cor-
rect diagnoses to the total incorrect diagnoses. Training using
observations from the dynamic model produced a diagnostic
algorithm that was capable of correctly diagnosing at least part
of the experimental observations. However, the results were
significantly worse than those produced by algorithms trained
using experimental data.

The possible cause of the noted plateaus is the overlap of
observations (Yi � Y j ) associated with specific sets of sys-
tem states. These overlaps may also have caused fluctuations
seen while training the diagnostic algorithms (Figures 8a, 9a,
11a and 12a). We attribute these overlaps to sub-optimal data

 at JOHNS HOPKINS UNIV on November 18, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Kutzer, Armand, Scheidt, Lin, and Chirikjian / Toward Cooperative Team-diagnosis in Multi-robot Systems 1085

Table 1. Example of system states that may produce an
overlap in observations

State 33 State 39

CPU – Nominal CPU – Nominal

Left wheel – Stuck clockwise Left wheel –
Stuck clockwise

Right wheel – Removed Right wheel – Stuck

Gripper – Nominal Gripper – Nominal

collection. Specifically, the low observation sampling rate cou-
pled with un-modeled dynamics that resulted in an overly con-
servative diagnostic routine can explain these results. We as-
sume the majority of un-modeled dynamics are directly related
to the twisting, bending and dragging forces of robot’s power
and communication tether. Admittedly, this was ignored in the
derivation of the dynamic model as we assumed its contribu-
tion would be negligible.

As an example of two states that produce overlapping ob-
servations, consider states 33 and 39 shown in table 1.

Experimental results indicate that system state 39 shows the
expected decrease in the number of incorrect diagnoses when
we increase from five-sample to ten-sample training. Out of
the 15 diagnoses, we see 8 incorrect diagnoses associated with
five-sample training and 4 incorrect diagnoses associated with
ten-sample training. The result of increasing the number of
observations used for a given diagnosis, however, produces a
sharp increase in the number of incorrect diagnoses. With ten-
sample training, we see 7 incorrect diagnoses from the 15 di-
agnoses where each uses 5 observations. Likewise, of the 15
diagnoses where each uses 10 observations, we see 10 incor-
rect diagnoses. Consistently, each of these incorrect diagnoses
predicts system state 33. This erroneous recurrence results in
a high probability associated with state 33 when we increase
the number of observations used in a diagnosis. In the case
where 10 observations are used to diagnose observations from
state 39, the estimated probability associated with each incor-
rect diagnosis (probability of state 33) becomes consistently
�0.60 while the probability associated with the applied state
(probability of state 39) is consistently �0.10.

When applying system states 33 and 39 to the dynamic
model, the discrepancy between states produces observations
that are clearly different even with substantial noise applied
to the motor inputs. Applying these states to the testbed, how-
ever, produces many observations that are impossible to differ-
entiate. As mentioned previously, we attribute this undesirable
behavior to the un-modeled forces associated with the robot’s
power and communication tether. We further note that consis-
tent overlapping of testbed observations with specific states
applied occurs regularly between all states with motion sim-
ilar to a state containing a missing wheel module. The effect
of tether interaction may be further amplified by the applica-
tion of a vision system with a very low sampling frequency.

Note that the low sampling frequency was intentionally used
to increase the diagnosis challenge.

Clearly, the possibility of system states being masked by
other system states is a potential issue with this method of di-
agnosis. Specifically, this problem arose because of what ap-
pears to be a suboptimal diagnostic maneuver. With that said,
the solution to this issue has already been presented in Sec-
tion 3.2 in that, by definition, an optimal diagnostic maneu-
ver should effectively eliminate this large overlap between the
observations associated with system states. Because our diag-
nostic maneuver was intuitively defined based on an under-
standing derived from the global system model, we effectively
overlooked some key contributors to the robot’s behavior.

As mentioned, we attribute the majority of these overlap-
ping observations to un-modeled dynamics resulting from the
robot’s power and communication tether. Had we used exper-
imental data to derive the diagnostic maneuver in lieu of the
global system model, this masking phenomenon may never
have arisen. To further reduce the risk of overlapping observa-
tions, a longer diagnostic maneuver can be used. That is, if we
relax the ‘applied over as short an interval as possible’ met-
ric described in Section 3.2, we will effectively make longer
observations that will convey more than the minimum amount
of information necessary to make a diagnosis. By doing so,
we will reduce the possible overlap between observations, but
increase the time and energy required to perform a diagnosis.

While our experimental results focus on what can effec-
tively be considered a two-robot system, we specifically con-
sidered diagnosis using multiple observations as an initial
proof of concept for diagnosis using multiple robots simul-
taneously. Specifically, we assume that five robots capable of
observing a diagnostic maneuver and submitting their observa-
tions to one another is equivalent to a single robot taking an ob-
servation of five diagnostic maneuvers. The main assumption
is that the source of observations differs in a way that will add
information to the diagnosis. That is, each robot sees things in
a slightly different way (from a different angle or distance).

We have demonstrated an approach for team-diagnosis that
is not limited by the number of system inputs and/or system
states. To further develop this generalized approach, we sug-
gest that the following topics be addressed.

1. Unknown System States. The addition of one or more
unknown or unassigned system state(s) to the diagnostic
algorithm may improve the applicability of this method.
That is, this method will become far more applicable to
complex systems if the diagnostic algorithm is improved
to account for one or more system states that may have
been overlooked during development.

2. Robust Strategies for Separating Indistinguishable
States. This may require the use of multiple, hetero-
geneous sensors on each robot, or distributed amongst
members of a team of robots. Specifically, a set of se-
lection criteria for the types of sensors and observa-
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tions that will provide useful information to distinguish
between indistinguishable states will increase the pre-
sented methods utility.

3. Environment Compensation. Methods of accounting for
various changes in the environment where diagnosis is
performed will make the presented method far more ro-
bust. Methods of accounting for environmental changes
may include training using data from multiple environ-
ments and estimating behavioral changes relative to en-
vironmental information.

4. Diagnoses from Faulty Robots. For cooperative team-
diagnosis to become a useful technique, methods of
accounting for undetected faults should be developed.
Specifically, the possibility exists that one or more of
the diagnosing robots could contain a fault. In this case,
the diagnoses contributed by these robots cannot neces-
sarily be trusted. Accounting for this may require tech-
niques for detecting the outliers attributed to diagnoses
submitted by unreliable robots.

5. Combining Diagnoses. Given a team of robots, the is-
sue of combining diagnoses from various robots needs
to be addressed. Consider the scenario described above
where one or more robots performing diagnosis is unre-
liable. In this case, how can the available diagnoses be
compiled, and where will the compiling occur? Com-
pensating for this issue may require techniques involv-
ing distributed decision-making or SWARM techniques.

7. Towards Team Repair

Previously, we defined team repair as the act of determining
the correct course of actions based on an identified problem
and completing the appropriate action to solve the problem.
Applying this definition to a team of modular robots, team re-
pair becomes a coordinated effort between robots to remove
and replace modules diagnosed as faulty. To do so, we pro-
pose a structured plan for performing repair that is defined by
a compiled set of prescribed module-specific procedures cor-
responding to each system state. Once all module-specific pro-
cedures are completed, the team will consider the ailing robot
repaired. We consider a rather simple repair paradigm applied
to our testbed.

1. Robots cooperatively diagnose the faulty module(s) of
the Ailing Robot.

2. Each robot plans and reports a shortest path to the faulty
module(s) of the Ailing Robot and a storage area of re-
placement parts based on its collective knowledge of the
position of the other robots in the working environment.

3. For each faulty module, the robotic team will repeat the
following stages.

(a) The robot with the shortest path to the storage area
(the Replacement Robot) will move to collect the
required replacement module.

(b) The robot with the shortest path to the faulty mod-
ule (the Removal Robot) will move to and remove
the faulty module from the ailing robot.

(c) The Removal Robot will transport the faulty mod-
ule from the Ailing Robot and deposit it in a desig-
nated part of the storage area.

(d) The Replacement Robot will move to the Ailing
Robot and replace the faulty module.

(e) The Removal Robot will move and assume the
original location of the Replacement Robot and
the Replacement Robot will move and assume the
original location of the Removal Robot.

The team-repair discussed above is a simple paradigm
within a structured environment. In order for robots to act on
the information obtained from team-diagnosis, schemes to ef-
fectively implement team-repair procedures must be consid-
ered. Specifically, both the individual subsystems of the ro-
bot and the team-repair protocols must be robust to errors
and uncertainty. Clearly, many sources of potential disorder
exist. The error associated with sensing, manipulation and
environmental uncertainty combine to yield a high potential
for disorder. Moreover, the structured team-diagnosis as dis-
cussed in the results ignores time-dependent motions of ob-
jects/obstacles during the planning and execution of the repair
procedure. A more realistic scenario may include moving ob-
jects/obstacles as well as robots in the environment during this
procedure.

In addition, for optimal planning of the shortest paths, the
repair objective function may also consider the task-in-hand
for each robot at the time of repair. For example, if one ro-
bot does not have an important or time-sensitive task, it may
be more efficient for that robot to perform all of the six re-
pair steps (described above) by itself. Moreover, the example
discussed here includes homogenous robots with similar mod-
ules. In a more general problem, the cooperative team may
involve heterogeneous modular robots where robots carry dif-
ferent payloads and perform different functions. As a result,
the task of team-repair will become more complicated and the
objective function must therefore include metrics for the task
being performed, including the importance of the task and the
capabilities of each robot.

The extension of team-repair to an unstructured environ-
ment may be addressed by applying behavior-based swarm al-
gorithms to the system (Scheidt et al. 2005). The development
and implementation of behavior-based swarm algorithms has
been reported on numerous hardware platforms including un-
manned air, ground and sea-surface vehicles (Hawthorne et al.
2007). These experiments have shown the ability of these al-
gorithms to perform well in scenarios that have intermittent
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Appendix 1

Fig. 16. Observable module states (gray) and diagnosable module states (white).

communications, contain heterogeneous mix of vehicles and
sensors and require extended operation without direct human
supervision. The theoretical bases of these algorithms are dy-
namic co-fields, a swarm behavior that uses localized deci-
sion processes to generate emergent sophisticated maneuvers
(Scheidt et al. 2005, Hawthorne et al. 2007). The future ex-
tension of this work will involve the implementation of these
behavior-based swarm algorithms to the problem of coopera-
tive team-repair in unstructured environments.
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Appendix 2

Table 2. Observable system states

State CPU Left wheel Right wheel Gripper
1 Nominal Nominal Nominal Nominal
2 Nominal Nominal Nominal Removed
3 Nominal Clockwise Rotation Nominal Nominal
4 Nominal Clockwise Rotation Nominal Removed
5 Nominal Counterclockwise Rotation Nominal Nominal
6 Nominal Counterclockwise Rotation Nominal Removed
7 Nominal Nominal Clockwise Rotation Nominal
8 Nominal Nominal Clockwise Rotation Removed
9 Nominal Clockwise Rotation Clockwise Rotation Nominal
10 Nominal Clockwise Rotation Clockwise Rotation Removed
11 Nominal Counterclockwise Rotation Clockwise Rotation Nominal
12 Nominal Counterclockwise Rotation Clockwise Rotation Removed
13 Nominal Nominal Counterclockwise Rotation Nominal
14 Nominal Nominal Counterclockwise Rotation Removed
15 Nominal Clockwise Rotation Counterclockwise Rotation Nominal
16 Nominal Clockwise Rotation Counterclockwise Rotation Removed
17 Nominal Counterclockwise Rotation Counterclockwise Rotation Nominal
18 Nominal Counterclockwise Rotation Counterclockwise Rotation Removed
19 Nominal Removed Nominal Nominal
20 Nominal Removed Nominal Removed
21 Nominal Unresponsive Nominal Nominal
22 Nominal Unresponsive Nominal Removed
23 Nominal Removed Clockwise Rotation Nominal
24 Nominal Removed Clockwise Rotation Removed
25 Nominal Unresponsive Clockwise Rotation Nominal
26 Nominal Unresponsive Clockwise Rotation Removed
27 Nominal Removed Counterclockwise Rotation Nominal
28 Nominal Removed Counterclockwise Rotation Removed
29 Nominal Unresponsive Counterclockwise Rotation Nominal
30 Nominal Unresponsive Counterclockwise Rotation Removed
31 Nominal Nominal Removed Nominal
32 Nominal Nominal Removed Removed
33 Nominal Clockwise Rotation Removed Nominal
34 Nominal Clockwise Rotation Removed Removed
35 Nominal Counterclockwise Rotation Removed Nominal
36 Nominal Counterclockwise Rotation Removed Removed
37 Nominal Nominal Unresponsive Nominal
38 Nominal Nominal Unresponsive Removed
39 Nominal Clockwise Rotation Unresponsive Nominal
40 Nominal Clockwise Rotation Unresponsive Removed
41 Nominal Counterclockwise Rotation Unresponsive Nominal
42 Nominal Counterclockwise Rotation Unresponsive Removed
43 Unresponsive Unresponsive Unresponsive Unresponsive
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