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In this paper we apply techniques from noncommutative harmonic analysis to
the development of fast algorithms for the computation of convolution integrals
on motion groups. In particular, we focus on the group of rigid-body motions
in 3-space, which is denoted here as SE(3). The general theory of irreducible
unitary representations (IURs) of the 3D motion group is described briefly. Using
IURs in operator form, we write the Fourier transform of functions on the motion
group as an integral over the product space SE(3) x S2. The integral form of the
Fourier transform matrix elements allows us to apply fast Fourier transform (FFT)
methods developed previously for R3, $2, and SO(3) to speed up considerably
the computation of convolutions of functions on SE(3). Such convolutions have
been shown to play an important role in a number of engineering disciplines.
An algorithm for the fast computation of the Fourier transform is given and its
complexity is discussed. The Fourier transform for the 3D “discrete motion group”
(semi-direct product of the icosahedral group with the translation group) is also
developed and the computational complexity is discussed.  © 2000 Academic Press

1. INTRODUCTION

In this paper we apply noncommutative harmonic analysis to the development of fast
numerical algorithms for the computation of convolution integrals on the motion group of
three-dimensional Euclidean space. This group, which is often called the special Euclidean
group, will be denoted throughout this paper as SE(3). Convolution integrals on SE(3) arise
in a number of scenarios.

Our motivation for deriving a fast Fourier transform (FFT) for the motion group came
from the need to compute convolutions on the motion group efficiently. In a series of
papers, the importance of motion-group convolutions in robotics [4], polymer science [5],
and image analysis [17, 19] has been established. Our initial interest in convolution-like
operations arose in the concrete context or manipulator workspace generation [14]. It was
only later that we realized that the numerical procedures we were implementing were
essentially motion-group convolutions.

Other applications and connections between noncommutative harmonic analysis and
classical Fourier analysis can be found in [6]. The common feature in all of the applications
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of motion-group convolutions studied in engineering to date is that one function is rigidly
swept (rotated and translated) over another. From a practical perspective, motion-group
convolutions are very much like convolutions on the line or circle, since the motion
groups are “almost like” R”. The most significant difference is that whereas translations
commute, rigid-body motions do not. In addition to the practical problems in which such
convolutions arise, the motion groups serve as the first example of a class of noncompact
noncommutative Lie groups for which FFTs can be defined when dealing with compactly
supported functions. We note also that the motion groups are not nilpotent or semisimple,
which are, in a sense, the easiest kinds of noncompact noncommutative Lie groups to study.

Below, the general theory of irreducible unitary representations (IURs) of the motion
group are described briefly. We show how to write the Fourier transform on SE(3) using
matrix elements of IURs. The Fourier transform is written in an integral form which
allows us to apply (after interpolation from a rectangular grid to a spherical coordinate
grid), fast Fourier transform methods for IR? and for the 2-sphere. For N = O (S5°) sample
points (S being a representative number of samples in each coordinate parameterizing the
group), the complexity of computations is reduced from 0(N2) to O(N 7/ 6(log N )2) +
O (NY+1/3) where the second term depends on the complexity of matrix multiplication,
and 2 < y < 3 depending on how matrix multiplication is implemented.

‘We also develop Fourier transform methods for the “discrete motion group”, which is the
semi-direct product of the continuous translation group and any finite subgroup of SO(3)
(the icosahedral group in our example). We discuss briefly the computational complexity
of the numerical implementation of the Fourier transform for the discrete motion group.

In Section 2 we give the general theory behind the Fourier transform of functions on
SE(3). An algorithm for fast computation of the Fourier transform of functions on SE(2)
and SE(3) is given in Section 3. Section 4 describes the Fourier transform on the discrete
motion group and its computational complexity.

2. FOURIER TRANSFORM FOR THE 3D MOTION GROUP

‘We describe in this section the Fourier transform of functions on the motion group which
allows one to write convolution integrals on the motion group as a matrix product in Fourier
space. Convolution on the motion group is defined as

(f1* f2)(8) Z/Gfl(h)fz(h_l o g)du(h), (1

where the integral is taken over the group with respect to the measure . We remind the
reader that the motion group G = SE(3) is unimodular; i.e., it has a measure p such that if

w(f) =/Gf(g)du(g),

then p(R(h)f) = u(L(h)f) = u(f) where R(h)f(g) = f(g o h) and L(h)f(g) =
f(h~' o g) are respectively right- and left-shifted versions of the function f(g) with
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respect, to arbitrary i € G. It is well known that all finite groups' and all compact Lie
groups are unimodular, as are the motion groups > considered in this paper.

In the case of the Fourier transform for the real line, the function u(x, p) = eiPx plays a
very important role. The Fourier transform defined according to the equation

Fp) = f F@u(=x, pydx

reduces the convolution equation

o0
0= [ A he -y
—0o0
to a simple product in Fourier space:
£y = fip) Ap).
This convolution property is based on the homomorphism property
u(xi, pu(xa, p) =P = P =y (x) 4 x2, p).

The exponentials u(x, p) = ¢'P* are, therefore, representations of the translation group
(see [18, 33] for definitions), labeled by the continuous parameter p. They are unitary in
the sense that u(x, p)u(x, p) = 1.

An analogous function is needed for a unimodular group G if the Fourier transform pair
is to be defined. However, since G is usually not commutative, a scalar function u(g, p) is
not sufficient to reflect its noncommutative nature. Instead of a unitary scalar function, we
must look for a unitary matrix U(g, p) with elements u,,, (g, p). The variable p is called
the dual variable and may be a scalar or other quantity. These matrices (called irreducible
unitary representations of the group) must have the homomorphism property

U(giog, p)=U(g1, pU(g, p)

for all g1, g2 € G and p labels inequivalent ITURs of G. In addition to the homomorphism
property which is required in the definition of a representation, these matrices are unitary
in the usual sense (U (g)U (g) = 1), and irreducible in the sense that they cannot be block-
diagonalized by a similarity transformation. A number of works including [33] have shown
that the elements of the unitary matrices U (g, p) of many groups can be defined in terms
of the standard functions of mathematical physics.

The Fourier transform of a suitable function f(g) and the inverse transform are defined
as

F(fy=f(p)= /G f(@UE ", pydule)

'n the special case of finite groups, integration is viewed as summation.

2 The motion group of 3-space, SE(3), consists of all elements of the form g = (a, A) € R3 x SO(3) with the
product (aj, A1) o (ap, Ap) =(a; + Ajap, AjAp). The discrete motion groups are defined in an analogous way
with any discrete subgroup of SO(3) playing the role of SO(3) in the definition of SE(3).
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and
fle)y=Ffp) = /étrace(f(p)U(g, p))dv(p),

where dv(p) is an appropriately defined measure on the dual space, G, of G.
The irreducible representations of the 3D motion group may be built on the space of
square-integrable functions on the 2-sphere, L?(S?), with the inner product defined as

b4 2
(¢1,92) :/ f pr(wez(w)sinfdo dg, (2
6=0 J¢p=0

for ¢; (u) € L?(S?%) where u = (sin6 cos¢, sinfsing, cosf),and0 <6 <m,0< ¢ <2m.
The rotation subgroup SO(3) of the motion group acts on T (where T is the dual space
of the translation subgroup T = (R3, 4)) by rotations, so T is divided into orbits S 2 where
Slz, are spheres of radius p = |p|.
To construct the representations of the motion group explicitly we choose a particular
vector a = (0,0,1) on S2. The vector @ is invariant with respect to rotations from the
SO(2) subgroup of SO(3)

Al=&;  AeH;=S0(Q), 3)

where Hy is the so-called little group of @. For each u € $*> we may find Ry €
SO(3)/SO(2), such that
Ryt =u.

Then for any A € SO(3) one may check that
(Ry'AR -1 )G =i

Therefore,
O(u, A) 2 (R;'AR,-1,) € H.

The representations of Hi may be taken to be of the form
Ag: ¢ — %9 0<¢ <2nm,

and s =0, £1,+2,....
The representations of SE(3) (which are examples of induced representations [8]) may
be built using the representations of Hy described above.

DEFINITION. The unitary representations U® (a, A) of SE(3), which act on the space of
functions L?(S?) with the inner product (2), are defined as

(U (a, A; p)p)(u) = e PU2A(Q(u, A))g(A ), 4

where A € SO(3), Ay are representations of Hg ands =0, £1,£2,.... We denote p = pu,
whereu-u=1.
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Each representation, characterized by p = |p| and s, is irreducible (they, however,
become reducible if we restrict SE(3) to SO(3), i.e., when a = |a| = 0). They are unitary,
because (U’ (a, A)g1, U’ (a, A)g2) = (g1, ¢2).

The representations (4) allow us to write the matrix elements of the IURs of SE(3) in
integral form and to apply FFT methods for fast numerical computations.

3. ALGORITHMS FOR MOTION GROUP CONVOLUTIONS USING FFTs

Here we describe an algorithm for computing 3D continuous motion group convolutions
using FFTs. We use irreducible unitary representations of SE(3) (as described in the section
above) to calculate Fourier matrix elements in integral form.

To write the Fourier transform in matrix form we calculate the matrix elements of

U(g, p) as

US ooy m@ A p) = /S @ U (s, )}, (W) du.

where du = sin6d6d¢ and hy, ,(a) = hy, ,(0,¢) are generalized spherical harmonics
defined below in Eq. (5).

3.1. Direct Fourier Transform

We use basis eigenfunctions 4, (u) to write Fourier matrix elements in the integral form

mlm(p)_/ / f f(l' R)h )(ll)
ues? JreR3 J ReSO(3)
x P A (Qu, R)RY, . (R-'u)dud’rdR,

where d R is the normalized invariant integration measure on SO(3) and d 3r=dridrdrs.
The basis functions may be expressed in the form [24]

0 (0.0) = 0L, (cos@)e! TP, Q)

Q—x m(COSQ) = (_l)l_xv 2l4+ Pslm( 0s6),

and generalized Legendre functions Pslm (cos ) are given as in Vilenkin and Klimyk [34].
Under the rotation R these functions are transformed as

where

(U (0, R; p)hj,) () = Ag(Q(u, R)A},)(Ru) = Z m (R)hp, (w).

n=—I

nm (R) are matrix elements of SO(3) representations

Ul (A)=e ™M (—1)y"™Pl (cosBle ", (6)

where a, B, y are z — x — z Euler angles of the rotation and P! (cos B) is a generalization
of the associated Legendre functions [33].
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Thus, the Fourier transform matrix elements may be written in the form

(P = / / / £, R, (W)
ues? JreR3 JReSO(3)

x ePur Z U” (R)RS, (w)dud’rdR.
n=—1'
For estimates of complexity of numerical algorithms we introduce the following
notations:

N, —number of samples on R3,

Npg —number of samples on SO(3),

N, —number of samples of the p interval,
N, —number of samples on s2,

Nfg — total number of harmonics.

We assume that only a finite number of harmonics are required for an accurate
approximation of the function f(g). Hence only matrix elements in the range |s| < S
and [,!’ < L are computed. We assume also that L = O(S). We have made the following
assumptions about the number of samples in terms of S:

N, = 0(S?),
Ng = 0(S%),
N, =0(S),
N, = 0(S?),
Np = 0(SY).

From these definitions, N = N, - Ngp = 0(56) and N, - Np = O(N).

Our algorithm for the numerical computation of the direct Fourier transform is as
follows:

(a) First, assuming f(r, R) is compactly supported, we compute

A(R.p) = / £, R)ePT &3
R3

using FFTs for a Cartesian lattice in R®. This integral may be computed in O (N, log(N,)
Npg) computations. The resulting Fourier transform is computed on a rectangular grid. We
need to perform interpolation to the spherical coordinate grid in order to compute values

fi(R; p,u).

The complexity of this interpolation is discussed in the Appendix. In general,
O (N€(N,)) computations will be required for each different sampled rotation. For high-
precision numerical approximations, 3D spline interpolation technique may be used (see,
e.g., [7, 29]). For N;-point spline interpolation for all values of rotation, the complexity of
interpolation is of O (N; N, Ng) computations, i.e., €(N,) = N;. Since spline interpolation
only uses a small subset of the sample points, we assume Ng; = O(1). For exactly
reversible interpolation (in exact arithmetic) Fourier interpolation can be used. In this case
€(N,) = O((log N,)?), for reasons that are explained in the Appendix.
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(b) Next, we perform integration on SO(3)

() (pow) = / fi(R, p.wU" (R)dR.
SO(3)

This is the Fourier transform on the rotation group, computed for different values of
p and u. A fast Fourier transform technique for SO(3) has been developed by Maslen
and Rockmore which calculates the forward and inverse Fourier transform of band-
limited functions on SO(3) in O(Ng(logN ®)?) arithmetic operations for Ng sample
points [23]. This may be applied to compute f> for all values of p and u and all indices
in O(NpN,Ng(log N R)z). We assume that N, N, = N,; thus the order of computations is
O (N, Ng(log Ng)?).
(c) Finally, we may perform integrations on the unit sphere

l/
Fmam® = /S (Dl (P W, (Wi, (@ du. @

n=-1

Using expression (5) for the basis functions we write (7) in the form

1/
B =3 [S o (2.0} (c030) 0L, (c030)

n=—1

x exp(i(m —n)¢)dpsin6 db.

We may perform integration with respect to ¢ using the FFT on S'

2
(3 m nm(p, 0) = /0 [(f2)) s (. b, 0) exp(—ingp)]exp(imep) dep.

Integrations may be performed in O (N, Ny 53 Nglog Ny), where Ny = O(S) is the number
of samplings on the ¢ interval. Thus, the order of computations is O (N, Ng log Ng).
Then, we perform integration with respect to 6

(f4);‘/,m/;l,m,,,(p)=/o L)1 msm (P2 0) QL (c0sO)] QY (cosB) sinf 6. (8)

Using the fact that Qé,m(cos 0) is PL 5.m(cosf) (up to a constant coefficient), the
integration (summation) for all but / fixed indices may be performed using the Driscoll and
Healy technique [12, 13, 23] in O(S°N,Ngy(log Ny)?), where Ny = O(S) is the number
of samples on the 6 interval. Thus, the order of computations is 0(N15e/ 3 N,2 /3 (logN 3.
The @ integration may be performed in O(S°N pNo) = 0(N12e N,.Z/ 3) operations using plain
integration.

Finally, the matrix elements of the SE(3) Fourier transform may be found by the
summation

I
f}j,m’;l,m,n(p) = Z (f4);’,m’;l,m,n(p)’

n=-1

which is on the order of O(S°N,) = O(N2N)).
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Thus, the total order of computations of the direct Fourier transformis O (N, Ng (log(N;)
+ (log Ng)? + €(N,) + NS/3 2/3(log Ng)?). Under the assumption N, = O(Ng) and
using the notation N.Ng = N (N is the total number of samples on SE(3)) we write the
leading order terms as 0(N7/6 (log N)? + Ne(N'/?)). For plain 0 integration (i.e., if the
fast generalized Legendre transform is not used to evaluate Eq. (8)) the estimate becomes
O(N*3 + Ne(N'/?y).

3.2. Inverse Fourier Transform

The inverse Fourier transform integral may be written as

1 o
R =5 /p Y i@ e

2
s,lm,l',m’

x Y UL (R, () p*dpdu,

n=-1

where

), = ZZZZZ

sdom ! s=—00 I=|s| m=—I I'=|s| m'=—I

A band-limited approximation results when the restrictions s < S and [,!’ < L = O(S) are
imposed.

We note that p®>dpdu = d3p. Our algorithm for the inverse Fourier transform is as
follows.

(a) We compute first

L )
G} i P =Y | D i it (DI, (W) | ], @) ©)

I=|s|

for fixed values of I, m’, n, s. The summation may be performed in the following way. We
perform first the summation in square brackets. Using the expression for basis functions (5)
this summation may be written as

)
QD (P 0. ) =exp(—isg) Y fi 1y (P)OL, (cosO) exp(—im).

m=—I

Replacing the summation limits |m| <[ by |m| < L = O(S) (and assuming that
the corresponding elements ff,’m,; l,m( p) are zero for |m| > 1 for given /) we may
compute this sum using the one-dimensional FFT for fixed values of other indices. This
may be computed in O(S4NPNgSlog S) = O(NS/3 2/31 og Ng). We note that the term
exp(—is¢) is canceled with the corresponding term from hl,n(u) in (9).

Then, we compute the summation

L
(Q12)} (P 0. 8) =Y (I} sy (P2 0. 8).

I=|s|
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which may be performed in O (N, Ng Ny 54 = O(N, N?e/ 3) computations. The product

(&1} prin (P W) = (812)} s (P, 6. $) QL (cOs 0) expling) (10)

may be computed in the same amount of computations.

Thus, the sum in Eq. (9) may be performed in O(N7/®log N) computations. Then,
we interpolate from a spherical coordinate grid to a rectangular grid. This requires
O(N,Ny*€e(N,)) = O(N"/6¢(N'/2)) operations.

Application of the Driscol-Healy fast polynomial transform technique gives an
additional saving in computation of sum (9). We define formally the ff,,m,; l,m( p) matrix
elements to be zero for |m|, |s| > [ and extend the limits of summation in (9) from / = 0,
and from m = —L to m = L. Then the summation with respect to / may be performed first
as

L
G} (PO =D it ()OS, (cOS6)
=0
using the fast transform technique in 0(S4NPS(10gS)2) = 0(N2/3Nr2/3(10gNR)2)
computations. Then, the summation

L
(812)} (P20, 0) = D (&1} o (P 0) exp(—imep)

m=—L

may be performed using the one-dimensional FFT in O(S°N pNoSlogS) = O(N ;‘3/ 3 N,.z/ 3
log NR).

(b) Next we compute integrals of the form
(@0 = [ (@0 @) exp(—ip- 1
R

using 3D FFTs. This requires O(S*N, log(N;)) = O(N7/6 log N) operations to compute.
(c) The function f(r, R) may be recovered by the summation

S L A 14
fe R =) [Z Yo Y UL (R ]

s=—S8 L'=|s|m'=—1' n=—T"

The expression in square brackets is a set of inverse Fourier transforms on SO(3) for
fixed values of r and s. It takes O(N,-SNg(log Ng)?) = 0(N7/6(log N)?) operations to
compute.

Thus, the total order of computation for the inverse Fourier transformis O (N 7/6( (logN )2
+ Ne(N'/2))).

Convolution of functions. The convolution integral

(fi * f2)(8) =/ Sith) fa(h™ " o g)dpu(h) QY
SEQ3)
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may be written as a matrix product in Fourier space

oo
FA* D ram P =D Y s j s (DI et m (D).
j=lslk=—j

When f1(g) and f>(g) are band-limited in the sense defined earlier, the matrix product
may be computed directly in O (N pS7) = O(N,1 / 3N17e/ 3) = O(N*/3) operations, which
may be the largest time-consuming computation. We note that a fast matrix multiplication
algorithm may be applied for n x n = 2" x 2™ matrices, which is on the order of n'°227
instead of n3 [27, 28, 30, 35]. Using this algorithm the matrix product may be computed in
O (NUo227+1)/3) computations. Since fast matrix multiplications is an active research field
in its own right, we characterize the order of computations for the convolution product as
O(N (r+/ 3), where 2 < y < 3 indicates the cost of matrix multiplication.

Therefore, the total order of computations of convolution is, at most, O (N v+b/ 3) +
O(N"/%(log N)?) + O(N7/%¢(N1/?)).

Thus, when €(N,) < O((log N;)?), the algorithm described above provides very
considerable saving compare to the direct integration in (11), which is on the order of
O(N2N%) = O(N?).

3.3. A Fast Algorithm for Computing the Fourier Transform for the 2D Motion Group

Numerical algorithms for Fourier transforms on the 2D motion group were developed
in [21] (continuous motion group) and [19] (discrete motion group). For completeness
we describe below a new algorithm for the continuous motion-group Fourier transform
using FFT methods. This algorithm is similar to the discrete motion-group algorithm used
in [19] but uses exp(im¢) as basis functions instead of pulse functions. We begin with the
representation operators for the 2D motion group

Ug, p)g(x) =e PTG AT x), (12)

which are defined for each g = (r, A(6)) € SE(2). Here p e RT, and X - y = x1y1 + x2)2.
The vector x is a unit vector (x - X = 1), so ¢(x) = ¢(cos ¥, sin ) = ¢ () is a function on
the unit circle. Henceforth we will not distinguish between ¢ and ¢.

Any function ¢(¥) € L?(S") can be expressed as a weighted sum of orthonormal basis
functions as () = Zn aye™V . Likewise, the matrix elements of the operator (g, p) are
expressed in this basis as [33]

. ) 1 & . ) . )
umn(gs P) — (elmllf’u(g’ p)emt//) _ = /0 e—mn//e—l(rlpcos1/r+r2psm1//)em(w—9)dw
13)

Vm,n € Z. The inner product (-, -) is defined as

1 2r
(o1, 92) = 2—/ e1(Y)p2(Y) dy.
T Jo

It is easy to see that (U(g, p)e1,U(g, P)p2) = (1, ¢2), and that U(g, p) is, therefore,
unitary with respect to this inner product.
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‘We may express the Fourier matrix elements as an integral

27 p2m
fnm(p) :/ / f(l', G)etmpet(p-r)e—rm(z//—e) dzr 46 dl//.
reR? Jo=0 Jy=0

We compute the band-limited approximation of the Fourier transform for |m|, |n| < §
harmonics. Furthermore, we assume that it is computed at N, = O(S) points along the p-
interval, and we assume that the order of sampling points in an R? region is on the order of
5% (N, = 0(S?)) and the number of sampling points of orientation angle 8 is Ng = O (S).
In this way the total number of points sampled in SE(2) is N = 0(S3), which is on the
same order as the total number of sample points in the Fourier domain.

We may perform first R? integration using the usual FFT

fi(p.6) = f F(.6)é®D g2
R2

in O (NgN; log N,) computations when f(r, R) is compactly supported.

Then, we perform interpolation to the polar coordinate mesh. For N;-point spline
interpolation this may be performed in O (Ny N, Nr) computations. If Fourier interpolation
is used this becomes O ((log N:)2N,Ng) computations.

The next step is to perform integration on SO(2):

£ (py) = / Filp. . 0)e™ do.
SO(2)

This may be computed in O (N, Nglog Ng) computations. Then, v integration

2 . .
Fom(p) = fo LA (. p)e=mV] ™ dyp

may be computed in O(SN,SlogS) = O(N,Nglog Ng) computations.

We denote the total number of samples on SE(2) as N = N.Ng = 0(S3). Thus, the
total number of arithmetic operations used to compute the direct Fourier transform is
of O(NlogN)+ O(Ne(N 1/2)). When spline interpolation is used, the first term in this
complexity estimate dominates for large values of N, whereas the second term dominates
when Fourier interpolation is used.

It may be shown that the inverse Fourier transform may be performed in the same amount
of computations. Note that this is faster than if the y/-integration is performed first, even
though that integration results in closed-form solutions for the matrix elements u,,, (g, p).

The matrix product in the convolution may be performed in O (N*+1/3) computations,
where 2 < y < 3 is the cost of matrix multiplication.

4. FOURIER TRANSFORM FOR THE 3D “DISCRETE” MOTION GROUPS

In this section we develop fast approximate algorithms for computing the Fourier
transform of functions on the discrete motion groups, G n,, which are the semi-direct
product of the continuous translation group T = (R3, +) and a finite subgroup Iy, C
SO(3) with Ng elements. Iy, can be the icosahedral, the cubo-octahedral, or tetrahedral
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rotational symmetry group. Our formulation is completely general, although in discussions
of numerical implementations we focus on the icosahedral discrete motion group, where
the number of elements is Ng = 60. In Subsection 4.1 the mathematical formulation is
presented and in Subsection 4.2 the computational complexity of implementing Fourier
transforms and convolution of functions on Gy, is discussed.

4.1. Mathematical Formulation

Instead of using spherical harmonics (5) as basis functions as was done when calculating
matrix elements of the IURs of the continuous motion group, we now choose pulse
functions @y, (1) on S 2: i.e., we subdivide the sphere into spherical regions and choose
the ¢-functions to satisfy the orthonormality relations

f2 ONg . (WPNg,m (W) dW = 8y,
S

where du = sin6dfd¢, and (6, ¢) are spherical coordinates. 3 For example, in the case
of Isp we may subdivide the sphere into 20 equilateral triangles or 12 regular pentagons.
These figures can be used as the support for pulse functions, but as we will see shortly, it is
convenient to subdivide these regular figures so that 60 congruent (but irregular) regions,
F,, result. We then choose the orthonormal functions as

NR 1/2 .
— fuek
PN (W) = <4n> Huetn

0 otherwise.

Here n =1, ..., Ng enumerates the different congruent polygonal regions on the sphere.
We denote these §-like functions as gy, , (1) = (47 /Ng)!/ ZSNR (u,uy,), where uy is a
vector from the center of sphere to a point in F;,.

The matrix elements may be found in this basis as

Upn(A.x: p) = f Ve WP AR AR 1) 9N (AT W du. (14)
s
Using the § function notations this integral may be written as
s 4m ipur -1 —1
Umn(A’ r; p) = N_ 5NR (u, uy,)e P As(Ru ARAflu)SNR (A" u,u,) du.
R Js2
This integral may be approximated as
Upn (A, 15 p) 2 41/ Nre'P™ " Ag(Ry AR 414, )0ng (A "t uy). (15)
We again approximate § functions as

1 if A='a,, =u
4n/NRaNR<A‘um,un)zaAl.,m,u,zé{O Cherwics

3 The set of functions {oNg,n (W)} is, of course, not complete in L2(32) and therefore is not a basis in which to
expand matrix elements of the IURs, but we take this into account shortly.
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which means that we discretize the rotation group; i.e., we restrict rotations to the rotations
A from the finite subgroup I, of SO(3), and A]Tlum =u,.

Thus, matrix elements of irreducible unitary representations of the “discrete” motion
subgroup Gy, are given as

Upn(Aj. 1 p) =P TA Ry AjRu,)8 (16)

—1 .
Aj Uy, Uy

Here s enumerates the representations of the little group, which is a finite subgroup
C, C SO(2) in this case, and s =0, 1, ...,n — 1 for C,. Although the expression (16) has
been derived as an approximation of the continuous expression (14), the matrix elements
(16) are exact expressions for the matrix elements of the irreducible unitary representations
of G ny; i.e., the relation U (g1, p) - U(g2, p) =U(g1 o g2, p) holds.

We note Ry,up = Anuo = u,, where ug is the center of one of the spherical
polygons F which is chosen arbitrarily.

However, due to the incompleteness of the set of functions {@yg »}, the Fourier
transform matrix elements defined by (16) form an incomplete set of matrix elements.
A complete set of elements are defined in the following way.

Let us allow the vector uls to point to an arbitrary position, w, inside the spherical shape
which forms the support for the pulse basis function ¢y, m-

It is then possible to verify that the following matrix elements form a complete set of
matrix elements for G yg:

U (Aj.x: pow) = ePT ARGV A Ry, ) A (17)

In particular, it is easy to check that U(g; p, w) - U(g2; p, w) =U(g1 0 g2; p, w).

As an example we consider the case when I, is the icosahedral subgroup of the SO(3),
which has Ng = 60 elements. This is the largest finite subgroup of SO(3) [18]. If we
subdivide the sphere into 20 equilateral spherical triangles (see Fig. 1), this group has
6 axes of rotation of order 5 (i.e., rotation 27 /5 - n, n =0, 1,2, 3,4, around each axis)
located at the triangle corners, 10 axes of order 3 located at the triangle centers, and 15 axes
of order 2 located in the middle point of each triangle side.

Different representations of this discrete motion group may be classified according
to different choices of little group C,. This corresponds to choosing orthogonal pulse
functions with differently shaped support. To illustrate the possible cases consider the
tessellations of the sphere in Fig. 1. In order to have a complete set of matrix elements
for nontrivial little group, C,, we must consider all possible s =0,...,n — 1. The
representations for different s can be viewed as blocks in a 60 x 60 representation matrix.

The possible choices for little groups corresponding to the shapes illustrated in Fig. 1
are:

(1) Little group Cs: For 12 regular spherical pentagons, such as ECGJH, chosen as
the support for spherical pulse functions we have 12 x 12 representations. The little group
of ug is Cs, thus s =0, 1, 2, 3, 4. These representation matrices, each corresponding to an
element of the little group enumerated by a value of s, may be viewed as blocks in 60 x 60
representation matrices of G.
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FIG. 1. Tllustration for basis function of discrete motion group.

(2) Little group C3: Twenty equilateral spherical triangles are chosen as pulse
functions on S2, such as triangle ABO. We have 20 vectors u,, pointing to the centers of
triangles; i.e., the representations and Fourier matrices consist of 20 x 20 nonzero blocks
(for each fixed p and s). The little group of the arbitrary chosen vector ug is C3; thus we
have three inequivalent representation of the little group for each value of p enumerated
by s =0, 1, 2. These representation matrices may be combined as blocks to form 60 x 60
representation matrices of G.

(3) Little group C»:  Thirty spherical parallelograms (such as OEAC) are chosen as the
support of pulse functions, and we have 30 x 30 representations matrices. The little group
is Ca,and s =0, 1.
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(4) Trivial little group: The 4-sided figure ODCF of Fig. 1 may be chosen as the
support for pulse functions. We have 60 such figures; the little group is trivial in this case
since they possess no rotational symmetry. The representation matrices are then 60 x 60.
We note that some other divisions of the sphere into 60 equal spherical figures lead to
equivalent representations (for example, the choice of the triangles ACO or ECO). These
representations are irreducible.

We note that each row and column of the 60 x 60 representation matrices corresponding
to the trivial little group contain only one nonzero element. The matrix elements of the
representations are written in this case as

Unn (A}, 1; p, w) = e/P¥nTs A w (18)
Henceforth we restrict the discussion to this case.
The direct Fourier transform is defined as
Ng—1
fntpow) = Y [ FALOUL i pow & (19)
L R
i=0

where it depends now on w. The vector u}, which is inside the figure F;,,, may be found
by the rotation A, (which transforms Fy to Fy,) from ug’, as u,, = A,,uy’. The parameter
w, thus, denotes the position inside the figure Fj.

The inverse Fourier transform is

Nr—1Ng—1

N 1 o0 o
- 2 [ f Fonp WU As.x: p i dp P Q0

m=0 n=0

(integration with respect to w is over the area of the basis figure Fp). The vector ul, is
found by rotation from ug .

We choose the z axis passing through the vertex O. The ¢ = 0 circular arc then contains
side OD and the ¢ = 2 /5 arc contains side OF. With this choice, the border of the area
Fy for the 4-sided figure ODCF of Fig. 1 may be parameterized in terms of the spherical
angles 0, ¢ as

0.525732

0(¢) = arcsin )
1 — 0.723605 sin®(¢')

where
p'=¢, if0=¢p=mn/5
and
¢ =2m/5— ¢, form/5 < ¢ <2m/5.

This dependence is derived using the relationships between the angles of spherical triangles
(e.g., the “sin” and “cos” theorems from spherical trigonometry).

Due to the completeness of matrix elements the application of direct and inverse Fourier
transform reproduces functions on the discrete motion group G

FYF(f(9) = f(9).
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The completeness of the set of [URs we have developed for the 3D discrete motion
group may be seen by first observing the integral representation for the § function in R3:

/R 3 ePTd3 p = (2m)38(r).

Here integration is through the Fourier space, which is parameterized by p.
The completeness relation

Nr—1Ngp—1

o0
> Zf fUmn(Ai,rl;p,w)Umn(Aj,rz; p,w)p*dpd*w
m=0 n=0 0 Fo
=(2m)8 (r1 — 12)84,.4, (3))

(d*w = sinf dH d¢) then follows, because the integration is over the whole space of
p = pu values. Repeated integration along the boundary of the basis figures F; gives zero
contribution, because the functions are nonsingular and the integration measure along the
boundaries is zero.

The orthogonality relation is written as

Nr—1
> [ T pr iUy (A
l_o n

)3 S(p—p"

= Qm) = SO, 82 (w — W), (22)

Using the orthogonality relations one may check that the convolution properties and
Plancherel (Parseval) identity are exact for square integrable functions on the discrete
motion group.

4.2. Computational Complexity

We now analyze the computational complexity of an algorithm for the numerical
implementation of convolution of functions on the discrete motion group (with the
icosahedral group as the rotation subgroup). In particular, we show that the convolution
of functions fi(r, A;) and f>(r, A;) sampled at N = Ng - N, points (N, is the number
of samples in a region in R3 and Ny is the order of a finite rotation subgroup, which is
60 for the icosahedral group) may be performed in O (N (e(N,) +log N,)) + 0(NN£72)
operations (where again 2 < y < 3 is the exponent for matrix multiplication) instead of the
O(N?) computations required for the direct computation of convolution by discretization
of the convolution integral and evaluation at each discrete value of translation and rotation.
The structure of matrix elements of (18) allows one to apply fast Fourier methods and
reduce the amount of computations. However, even without the application of the FFT,
the amount of computations required to compute convolutions using the group-theoretical
Fourier transform method is O (N2/Ng), which is a savings over brute-force discretization
of the convolution integral.

First, we estimate the amount of computations to perform the direct and inverse Fourier
transforms of f(g). We assume that we restrict p values to a finite interval and sample it
at N, points, and sample the w region at N, points. We also assume that the total number
of harmonics N, N,,N3 = N = NgN,.
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Let us consider the direct Fourier transform (19). Each term i (for fixed A;) gives one
nonzero term in each row and column of the Fourier matrix A,}fn (p) (because only one
element in each row and column of U,;,: (g; p, w) is nonzero). For each fixed i we may
compute the FFT of f(r; A;), which may be computed in O (N, log(N,)) operations. The
Fourier transform elements found by FFT are computed on a square grid of p values. We,
however, need to interpolate the Fourier elements computed on the grid to the Fourier
elements computed in polar (spherical) coordinates. The radial part p is determined by
the length of p, the angular part by the indices m and w (the other index n is determined
uniquely for given A;). If we interpolate the values from the square grid to the values on
the polar (spherical) grid, O(N,e€(N,)Ngr) computations are required. Each term i in (19)
may be computed in O (N, log(N,)) computations. The whole Fourier matrix is found in
O(NRgN, log(N,)) computations.

Again, one element from each row and column is used in the computation of the
inverse Fourier transform for each rotation element A;. After inverse interpolation to
Cartesian coordinates (which may be done in O(N,.€(N,)) computations), the inverse
Fourier integration may be performed in O(NgN, log(N,)) computation using the FFT.
Thus, in O (Ng N, log(N,)) computations we reproduce the function for each A;.

The matrix product of fm,, (p, w) may be computed in O(N?Y) computations for each
value of p and parameters w. This means that the convolution (which is a matrix product
of Fourier matrices) may be performed in O(NJ§ NpNy) = O(N}(ZN ) computations.

Therefore, the convolution of functions on the discrete motion group may be performed
in O(N - (log Ny 4+ €(N,))) + O(NN%_2) using Fourier methods on the discrete motion
group and the FFT. When spline interpolation is used, the term with € (N, ) is of subleading
order, whereas this term is of leading order when Fourier interpolation is used.

5. CONCLUSIONS

Fast numerical algorithms for computing the convolution product of functions on motion
groups were derived. These algorithms use the group-theoretic Fourier transform with the
irreducible unitary representations written in operator form, and their matrix elements
are calculated numerically instead of analytically. This, together with interpolation from
Cartesian to spherical coordinate grids, made it possible to use well-known FFTs for
compactly supported functions on R3, and more recent FFTs for the sphere and rotation

group.

APPENDIX: FOURIER AND SPLINE INTERPOLATION BETWEEN CARTESIAN
AND POLAR GRIDS

In the complexity analysis presented in the body of this paper, the interpolation of
function values between Cartesian and polar (or spherical) coordinate grids was described
as an O(N;e(N,)) computation, where N, is the number of sample points in a bounded
region of the plane (or in three dimensions). In this Appendix, we give explicit forms
for €(N,) for the cases of spline (¢(N,) = Ny = O(1)) and Fourier (¢(N,) = (log N)?)
interpolation. We reason that Fourier interpolation is reversible in exact arithmetic, and we
provide references that address the numerical error associated with spline interpolation.
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Our use of interpolation is in the frequency domain, and so the Cartesian coordinates are
labeled as P = [p1, p2]” and polar coordinates are (p, v). The discussion of interpolation
between Cartesian and spherical coordinates in three dimensions follows analogously.
Below we describe a Fourier interpolation method that can exactly reproduce values
interpolated from Cartesian to polar to Cartesian grids, but first, the context of this result
must be established.

A.l. The Meaning of Exactness in Fourier Analysis

To begin, let f(P) be a complex-valued function with compact support in R2. It is
customary in numerical Fourier analysis and image processing to replace the domain of f
(which is R?) with the two-dimensional torus, 7> = (R/LR)?, where L is some measure
of length that is larger than the longest line segment contained in the support of f (see
Fig. 2). The new function is a “folded” or “wrapped” version of f. This is equivalent to
replacing f with an L-periodic version of itself defined on the original domain.

In numerical contexts, a “function” is not truly a mapping such as fV: R> — C or
f@: T2 - C. Rather, it is an array of discrete values such as f®): 7> — C, or more
precisely, a finite array of values such as f®: (Z/ er / 2Z)2 — C. Often there is some
confusion as to which f® is being used. While f) may be the function that is stated,
numerical computations using the FFT are restricted to functions of the form of f*, In
order to avoid cumbersome notations, it is understood that whenever we refer to numerical
computations involving f, it is always f® (a regularly sampled array of the folded and
band-limited version of f) that is being used.

If operations such as convolutions of f with itself are to be performed numerically,
then a sufficient “zero padding” must be in place around the support of f. The benefit of
dealing with a zero-padded function with finite support on the torus (as opposed to the
original function on the plane) is that the torus group is compact, and so a band-limited
approximation to a function on the torus can be computed using the FFT. In contrast, a
band-limited function on the real line (i.e., one with a spectrum that has finite support)
can generally only be reconstructed from an infinite number of samples. Since the Fourier
transform of such a function has finite support, then the function itself cannot have finite
support.

L

FIG. 2. A function with compact support.
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Hence, when we make the statement that the Fourier transform of a function on the
plane (and the inverse Fourier transform) can be computed exactly in O(N,logN,)
computations, the computation is really performed on the torus, where a band-limited
Fourier series (with band-limit N,) is sampled at N, points on an N, V2 l/ ? folded
version of a Cartesian grid. Both the calculations of Fourier series and Fourler coefﬁments
are then replaced by (finite) discrete Fourier transforms.

An implicit assumption in our analysis (and every analysis we know of utilizing the
classical FFT) is that the original compactly supported function f defined on the plane
is sufficiently well behaved that the Fourier series of the folded version of f converges
rapidly enough on the support of f (and on the surrounding zero-padded region) that for
all intents and purposes the two functions are indistinguishable for the value of N, chosen.
That is, the mean-squared error between the functions is small enough to be considered
negligible.

Hence, when one says that the FFT is used to compute convolutions on R” exactly at the
sample points, what is meant is that the band-limited Fourier series of the folded version
of the original function is a sufficiently good approximation that it takes the place of the
original function. It is this approximation that often serves as the starting point of fast
“exact” algorithms in computational harmonic analysis.

A.2. Fast Exact Fourier Interpolation

We can, without loss of any information, interpolate finite values of a periodic band-
limited function on the plane (or, equivalently, a band-limited function on 7'%) sampled
at Cartesian grid points to points on a polar grid. This is shown in the left-hand side
of Fig. 3, where function values are specified at each intersection of the straight lines.
The first step in this procedure is the interpolation of the given values to each of the
points marked with circular dots. Since each straight grid line (which can be viewed as
an unwrapped circle) defines a one-dimensional Fourier series, this step amounts to the
evaluation of a one-dimensional Fourier series at nonequally spaced pomts Since band-

limited Fourier series can be viewed as polynomials of the form Z B a,, Z", where
Z is a complex exponential, each vertical and horizontal evaluation can be performed in

N

'/

//“

Y -
< AN
N

M

/"\\
1
!

HZESNN
T
N
»

%

L
L
/|

FIG. 3. Reversible interpolation between Cartesian and polar grids.
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O(Nr1 / 2(log N,} / 2)2) [1, 2]. Since there are O(N,.] / 2) such lines, the total procedure of
interpolating values from the Cartesian to polar grid requires O (er /2, N,l /2 (log er / 2)2) =
O (N, (log Ny)?) computations. This procedure is an exact one in exact arithmetic, and
since we are careful to choose a polar grid for which there are a sufficient number of
intersections of circles with each Cartesian grid line, no information is lost.

Once the values have been interpolated to each of the concentric circles, they define a
band-limited Fourier series on each circle that can be evaluated at equally spaced angles
within each circle. This is again an O (N, (log Ny)?) computation since there are O (N,’")
circles. It too is exact in the sense that it conserves the original information defined at the
N, grid points.

In order for the information of the function values to be recoverable to the Cartesian
grid from the polar gird, a sufficient number of circles extending outside of the original
Cartesian grid must have values defined on them. In the example shown, there is only one
circle that extends beyond the Cartesian grid.

To see that this procedure is reversible, first evaluate the Fourier series on each circle at
the points on the circle that intersect the Cartesian gird. Then fit the band-limited Fourier
series on each straight line that passes through the values at the points of intersection. This
fitting of a Fourier series to irregularly spaced data on each line is performed with the same
order of computations as the evaluation of Fourier series at irregular points [1, 2]. In order
for there to be enough information to reconstruct the original band-limited Fourier series
on the outer edges of the Cartesian grid, the information contained in the partially outlying
circle is required. For finer grids, multiple such circles are required. In the current example,
the corner values could not be determined from the polar grid unless the information in the
circle extending outside of the polar grid is included. The values marked with an asterisk
are found using a two-step process whereby function values on surrounding lines must be
evaluated at Cartesian grid points before there is enough data available to exactly recover
the values.

From the above discussion, we observe that interpolation back and forth between polar
and Cartesian grids can be performed with

€(N,) = (log N,)>.

This procedure of Fourier interpolation between Cartesian and polar grids is “exact” in the
sense that in exact arithmetic it reversibly takes values from one kind of grid into another.

The number of function values on each circle enclosed in the Cartesian grid increases
linearly with the radius. This ensures that the information in a band-limited function on
T2 is exactly transferred to the collection of band-limited functions on the circles of
the polar grid using the procedure described above. Another way to view this is that a
band-limited periodic function on the plane is set to zero outside of a finite window with
dimensions equal to the period of the function. The version of this function sampled in
polar coordinates defines a new function that, in principle, can be nonzero outside of this
finite window. Given the assumptions in numerical Fourier analysis stated in the previous
subsection of this Appendix, the values on all circles not fully contained within the finite
square grid will be made arbitrarily close to zero by appropriate choice of the band-limit
and zero padding.

The circles partially enclosed in the Cartesian grid diminish in significance with radius.
In the context of the example shown in Fig. 3, we see that on circles from the center outward
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there are 1,4,4,12,12,8 values. This means that the band limit for functions of the angle
for each of these circles will be the numbers given in the previous sentence. At radius p,
the band limit will be O(p), with p < O(N,/?).

A.3. Approximate Spline Interpolation

In spline interpolation, only the N, nearest grid points to the point at which the
interpolated value is desired enter the calculation. This necessarily means that some
information about the function is destroyed in the spline interpolation process. However,
since the functions in question are all assumed to be band-limited Fourier series, they
do not oscillate on the length scale of the distance between sample points. Hence, a
polynomial spline of sufficiently high order will approximate well the local neighborhood
of the point at which the interpolated value is to be determined. While this technique is an
approximate one, it has been used with great success in computer tomography [7, 11, 27],
image processing [10, 16, 22, 25, 32], and other fields [3, 36].

The benefit of this approach is that

€(N,) = Ny = O(1).

The value of Ny is chosen for a given finite error threshold. The drawback is that
unlike Fourier interpolation, it is not mathematically exact in exact arithmetic. For more
discussion of splines see [29].
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