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ABSTRACT

In this paper we apply the Fourier transform on the Eu-
clidean motion group to solve problems in kinematic design of
binary manipulators. We begin by reviewing how the workspace
of a binary manipulator can be viewed as a function on the
motion group, and how it can be generated as a generalized con-
volution product. We perform the convolution of manipulator
densities, which results in the total workspace density of a ma-
nipulator composed of double the number of modules. We sug-
gest an anzatz function which approximates the manipulator's
density in analytical form and has few free �tting parameters.
Using the anzatz functions and Fourier methods on the motion
group, linear and non-linear inverse problems (i. e. problems
of �nding the manipulator's parameters which produce the total
desired workspace density) are solved.

1 INTRODUCTION

A robotic manipulator is generally constructed of rigid
links and actuators, such as motors or hydraulic cylinders.
For actuators with only a �nite number of states, as is
the case with stepper motors or pneumatic cylinders, the
robotic arm has a �nite number of con�gurations and can
reach only a �nite number of frames (positions and orienta-
tions). Each frame is completely determined by the position
of its origin and orientation relative to a �xed frame, and
thus is completely speci�ed by an element of the motion
group SE(N) 2 (see (Murray et. al. 1994) for references on

1Address all correspondence to this author.
2SE(N) denotes \special Euclidean group", which is the group of

rigid motions of N-dimensional Euclidean space. We refer to this
group simply as the \motion group".
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the motion group).

For discretely actuated manipulators the workspace

density, which is de�ned as the number of reachable frames
per unit volume of the motion group SE(N) (Ebert-Upho�
and Chirikjian 1995), determines how accurately a position
and orientation can be reached. This density information
is important for the kinematic design of manipulators and
for planning the motions of discretely actuated manipulator
arms (Ebert-Upho� and Chirikjian 1996a).

An important aspect of the manipulator design prob-
lem is to specify the density of reachable frames through-
out the workspace. That is, areas which must be reached
with great accuracy should have high density, and those
areas of the workspace which are less important need less
density. For relatively few actuators, the design problem
may be solved by enumerating reachable frames (positions
and orientations) and using an iterative procedure as dis-
cussed in (Chirikjian 1995). A grey scale density plot of the
workspace density of a planar manipulator with six modules
(the top of each module can attain eight possible positions
and orientations relative to its base) with a total of 242; 047
possible con�gurations is depicted in Fig. (1) for the end-
e�ector orientation angle � = 0.

In computing the workspace density 20; 097 \singu-
lar" con�gurations were not counted. The \singular" con-
�gurations appear when the neighbor modules overlap.
This is possible when the condition [arccos((s2 + l2min �
l2max)=(2 lmin s))+arccos((2 l2min�s2)=(2 l2min))] � � is sat-
is�ed (lmin and lmax are the minimal and maximal lengths
of actuators, s is the length of the module base, see Fig.
(3)).
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However, to compute the workspace density function
using brute force and iterating is computationally in-
tractable for a large number of actuated modules n. E.g., it
requires Kn evaluations of the kinematic equations relating
actuator state to the resulting end frame for a manipulator
with n modules each with K states.
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However, as has been shown in (Ebert-Upho� and
Chirikjian 1996b), partitioning the manipulator into seg-
ments, computing the workspace density of each segment,
and computing the whole workspace as a convolution of
workspaces of each segment is a very e�cient way to over-
come this problem. Using the convolution approach allows
us to reduce the exponential growth in n to linear growth
in n for inequivalent segments and to O(logn) for identical
segments.

Fig. 3
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The workspace density of a planar manipulator which
has double the number of identical modules of one with
workspace density f(g) may be generated as a convolution
on the motion group

F (g) =

Z
f(h) f(h�1 � g)d�(h) ; (1)
SE(2)
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where d�(g) is an integration measure on the motion group
(see section 2). We geometrically illustrate the convolution
integral (1) in Fig. (2) as a sweeping procedure. This is
explained in detail in (Chirikjian and Ebert-Upho� 1998).

To calculate the density F (g) of the \composed" ma-
nipulator we have to multiply the density of the lower part
of the manipulator f(h) by the density of the upper part
f(h�1 � g) (relative to the end-e�ector of the lower part)
and integrate the product with respect to all possible inter-
mediate con�gurations h of the lower part end-e�ector.

However, a problem still exists with this approach, be-
cause the convolution itself is a very costly computation for
�ne discretizations. For problems of kinematic design of ma-
nipulators, where many convolutions may be needed for �t-
ting the manipulator's workspace to the desired workspace
density function, the convolutions may take days of com-
putation time. Moreover, the inverse problem, i. e. the
problem of �tting the manipulator parameters to the de-
sired workspace density, may still be intractable by direct
integration methods.

In analogy with Fourier methods on the real line, on
the sphere, or on �nite groups, which give an e�cient way
to perform convolutions and allow one to apply Fast Fourier
Transform (FFT) methods (Elliot, Rao 1982), (Driscoll,
Healy 1994), (Rockmore 1994), the application of Fourier
methods on the motion group provides a considerable sav-
ing in the computation time. Fourier methods, moreover,
allow us to solve (at least approximately) linear and non-
linear inverse problems, i. e. the problems of determining
the manipulator's parameters which produce the total de-
sired workspace density.

The mathematical framework for non-commutative
Fourier methods on the two and three dimensional mo-
tion group with applications to the solution of convolution
equations were developed in (Chirikjian 1996), (Kyatkin
and Chirikjian 1996a; Kyatkin and Chirikjian 1996b). Here
we implement these methods numerically for the two di-
mensional motion group and apply these methods to the
generation of manipulator workspaces by the convolution
method and for the solution of inverse problems. We also
estimate the accuracy (in the sense of quadratic norm) of
the Fourier transform methods.

In section 2 we give general references for the Fourier
transform on the 2D motion group.The direct convolution of
manipulator workspace densities performed by the Fourier
method is described in section 3. The accuracy of the
method and the required computation time are given.

In section 4 we suggest an anzatz function which de-
scribes the manipulator's density in an analytical form and
has relatively few free parameters. Using anzatz functions
and Fourier methods we solve the linear and non-linear in-
verse problems.
Copyright c 1998 by ASME



2 THE FOURIER TRANSFORM ON THE MOTION GROUP

Here we give briey the general expressions which de�ne
the Fourier transform on the two dimensional motion group
(for more complete references on the two dimensional case
and for the three dimensional case see (Chirikjian 1996; Ky-
atkin and Chirikjian 1996a; Kyatkin and Chirikjian 1996b).

Each element of SE(2) is parametrized in either rect-
angular or polar coordinates as:

g(r1; r2; �) =

0
@ cos � � sin � r1
sin � cos � r2
0 0 1

1
A

or

g(r; �; �) =

0
@ cos � � sin � r cos�
sin � cos � r sin�
0 0 1

1
A :

Here r =j r j. The group law is simply matrix multiplica-
tion.

We need to use the unitary representations of the mo-
tion group SE(2) (see (Vilenkin, Klimyk 1991), (Talman
1968), (Vilenkin 1956), (Orihara 1961), (Sugiura 1990)
for general de�nitions) to generate the Fourier transform
on the two dimensional motion group. If we use these rep-
resentations then the Fourier transform of the convolution
of functions may be written as the matrix product of the
Fourier transform of each function (see below), which gives
considerable savings in computation time.

A number of works including (Vilenkin 1956), (Orihara
1961), (Talman 1968) have shown that the matrix elements
of the unitary irreducible representation U(g; p) of SE(2)
are given by

umn(g(r; �; �); p) = in�me�i[n�+(m�n)�]Jn�m(p r) (2)

for m; n 2 Z, where J�(x) is the �
th order Bessel function,

g 2 SE(2), and p is a continuous parameter which enu-
merates the representations, in analogy with the Fourier
transform parameter on the real line.

From this expression, and the fact that U(g; p) is a uni-
tary representation, we have that:

umn(g
�1(r; �; �); p) = u�1

mn(g(r; �; �); p) =

unm(g(r; �; �); p) = in�mei[m�+(n�m)�]Jm�n(pr): (3)
3

Symmetry property. The matrix elements are related
by the symmetry

umn(g; p) = (�1)m�nu�m;�n(g; p) (4)

The inner product of square-integrable functions on the
motion group is given by

(f; h) =

Z
SE(2)

f(g)h(g) d�(g) : (5)

The invariant integration measure on SE(2) is given by

d�(g(r; �; �)) =
1

(2�)2
r drd�d�

(r; � are the radial and angular parts of the translation
vector r and � is the SO(2) orientation angle).
De�nition. For any integrable complex-valued function

f(g) on the motion group G we de�ne the Fourier transform

as

F(f) = f̂(p) =

Z
G

f(g)U(g�1; p) d�(g)

where g 2 G.
For SE(2) the matrix elements of U(g�1; p) are given

in (3).
The inverse Fourier transform is used to reconstruct a

function from its Fourier transform as:

f(g) = F�1(f̂) =

Z 1

0

Tr(f̂(p)U(g; p)) p dp : (6)

Plancherel equality. The Plancherel equality for square-
integrable functions on the motion group G = SE(2) is:

Z
G

jf(g)j2d�(g) =
Z 1

0

jjf̂(p)jj22 p dp:

where jjf̂(p)jj22 is a Hilbert-Schmidt norm

jjf̂ jj22 = Tr(f̂ f̂y) ;

f̂y is a Hermitian conjugate of f̂ , and Tr is the trace.
Copyright c 1998 by ASME
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Convolution property. One of the most powerful prop-
erties of the Fourier transform of functions on IRN is that
the Fourier transform of the convolution of two square-
integrable functions is the product of the Fourier transforms
of the functions. This property persists also for the convo-
lution of functions on the motion group

(f1 � f2)(g) =
Z
G

f1(h) f2(h
�1 � g) d�(h) ; (7)

namely

F(f1 � f2) = F(f2)F(f1); (8)

where now the product is a matrix product of the Fourier
transform matrices

F(f1 � f2)mn =

1X
k=�1

f̂2mk f̂
1
kn

where f̂ imn = F(fi)mn. We note that now the order of
the product of Fourier transforms matters. In practice, this
product is truncated at k = �M , whereM is a chosen �nite
number.

Symmetries. For the real function f(g) we note a sym-
metry property of the Fourier transform, which follows from
symmetry (4) of the matrix elements

f̂mn = (�1)(m�n) f̂�m;�n : (9)

This symmetry is preserved under multiplication of Fourier
transforms (which follows from the convolution property
and the fact that the convolution of real-valued functions
is real). This symmetry allows us to reduce the amount of
computations by half.

3 APPLICATION OF FOURIER TRANSFORM METHODS

TO WORKSPACE GENERATION OF DISCRETELY ACTU-

ATED MANIPULATORS

Here we use Fourier methods on the motion group to ef-
�ciently calculate the workspace density function of a binary
manipulator consisting of two segments (direct convolution
problem). This density information is important for motion
planning and kinematic design of binary manipulators. We
4

also will apply Fourier methods to the solution of linear and
non-linear inverse problems in the next section.

For a small number of modules n (n � 6 � 8 for a
two-dimensional manipulator with 3 discrete binary actua-
tors in each module) the workspace density of a binary ma-
nipulator may be generated by brute force. However, the
amount of computation increases exponentially in n and for
larger n it cannot be performed by simply enumerating the
states. As we mentioned before, partitioning the manipula-
tor into segments, computing the workspace density of each
segment (which may be done by brute force) and computing
the whole workspace as a convolution of workspace densi-
ties of each segment is a very e�cient way to overcome this
problem (Ebert-Upho� and Chirikjian 1996a). For identi-
cal segments an O(Kn) computation is reduced to a very
moderate O(logn) computation.

Fig. 4
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Below we apply Fourier methods on the motion group
to e�ciently compute the convolution of workspace densi-
ties of six module manipulator segments, depicted in Fig.
(4a). It may be shown that the convolution of functions
on the motion group SE(2) may be performed in O(N3=2)
computations via Fourier transform, as opposed to O(N2)
computations of the direct (on N-point grid in the coordi-
nate space) integration.

We computed the convolution of workspace densities
which corresponds to the workspace density of a twelve
Copyright c 1998 by ASME



module manipulator. The application of non-commutative
Fourier methods gives a considerable saving in the com-
putation time: while the convolution by direct integration
required 14 hours of the computation time for our array
size (N2 � 4 � 109), the Fourier methods allow us to com-
pute the convolution ( generate workspace, compute the di-
rect Fourier transform, perform matrix multiplication and
the inverse Fourier transform) in around 33 minutes (for
M = 15) and in 6.5 minutes (for M = 4) even for the large
array size (N2 � 5 � 1011). The error of the approximation
for M = 15 is q = 7:8% (q = 18:8% for M = 4), where

q =

R
SE(2) jjf(g)� f 0(g)jj22 d�(g)R

SE(2)
jjf(g)jj22 d�(g)

; (10)

where f(g) in (10) is the convolved workspace performed
by direct numerical integration of workspace densities and
f 0(g) is the convolution performed by the Fourier method.

In Fig. (4b) we depict the convolved workspace den-
sity of a twelve module manipulator computed by direct
integration. The density computed by the Fourier method
(for M = 4) is depicted in Fig. (4c) (plots are depicted in
the range of workspace density values from 1/10 to max-
imal value of density). Thus, the Fourier transform re-
produces correctly the workspace density in the region of
values from the maximal value of the intensity to approx-
imately 1=10th � 1=50th value of the maximal intensity.
We note that for the twelve module manipulator the den-
sity in this region provides \almost continuous" density of
states and this region is the most important for the ma-
nipulator's applications. We note that the boundary of
the low intensity region may be found also by the Fourier
method convolving the functions which reproduce correctly
the workspace boundary of half of the manipulator, rather
than the workspace density.

4 AN ANZATZ APPROACH TO THE DESCRIPTION OF

THE WORKSPACE DENSITY AND ITS APPLICATION IN

LINEAR AND NON-LINEAR INVERSE PROBLEMS

The following inverse problems arise naturally in the
area of kinematic design of binary manipulators:

� Given a �nal desired workspace density and known pa-
rameters for the lower half of a manipulator �nd the
kinematic parameters of the upper half of the manipu-
lator such that the total workspace density of the ma-
nipulator �ts the desired density in the best way (in the
sense of the quadratic deviation). This is the so-called
linear inverse problem.
5

� Given a �nal desired workspace density, �nd the kine-
matic parameters of each half of the manipulator which
result in a workspace density which �ts the desired den-
sity in the best way. This is a non-linear inverse prob-
lem.

The problems above may be written respectively as lin-
ear and non-linear integral convolution equations on the
motion group. The linear inverse problem may be formu-
lated as

(� � �)(g) =
Z
SE(2)

�(h)�(h�1 � g) d�(h) = (g) ; (11)

where (g) is the desired total workspace density, �(g) is
the density of the lower part of manipulator and �(g) is the
unknown density of the upper part.

The non-linear inverse problem may be written as

(� � �)(g) =
Z
SE(2)

�(h)�(h�1 � g) d�(h) = (g) ; (12)

where (g) is the total desired density, and �(g) is the un-
known density of both the lower and upper part (assuming
the manipulator is homogeneous).

The direct way of solving these problems, i. e. �t-
ting the total density to a given desired density for each
value of manipulator kinematic parameters, would require
multiple convolutions (one for each set of parameters) and
it would be very costly computationally (since one could
imagine doing hundreds of iterations before the minimum
is found). The problem becomes easier if we want to �t
the density of only a few modules to the given function.
So we have to reduce the problem to the �tting problem
for a small number of modules which may be computed by
brute force. Because the total density, which describes the
workspace density of whole manipulator, may be written as
the convolution of the densities of manipulator segments,
the problem becomes simpler in Fourier space, where the
convolution is just a matrix product of Fourier transform
matrices.

The �rst kind of problem, (11), leads to the linear ma-
trix equation of the type

�̂(p) �̂(p) = ̂(p) (13)

where �̂; �̂; ̂ denote the Fourier transform matrices of the
lower, upper and whole desired workspace density.

For nonsingular matrix �̂ the solution is straight for-
ward:

�(g) = F�1(̂(p)�̂�1(p)); (14)
Copyright c 1998 by ASME



where F�1 denotes the inverse Fourier transform.
When the matrix �̂ is singular the problem may be

reduced to the problem of minimization of an appropri-
ate quadratic functional for chosen values of regularization
parameters (see (Chirikjian 1996; Kyatkin and Chirikjian
1996a) for more details). For the simple functional

C =

Z
SE(2)

(j(� � �)(g)� (g)j2+

�j�(g)j2 + �(�(g);�r2
a
�(g))) d�(g)

the solution may be expressed in Fourier space as

�̂ = ̂ �̂y (�̂�̂y + ( � + �p2)1)�1 ; (15)

where 1 is an identity matrix, � and � are regularization
parameters, and y denotes Hermitian conjugate. In fact, we
have to choose the parameters � and � as small as possible
in order to minimize the quadratic error. But the param-
eters cannot be taken arbitrary small because the solution
starts to exhibit oscillatory and singular behavior, and the
quadratic norm of the solution increases as parameters ap-
proach to zero. In fact, there is an approximate range of
\boundary" values where the norm of the solution is of the
order of norm of the �(g), for these values further reduction
of the parameters must be stopped. The quadratic error,
however, does not depend strongly on the exact values of
parameters, so we may pick any small values of parameters
in this region.

Analytical description of workspace density with an
anzatz function.

Before we start to discuss the inverse non-linear prob-
lem we have to �nd an appropriate way to describe the
desired workspace densities in analytical form. Observing
the plots of density functions in Fig. (4b,c) we may extract
the most important \global" properties of the workspace
densities.

We observe that the density is \shrinking" with increas-
ing orientation angle �. At the same time it is \rotating" in
the x� y plane with increasing � and \moves" closer to the
origin. We also may characterize the density by the point
of maximal value of density for each �xed orientation angle.
We want to incorporate these important \global" features
of the workspace density into an anzatz 3 function which has

3Anzatz is a term often used in the physical sciences when impir-
ical observations are used to form a model in the absence of a well
established physical principle.
6

these properties and has a relatively small number of free
parameters. For \symmetric" manipulators (that is, ones
with no preferred bending direction) the workspace density
also has a symmetry

� ! �� ; �! ��

To describe symmetric workspaces for manipulators
with a relatively small number of modules (nmod<�10) we
suggest to parametrize the density functional as

f 0(r; �; �) = c5 (
1

�1
p
2�

exp(� (r � x)2

2�21
)�

(1 + c3 cos �)
n 1

�2
p
2�

exp(� (�� c4 �)
2

2�22
) (16)

where x = 1=2 (1+cos�) c1+1=2 (1�cos�) c2. The Gaussian
term (normal distribution) centered at x describes the radial
dependence of the workspace density. We choose c2 < c1,
so the center of the distribution moves closer to the ori-
gin with increasing in �. The term containing c3 describes
\shrinking" of the workspace with increasing �, the power
n is some positive number. We assume that for c3 � 1
an allowed range of � values is j�j � arccos(�1=c3), and
f 0(g) = 0 for � outside of this range. The term contain-
ing the �-dependence is responsible for the \rotation" of
the workspace with increasing �. We illustrate the anzatz
function parameters in Fig. (5).

Fig. 5
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x

We assume that �� < � � �, �� < � � �, and the
density function is assumed to be 2�-periodic.

We have to mention that considerable deviations from
the anzatz may appear for � � � (this is where \discon-
nected" regions in each �-slice of the density function may
Copyright c 1998 by ASME
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appear from counting the con�gurations which di�er by
multiples of 2� in orientation angle �, i. e. for angles which
are outside the range �� < � � �). For a manipulator with
a large number of modules (n>�10) we suggest to replace
the last term

1

�2
p
2�

exp(� (�� c4 �)
2

2�22
)

by the term

[
1

�2
p
2�

exp(� (�� c4 �)
2

2�22
)+h(�) (

1

�2
p
2�

exp(� (�+ c04 �)
2

2�22
)]

(17)
where c04 = 1=2 (1� cos �) c4 +1=2 (1+ cos �)c6, and h(�) is
an even function such that h(�) = h(��) = 1.

We note that the c5 coe�cient must be determined from
the condition

Z
SE(2)

f(g) d�(g) = Kn

where Kn is the total number of con�gurations of the ma-
nipulator. For convenience we divided the density function
by Kn, so the function should be normalized on 1. The an-
zatz function describes the high-density region of workspace
where approximately 90% of states are located.

As an example, for a six module manipulator with the
parameters which we used before (lmin = 0:12; lmax =
0:2; s = 0:2) the workspace may be approximated by the
anzatz function (16) with the parameters

c1 = 0:71; �1 = 0:09; c2 = 0:53; c3 = 1:0;

c4 = 0:47; �2 = 0:38; c5 = 8:98; n = 1:1 :

The error of the approximation in the sense of the
quadratic norm (10) is q = 24:0%.

We may describe the desired workspace using the an-
zatz function (16) or (17) and choosing the appropriate co-
e�cients for this function.

Example solution of the linear inverse problem.

As an example, we solved the linear inverse problem for
the following anzatz function (with the modi�ed term (17))
with the coe�cients

c1 = 1:5; c2 = 0:9; c3 = 0:5;
7

c4 = 0:5; c6 = 2:5; �1 = 0:15;

�2 = 0:46 n = 2:0; c5 = 4:09 ;

and the choice of h(�) = exp(�(j�j � 2:83)2=0:1); for j�j �
2:83; and h(�) = 1; for j�j > 2:83 (we note that the particu-
lar choice of h(�) does not change considerably the norm of
the function, because it a�ects only the regions of low inten-
sity). The anzatz function with these parameters describes
the desired density function (g). We choose the manipu-
lator density �mnp(g) to be described by the workspace of
the six module manipulator with the parameters

lmin = 0:12; lmax = 0:20; s = 0:20

The anzatz function for the given values of parameters
is depicted in Fig. (6a).

We look for solutions using (15), where we put � =
0. The solution exhibits singular behavior if � ! 0. We
choose the value of � = 0:01 (the norm of the solution is
jj�jj22 = 30:79). The corresponding approximate solution
�(g), found according to (15), is depicted in Fig. (7a). We
note that the solution is not strictly positive. We truncated
the negative part of the solution in the �tting procedure (the
norm of positive part of the solution is jj�posjj22 = 26:34).

Fig. 6
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Fitting of the six module manipulator density �mnp(g)
to the function �(g) by brute force in the space of three pa-
rameters lmin; lmax; s (the �tting was performed at approx-
imately 120 \points" of the parameter's space in 2 hours)
gives the following values of the parameters which produce
the �rst �ve smallest quadratic intermediate errors qint (de-
viation of �mnp(g) from �(g))
Copyright c 1998 by ASME



lmin lmax s qint q
0.12 0.25 0.19 55.8% 29.4%
0.12 0.24 0.19 55.9% 26.1%
0.12 0.24 0.20 56.2% 26.8%
0.12 0.24 0.21 56.0% 27.6%

(the error increases rapidly for other parameters, for lmin =
0:15; lmax = 0:23; s = 0:19 it is 173%). We calculated the
accuracy of the approximation of the desired function (g)
by the �nal density (�mnp ��mnp)(g) for these values of the
parameters and give a value of the quadratic error q in the
table. We show the convolution (�mnp � �mnp)(g) for the
smallest quadratic error q

lmin = 0:12; lmax = 0:24; s = 0:19 (18)

in Fig. (6b) (computed by the Fourier method withM = 4).
We note that the calculated solution is an approximate one.
The exact solution (value of the parameters of manipulator)
is located in the vicinity of these values. If better accuracy
is desired, direct �tting of (�mnp � �mnp)(g), found by the
Fourier method, may be performed for the parameters in
the vicinity of (18). We found that (�mnp � �mnp)(g) for
the parameter values of �mnp(g)

lmin = 0:13; lmax = 0:22; s = 0:19;

approximates (g) with the best accuracy (in this case the
error was 14:0%). The direct �tting of the convolution is,
however, at least 7 times more costly computationally (for
each \point" in the space of manipulator parameters) for
M = 4, and more than 30 times for M = 15. Thus, the
solution of the linear inverse problem (15) gives a fast way to
�nd an approximate density function �(g) with acceptable
error.

Example solution of the non-linear inverse problem.

The solution of the non-linear problem may be found
in a similar fashion, i. e. we �nd �rst numerically the
approximate solution of the non-linear convolution equation
and then �nd the manipulator's parameters which describe
the workspace density with the smallest quadratic error.

The non-linear problem becomes a problem of a search
for the \square root" of a matrix in Fourier space, i. e. the
8

solution must satis�es the equation

X
k

�̂(p)mk�̂(p)kn = ̂(p)mn

for each value of p.
An algorithm for the approximate solution of the non-

linear problem, which uses Schur decomposition of Fourier
matrices, was described in (Kyatkin and Chirikjian 1996b).
Again, the solutions depend on the regularization parame-
ter �. We have to choose the value of the parameter �,
which gives the value of the norm in the region jjf jj22<�50
(for a six module manipulator). Moreover, we have ad-
ditional continuous arbitrariness of the solution related to
the following fact. The square root of a Fourier matrix re-
quires one to take the square roots of eigenvalues of the
Fourier matrix f̂(p), the square root has two branches (pos-
itive and negative branches for real positive numbers), and
we may take the di�erent branches for di�erent values of
the parameter p (see (Kyatkin and Chirikjian 1996b) for
details). While it does not change the norm of the solution,
it changes considerably the shape of the function. From the
direct convolution of anzatz functions we may observe that
the convolution of anzatz functions produces an anzatz-like
function for some values of parameters. Thus, we require
the \square root" solution to be anzatz-like (i.e. it may be
approximated by an anzatz function with a small error).
This condition may be implemented in Fourier space as fol-
lows. First, we determine approximately how to choose the
branches of the square root for eigenvalues using the \trial"
anzatz function, i. e. we convolve the trial function with it-
self and �nd which branch to choose comparing the square
root of eigenvalues of the convolution with eigenvalues of
the trial function. Then, we use this prescription for the
branches of the square root to �nd the solution of the non-
linear problem for the given desired total workspace density.

As an example we solved the non-linear problem for the
following set of coe�cients of anzatz function (with term
(17)) which describes the desired total workspace density

c1 = 1:6; c2 = 0:95; c3 = 0:5;

c4 = 0:5; c6 = 2:5; �1 = 0:15;

�2 = 0:45 n = 2:0; c5 = 3:85; (19)

We use a value of the regularization parameter � = 0:03
and determine the approximate prescription how to choose
the branches of square root of eigenvalues from the trial
function, which has the coe�cients with half values for c1,
c2 and �1 and of the same order for the other coe�cients
Copyright c 1998 by ASME
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(which should give the function similar to the solution, be-
cause the value of the c1 is scaled approximately by factor
two for the convolution). Using this prescription we found
numerically the solution of the non-linear problem which
is depicted in Fig. (7b) (because the prescription is only
approximate, the small deviations from anzatz-like shape
appear (such as regions of the negative values), which, how-
ever, do not a�ect considerably the norm of the solution).

Fig. 7
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Fitting of the six module manipulator density �mnp(g)
to the function �(g) performed by brute force in the space
of three parameters lmin; lmax; s gives the following values
of the parameters which minimizes the quadratic error (�rst
three local minima with the smallest values of the errors are
shown)

lmin = 0:12; lmax = 0:24; s = 0:21; (58:1%) (20)

lmin = 0:13; lmax = 0:24; s = 0:23; (59:3%) (21)

lmin = 0:13; lmax = 0:23; s = 0:21; (59:6%) (22)

(the error increases rapidly for other values, for example
for lmin = 0:15; lmax = 0:22; s = 0:20 it is 236:7%). We
computed the value of the quadratic deviation of the con-
volved function (�mnp ��mnp)(g) from the desired function
determined by the coe�cients (19), and found that the min-
imum (22) has a smallest quadratic error 18:6% (the mini-
mum (21) gives 26:8% of error, and (20) gives 47:0%). The
contour plot of the desired function and the manipulator
density for the parameters in (22) are shown in Fig. (8a)
and (8b) for � = 0.

If better accuracy is desired the direct �tting of (�mnp �
�mnp)(g) (computed by the Fourier convolution method)
into the desired function (g) may be performed for the
9

parameter values in the vicinity of (22). We found that for
the manipulators parameters

lmin = 0:14; lmax = 0:23; s = 0:24;

the manipulator workspace density has a smallest deviation
from (g) equals 14:6%. All convolutions were performed
using M = 4.

Fig. 8
a) b)

-2 -1.2 -0.4 0.4 1.2 2
x

-2

-1.2

-0.4

0.4

1.2

2

y

-2 -1.2 -0.4 0.4 1.2 2
x

-2

-1.2

-0.4

0.4

1.2

2

y

CONCLUSIONS

We have shown in this paper that the Fourier method is
a fast method to compute convolutions of two dimensional
manipulator workspace densities, which are functions on the
motion group. The accuracy of the convolutions is accept-
able forM = 4 (9�9 Fourier matrices) and has a quadratic
error in the range of 10 � 20%. We also suggested an an-

zatz, which allows one to describe the workspace densities of
the two dimensional manipulators in a simple analytic form
with few free parameters. Anzatz functions and Fourier
methods on the motion group allow one to solve the linear
and non-linear inverse problems of kinematic design with er-
ror around 20�30%. Workspace density generation, Fourier
methods, and convolution methods were implemented in the
C programming language. Part of the matrix computations
in the inverse problems were performed using Mathematica
2.2 programs.

We note that Fourier methods for the three dimensional
motion group and analytical examples of Fourier transforms
and solutions of linear and non-linear inverse problems were
described in (Kyatkin and Chirikjian 1996a; Kyatkin and
Chirikjian 1996b), though the application of these methods
to 3 � D manipulator design is an open and challenging
numerical problem.
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