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1. Introduction

Recently, the Fourier transform on the two [1] and three [2] dimensional Euclidean
motion group has been applied to the solution of convolution equations on this
group. Particularly, linear inverse [1, 2] and direct problems [3] have been con-
sidered. Convolution equations on the Euclidean motion group arise naturally in
robotics in the area of the kinematic design of binary manipulators [4, 5].

The Euclidean motion group, SE(N)*, is the semi-direct product of R" with the
special orthogonal group, SO(N). That is, SE(N) = RY > SO(N). SE(N) is an
(N+1)N /2-dimensional Lie group. We denote elements of SE(N) as g = (r, A) €
SE(N) where A € SO(N) and r € R". The group law is written as g; o g» =
(rj + Airy, AjA), and g7' = (—ATr, AT). Alternately, one may represent any
element of SE(N) as an (N + 1) x (N + 1) homogeneous transformation matrix
of the form:

H(g)=<5‘T {). ()

* SE(N) denotes the N-dimensional Special Euclidean group.
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In this paper we apply noncommutative harmonic analysis on the motion group
to solve the nonlinear convolution equation

fc hg)h(g " o g)du(g) = (h  h)(g) = f(g)

for h(g), where G is a motion group, g, g’ € G, du(g’) is an invariant integration
measure, and f(g) is any given square integrable function. We also address the
solution of the more general problem of finding /(g) for given f(g) when

(hs---xh)(g) = f(g).
_\(_J

n times

These equations arise naturally in the inverse problem of kinematic design of bi-
nary manipulators [4, 5, 3]. In this context, each function 4 (g) represents a density
of positions and orientations which one segment of a manipulator arm can reach
relative to its base. The convolution generates the density of reachable frames for a
concatenation of modules. The inverse problem arises when a desired total density
is specified and this information must be localized to the design of each module.

First, we review briefly the matrix elements of the irreducible unitary represen-
tations of the motion group in both two and three dimensional cases and discuss
the corresponding Fourier transforms of functions on the motion group.

Using techniques from noncommutative harmonic analysis, the convolution may
be written as matrix multiplication, thus the convolution equation may be reduced
to the problem of calculation the root of a matrix function of a single argument.

We give an example of the exact analytical solution of the convolution problem.
For unitary diagonalizable Fourier transform matrices we discuss the general form
of the solution. We discuss the main reasons why the exact solutions do not exist
in many cases, such as the absence of exact square roots of matrices, and the
appearance of singularities in the inverse Fourier transform integral.

We suggest a regularization technique for finding the approximate solutions of
the problem and the corresponding numerical algorithms for the computation of the
approximate solutions. An explicit example is considered where the approximate
solution of the convolution equation and estimated quadratic error of this solution
are found.

The paper is organized as follows. In Section 2 we list the matrix elements of
the irreducible unitary representations of SE(2) and SE(3). We define the corre-
sponding Fourier transform in Section 3. In Section 4 the convolution equation is
written as a matrix equation and an analytical example is solved. General solutions
for the unitary diagonalizable Fourier matrix are discussed. In Subsection 5.1 we
study the case when exact solutions do not exist, and give numerical methods
for calculating regularized approximate solutions in Subsection 5.2. An example
of this approximation technique for solving the convolution problem is given in
Subsection 5.3. The Appendix contains some useful definitions.
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2. Matrix Elements of Irreducible Unitary Representations of the Motion
Group

2.1. TWO DIMENSIONAL CASE

Each element of SE(2) is parametrized in either rectangular or polar coordinates
as:

cosf —sinf r
gr1,r,0) =1\ sinf cosh r or
0 0 1

cosf —sinf rcos¢
g(r,¢,0) =1 sinf cos® rsing
0 0 1

Herer =| r |.
A unitary representation of SE(2) (see [6, 8, 20, 21, 22] for general definition)
is defined by the unitary operator:

U(g, p) f(x) = e T f(ATx), )

for each g = (r, A(9)) € SE(2). Here p € R, and x - y = x;y; + x2y,. The vector
X is a unit vector (x - x = 1), so f(x) = f(cos ¥, sinyr) = f(y) is a function on
the unit circle. Henceforth we will not distinguish between f and f.

Any function f (1) € £2(S") can be expressed as a weighted sum of orthonor-
mal basis functions as f(y) = ), a,e’"V. Likewise, the matrix elements of the
operator U (g, p) are expressed in this basis as:

Unn(g, p) = €™, U(g, p)e™’)

2.
_ % § e—inll//e—i(alp0051//+azpSinljf)ein(l//—e) dw (3)
0

V m, n € 7Z, where the inner product (-, -) is defined as:

2

1 -
(fi. f) = 7 f1 () () dip.
T Jo

It is easy to see that (U(g, p) f1, U(g, p)f») = (fi1, f2), and that U(g, p) is
therefore unitary with respect to this inner product.

A number of works including [20, 21, 8] have shown that the matrix elements
of this representation are given by

Umn (g(rv ¢’ 9)’ P) = l-n—me—i[n9+(m—n)¢>] Jn—m(P”), (4)

where J,(x) is the vth order Bessel function.
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From this expression, and the fact that U(g, p) is a unitary representation, we
have that:

Umn (8 (1, $,60), p) = 1, (g(r, ¢, 60), p)
= unm(g(ra (b, 9)’ P)
— l-n—mei[m@+(n—m)¢] Jmfn (pl") (5)

Henceforth no distinction will be made between the operator U(g, p) and the
corresponding infinite dimensional matrix with elements u,,,(g, p).

Symmetry property. The matrix elements are related by the symmetry
umn(gs P) = (_l)m_nu—m,—n(ga P) (6)

2.2. THREE DIMENSIONAL CASE

For the three dimensional motion group we parametrize the rotation matrix A in
terms of the Euler angles «, 8, y of z — x — z rotations, and the translation vector r
is parametrized in terms of radial part r = |r| and polar and azimuthal angles 6, ¢.

The complete orthogonal set of matrix elements of irreducible unitary repre-
sentations of the three dimensional motion group may be constructed using the
method of induced representations [7, 2] (for a formal definition of the induced
representations see, for example, [10, 11, 9]).

Each irreducible unitary representation is indexed by an integer number s =
0,£1,4£2,... and continuous Fourier parameter p > 0 [7, 2]. Representations,
which we denote below by U*(g, p), satisty the homomorphism property

U (g1 082, p)=U (g1, p)- U (g, p),

where g € SE(3) and o is the group operation.

Basis functions (see [7, 8, 2] for explicit expressions) are enumerated by integer
parameters [ and m (like in SO(3) representations) [12] for each s, where [ =
[s|, |s|+1,]|s|+2,...and |m| < [. Thus, matrix elements of the irreducible unitary
representations depend on integer parameters s, [, m, I’, m’ (where [, I’ > |s| and
|m|(Jjm'|) <1 (I")) and continuous Fourier parameter p > 0.

To obtain the matrix elements of the unitary representations we use the group
property

W, 4; p) = UK, I3 p) - WO, 43 p). )

The translational matrix elements are given by expression [7, 2]

(',m' | p,s |, m](r)
k=l'+1

20+ 1)k +1
—@nr Y g JREEDEED G k0,05 11,9
Myl 2L+1)

XC(k,m —m';U',m' | 1,m) Y™™ (0, ¢), (8)
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where 6, ¢ are polar and azimuthal angles of translation r,

Ji(@) = V)22 Jii12(2),

Y;"(6, ¢) are spherical functions, and C(k,m — m’;l',m’ | I, m) are Clebsch—
Gordan coefficients (see, for example, [13]).

The rotation matrix elements ?‘jfm (A) are

Ton(A) = e " (=1)"™ Py, (cos B)ye ™, ©9)

mn

where «, B, y are z—x—z Euler angles of the rotation. We note that the rotation ma-
trix elements do not depend on s. Generalized Legendre polynomials P! (cos )
are given as in Vilenkin [6] (see appendix).

Finally, using the group property (7), the matrix elements of the unitary repre-
sentation U*(g, p) (for s =0, £1, £2,...) are expressed as

Jj=l

U (@ A p) = D [, | pos | L, j10) T/, (A). (10)
j=—1

Because (8) contains only half-integer Bessel functions, all matrix elements
may be expressed in terms of elementary functions, for example

sin(rp)
U . r, A; = ;
0,0:0,0( p) D

i v/3 cos(f) (—cos(rp) + sin(rp)/(rp))

UY .0 (T, A =
1.0:0.0( p) D

Symmetry property. We note an important symmetry property of these matrix
elements [2]

U, g (6 A5 p) = (=D (=D (r, A; p) (11)

/ I
U, —m’;l,—m

(see [2] for other symmetry relations of matrix elements).

3. The Fourier Transform on the Motion Group
3.1. DEFINITIONS AND PROPERTIES

Here we review the Fourier transform of functions f(g) € L*(G), where G is a
motion group. We state without proof those properties derived in [2] which have
applications to the current problem.

The inner product of functions is given by

(fi, f2) = /G f1(g) f2(g) du(g), (12)
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where G is SE(2) or SE(3), g € G. The invariant integration measure on SE(2) is
given by

1
d,bL(g(l", ¢a 9)) = wr dr d¢d9

(r, ¢ are the radial and angular part of translation vector r and 0 is the SO(2)
orientation angle).
The invariant integration measure on SE(3) is

du(g) = dAd’r
where d*r is an integration measure in R, given in spherical coordinates by
d*r = r*drsin6 do d¢

(where ¢, 6 are polar and azimuthal angle of the translation r), and dA is the Haar
measure on SO(3), given by

1
dA = —sinBdB dady
812
(normalized such that the volume of SO(3) is 1), «, B, y are z —x — z Euler angles.

DEFINITION. For any complex-valued function f(g) € L?*(G) on the motion
group G we define the Fourier transform as

F(f)=F(p) = /G F©) UG pdulg).
where g € G.

The inverse Fourier transform is defined by
o0
r@ =5 =c [ e (13)
0
The coefficient C is 1 for SE(2) and C = 1/ (27?) for SE(3).

The explicit expression for the three dimensional matrix elements of the Fourier
transform is given in terms of matrix elements (10) as

ﬁf,m’;l,m(p) = f(l‘, A) ‘uls,m;l’,m’(r’ A; P) dA d3r’ (14)
SE(3)

where we have used the unitarity property of the matrix elements.
The inverse Fourier transform in the three dimensional case is

00 (S 14 1 00
e ==Y Y Y Y [ r 0 S x

s=—00 I'=|s| I=|s| m'=—1' m=—I

XU s (s A3 D). (15)
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The analogous expressions for the planar case can be found in [1].

Farseval/Plancherel equality. The Parseval/Plancherel equality for square-integra-
ble functions on the motion group G = SE(n) (n = 2, 3) is:

/G f(®)du(g) = C /0 17 (IE P dp.

where C = 1 for SE(2) and C = 1/(27?) for SE(3), and ||fA(p)||§ is the Hilbert—
Schmidt norm

1115 =Tr(f ),
where f T is the Hermitian conjugate of f , and Tr is the trace.
Convolution property. One of the most powerful properties of the Fourier trans-

form of functions on R” is that the Fourier transform of the convolution of two
square-integrable functions

(fix f2)(8) = /G fi(h) fo(h™" o g) dpu(h) (16)

is the product of the Fourier transforms of the functions. This property persists also
for the convolution of functions on the motion group, namely

F(fi* f)=F(f)F ), (17

only now the order of the product of Fourier transforms matters.

Symmetries. For the real function f(g) we note a symmetry property of the Fourier
transform, which follows from symmetry (6) and (11) of the matrix elements

Fom = (=D (18)

(two-dimensional case), and

Bwiam(P) = (=D D f (D) (19)

(three-dimensional case). These symmetries are preserved under multiplication of
Fourier transforms (which follows trivially from the convolution property and the
fact that the convolution of real valued functions is real). These symmetries also
put restrictions on the eigenvalues/vectors of the Fourier transform matrices of real-
valued functions on SE(N) as follows.

THEOREM 3.1.1. Complex eigenvalues of matrices with symmetries of the form
(18) and (19) appear in conjugate pairs.

Proof.

Case 1. SE(2).
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The eigenvalue problem is written in component form as
AXp = Z ﬁnnxn = (_l)m Z(_l)n f—m,—n Xn-
Multiplying both sides by (—1)" and regrouping terms we get

DD foaxa =) fom a1 x) = A(=1)"x).

Changing the dummy variables (m,n) to (—m, —n), and taking the complex
conjugate of both sides, one finds:

D Fun (D" X5 = (=1 %),

indicating that if (A, x,,) is an eigenvalue/vector pair, then so is A, (=D X5).

Case 2. SE(3).
The eigenvalue problem is written for each s block as

E rs s s
fl’,m’;l,m xlm = A 'xl’,m”
I,m

where there is summation over / and m.
Substitution using symmetry (19) yields

"= (m'—m) £.
Z(_l) (=pm= fls’,fm’;l,fmxlsm
I,m

U'+m’ ) I+
= DY (D) = 2

I,m

Multiplication on both sides by (—1)¢*+") and complex conjugation yield:

2 I+m) s kY U'+m’)y 5
S Bt (DR = RD R,
1,m

Finally, changing the dummy variables (m, m’) to (—m, —m’), we get
> B (D) = R(=DI R ),
I,m

indicating that for every eigenvalue/vector pair (A, x; ,.), there is also a pair
ol ]/_ N <
O, (=D %5, 0

Contraction of indices. 1t is convenient to rewrite the 4-index three-dimensional
Fourier t'ransforrn matri).i §lement T mritm p)' asa 2—ipdex matrix fI; (p)- To satisfy
the matrix product definition we arrange /, m indices in a row (we show an example
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fors =0)0(for/ =0); —1,0,1 (for/ = 1); —2, —1,0, 1,2 (for/ = 2); ..., which
correspond to 2-indices for 1, 2, 3,4, ....
Explicitly

ﬁf,m’;l,m(p) = ﬁ; (p)’ (20)

where i =U'(I'+ 1) +m' —s>+1;j =11+ 1) +m — s>+ 1.

Thus, the three dimensional Fourier transform has a block-diagonal form, where
each infinite dimensional 4-index block f ¥ is contracted to matrix form according
to (20).

Many operational properties of the Fourier transform (i.e. transformation of dif-
ferential operators on functions into algebraic operations on the Fourier transform)
are derived in [2].

3.2. GENERALIZED FUNCTIONS AND THE FOURIER TRANSFORM

While the Fourier transform is generally used for harmonic analysis of square-
integrable functions in this paper, there are a few notable exceptions. These are the
generalized functions or distributions. These are discussed here, and used through-
out the paper.

The Dirac delta function for R" is defined to have the following properties:

/5(r)dNr=1, /f(r)8(x—r)dNr=(f*S)(X)=f(X),
RN RN

where dVr = dridr, - - - dry.
The Dirac delta function on SO(N) has the analogous properties:

/ S(R)dR = 1, / FRS(RTRYAR = (f *8)(R) = f(R).
SO(N) SO(N)

It follows directly from the invariance of integration under shifts and inversion of
the arguments of functions on RY and SO(N) that

§(x—r)=8(r—x) and S(RTR)=8(RTR).
The delta function for SE(N) is the product of these:
3(g) =6(r)6(A) for g = (r, A) € SE(N).

The integration over SE(N) in the convolution integral (16) may be rewritten as
integration over position and orientation separately:

(fl*fzxx,R):/ fpl(s,ﬁ)pz(ﬁT(x—é),RTR)dsdﬁ, (21)
SO(N) JRN

where g = (X, R) and & = (€, R) are elements of SE(N).
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Using this notation, it is easy to see that the Fourier transforms of functions
such as f(R)34(x) and f(x)8(R) reduce to

/ Ff(R) U0, R"; p)dR
SO(N)
and
/ f(x) UC=x, I; p)d"x,
RN

respectively.

3.3. EXAMPLES OF THE FOURIER TRANSFORM

Let us calculate the Fourier transform of the following function on the three dimen-
sional motion group

f@r,A) = F(r) cosf cosp, (22)
where 6 is the polar angle of r and B is a Euler angle (around the x-axis) of

rotation A. Because ‘u(l)o(A) = cos 3, it may be shown from (8) and (10) that only

£0 . £0 . £0 . £l . £l .ol .op-l
fl,o;o,o(l’)a fl,o;l,o(P)a f1,0;2,o(p), fl,o;l,o(P)s fl,o;z,o(p)a fl,o;l,o(p)a fl,o;z,o(P)
may be nonzero. Direct computations for the case when F(r) = e~ show that
the Fourier transform elements are (we show only the nonzero matrix elements)

A 8im p
0

0olp) =— —
fl,0,0,0 p 3\/5 (1+p2)2
A 16ir p
0

noP)=— ;
Toad P == 3 W oy
Fonotp) = o P
1,0;2,0 p 3\/3 (1+p2)2’
A 8im p
fronop) = (23)

345 (4 p)?

For the inverse Fourier transform we obtain the following expression for the
trace in Equation (13)

(sin(pr) — pr cos(pr))
A+ p)ipr?

The p integration in (13) reproduces the original function.
If instead we choose F(r) = r*e™", then the nonzero matrix elements are

64im p (35 — 42p* +3p*)
V3 (14 p2)° ’

Tr(f(p)U(g, p)) = 87 cos b cos B

flo,o;o’o(P) = -
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128im p (35 —42p* + 3p4)-

f1o’o;2’o(P) = - \/B 1+ p?) ;
A 64im p (35— 42p + 3p*)
Frop0p) =— NG (1 + p2) ;
A 64im p (35— 42p* +3p*)
Do2olP) = =25 T oy

The inverse Fourier transform again gives the original function.

99

(24)

After contraction of four indices to two using (20), the Fourier transform of the

examples (24) and (23) may be written as a block-diagonal matrix

A

F_

Y
I
3

F

where we truncate all zero elements for [(I") > 2.

(25)

The nonzero blocks are the 9 x 9 matrix ﬁo and two 8 x 8 matrices I:",l, F |
(lower indices correspond to s index). Using (20) these matrices may be depicted

as
[0 0 0
F(): ‘f};ol e £07 O )
0 ... 0 0 |

0 0 0
0... 0 0
where fAziel = Alﬂ,tol;z,o(p)-

4. Application of the Fourier Transform to Solution of the Nonlinear
Inverse Convolution Equation

In this section we address the solution of the convolution equation

(h*h)(g) = f(g),

(26)

27

(28)
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where g € SE(3) or SE(2), and f(g) is not only square integrable, but also rapidly
decreasing. * Unless otherwise specified, these conditions on f(g) will be assumed
throughout the paper.

We want to find 4(g) in (28) for given f(g). Solution techniques for this equa-
tion generalize naturally to

(hs---xh)(g) = f(g).
N ——

n times

This is addressed in the next section.
After taking the Fourier transform, Equation (28) may be written in the form

H(p)-H(p) = F(p). (29)

The original problem then becomes a problem of finding the square root of the
Fourier transform operator. We truncate the Fourier transform matrix and reduce
this problem to a finite matrix equation. In the two dimensional case this equation
is a matrix equation with square matrices of dimension 2M + 1 if we truncate the
Fourier transform matrix at |m, n| = M. In the three dimensional case this equation
is, in fact, 2L + 1 matrix equations (one for each square block enumerated by s,
Is| < 1,1") of dimension (L + 1)? — s? if we truncate the transform at |/,/'| = L
for each s.

We end the introduction of this section with the observation that if 4(g) is a
solution of (hxh)(g) = f(g) then h/(g) is a solution of (4’ *h/)(g) = f/(g) where
W (g) =h(g ogog, f(g) = f(gr' ogogi), and g € G is arbitrary. This
follows directly from the definition of convolution and the invariance of integration
of functions under shifts and inversion of the argument.

In Subsection 4.1 general classes of functions for which this nonlinear inverse
problem can be solved exactly are discussed. In Subsection 4.2 an explicit example
which does not fall into these special categories is illustrated.

4.1. EXACT SOLUTIONS FOR UNITARY DIAGONALIZABLE FOURIER
TRANSFORMS

Here we address the problem of solving the convolution Equation (28), when the
Fourier transform of the function f(g) may be brought to diagonal form by unitary
transformation:

F(p) = U(p) Fung(p) UT(p). (30)

For these functions we may always find exact complex solutions if the function
is band-limited, (i.e. a finite Fourier matrix is an exact Fourier transform). If the

* We define a rapidly decreasing function on SE(N) as one for which fSE( N) Ir|™| f(g) du(g)
and [° |F (p)|p"*N~1dp are finite for all finite powers of n.



NONLINEAR CONVOLUTION EQUATION ON THE EUCLIDEAN GROUP 101

function f(g) is not band-limited then we may find band-limited approximations
(i.e. with truncated Fourier transform) which become more accurate when higher
harmonics are retained.

We have to note that the condition in (30) is true only for a very restrictive class
of functions. In general, a square Fourier matrix (truncated) may only be brought by
unitary transformation to upper triangular form. We discuss questions of existence
of solutions and general algorithms for search of solutions in the next section.

It is well known that a matrix F'( p) may be diagonalized by the unitary matrix
U, if and only if it is a normal matrix [19], i.e.

F(p)F'(p) = F'(p)F(p). (1)

This leads to the question of what kind of functions have Fourier transforms with
this property. Thus the following proposition:

PROPOSITION 4.1.1. Functions f(g) € L*(G) with Fourier transforms satisfy-
ing (31) include:

(a) f(g) which satisfing the condition
fl@O=%f™h

We call these functions symmetric (antisymmetric).

(b) f(g) which is a class function, i.e.
f(@=f(h"ogoh)
forany g, h € G.
(c) f(g) with a Fourier transform matrix which is proportional to a unitary ma-
Irix.

Proof. Cases (a) and (b) may be shown easily using the Fourier transform de-
finition, the unitarity of U(g, p), and the invariance of integration with du(g)
under shifts and inversion of the argument. In particular, it is easy to see that the
Fourier transform of a symmetric (antisymmetric) function is a Hermitian (skew-
Hermitian) matrix

Fi(p) = +F(p).

Case (c) follows directly from the definition of unitary matrices. m|

We may also find normal matrices which are not in these categories. For exam-
ple, a function with the Fourier transform matrix f f(p) = el f (p) (where c(p)
is some function) is also normal. The next two proofs examine how broad the sets
of class and symmetric/antisymmetric functions are for SE(N).

LEMMA 4.1.2. There are no class functions in L*(SE(N)) for which
Jsean 1f (@)1 d(g) > 0.
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Proof. For a function to be a class function on SE(/N) necessary conditions are
that f(g; ' o g0 g1) = f(g) for g = (0, A)) and f(g,' 0 g0 g) = f(g) for
g» = (r1, ). That is, the definition must hold for general automorphisms, and
so it must hold for pure rotations and translations individually. Using the notation
f(g) = f(r, A), these conditions are written as:

fr,A) = f(ATr, ATAA)) (32)
and
fr,A) = f(r+ (A — Dry, A). (33)

Equation (33) can only be true for arbitrary A # I if it has no dependence on r.
This leads to:

Case I. f(r, A) = fi(A).

If, however, f(r, A) = 0 for all A # I then Equation (33) is also satisfied. The
only way this can be true and fSE(N) | f(g)du(g) > 01is when:

Case 2. f(r, A) = f2(r)5(A).

Neither of these functions are square integrable on SE(N). O

It is interesting to note that in order to satisfy (32), f;(A) must be a class func-
tion on SO(N), and fo(r) = f>(Jr]) = f2(r). The class functions for SO(3) are
functions of the matrix invariants. Thatis, f1(A) = fi([1(A), I,(A), I5(A)), where
det(A1—A) = A*—I, (A)A2+L(A)A—I3(A) = 0. Note that I3(A) = det(A) = +1,
and any element of SO(3) can be written as A(f, w) = RZ(0)R" where 6 and »
are the angle and axis of rotation, Z(6) is rotation around the z-axis, and R is any
rotation matrix with third column @ . * From this, it is clear that /;(A) and I;(A)
can only be functions of the rotation angle, and so f;(A) = f1(9).

THEOREM 4.1.3. There exist nontrivial square-integrable symmetric and anti-
symmetric functions on SE(N).

Proof. The proof is by construction. Let f;: RV*N x RV — C (or R) for
i = 1,2, 3,4 be square integrable functions on R¥*¥*N gych that

Sil(=1)"B, (=D)"y) = fi(B,y),
L(=D"B, (=D)"y) = (=D)" f2(B, y),
[((=1)"B, (=1)"y) = (=1)" f3(B, y),

f1((=D"B, (=D)™y) = (=D"*™ fi(B,y),

* Any element of SO(3) can be parametrized as A(9, w) = ef10] = I 4 sin O[w]+ (1 —cos 9)[a)]2
where 6 is the angle of rotation, and w is the unit vector specifying the axis of rotation. The matrix
[@] is the skew-symmetric matrix such that [@]x = w x x for any vector x € R3.
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for all B € RV*N and y € RY and m,n € {0, 1}. Then it is easy to confirm by
direct substitution of g=! = (—ATr, AT) for g = (r, A) € SE(N) in the above
functions that

fi(A+ AT, A"V,
A+ AT, A7),
fitA— AT, A7),
fa(A— AT A7)

are symmetric, and

f(A+ AT, A7),
fa(A+ AT, A7),
f5(A— AT, A7),
for(A— AT, A V2r)

are antisymmetric, and they are all square integrable by definition (the A~'/2 is
defined as rotation around the same axis as in A by half of the angle in opposite
direction). For instance if f(g) = f(r, A) = fi(A + A", A="?r), then f(g™") =
f(—=ATr, AT) = fi{(AT + A, (AT)~1/2(—ATr)). But since any matrix commutes
with powers of itself, and AT = A=, (AT)=1/2(=ATr) = (A~1)"1/2(—=A"'r) =
(A2(—=A7'r) = —A~12r. Clearly then, f(g™") = fi(AT+A, —A~2r) = f(g)
in this case. The other cases follow in the same way. O

In the case of SE(3), if the rotation matrix is parametrized using the axis and
angle of rotation, A = A(f, w), and the direction of the axis of rotation is parame-
trized by polar and azimuthal angles, ® = w(«;, &), then functions of the form
f(O,ay,ar;r) where f(£60,a1,a2;r) = £f(6, a1, ar; r) are symmetric/anti-
symmetric.

Solving h x h = f When f is Normal

The solution of the convolution Equation (29) is given by

H(p) = U(p) X(p) Fiia(p) X~ (p) UT(p), (34)
where U (p) is a unitary transformation, F dli{é

ized Fourier transform ﬁdiag (p), and X (p) is a nonsingular matrix which commutes

(p) is a square root of the diagonal-

with Fuiag(p) (i-e. X (p) Fuiag(p) = Fuiag(p) X (p), but it may not commute with
F dli{é( p)). For construction of X see [15]. In our case it is a matrix where diagonal

elements are arbitrary nonzero parameters (functions of p) and the elements X;;(p)
(i # Jj) are zero if (Fyiae(p))ii # (Faiag(p))jj- Otherwise X;;(p) is an arbitrary
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function (under the condition that the inverse Fourier transform integral exists).
Using the O R decomposition [19, 15], the X matrix may be written as

X =UX, (35)

where X is an upper triangular matrix, and U is a unitary matrix. Then it is clear
that X (p) }A'“dligz( p) X '(p)isan upper triangular matrix, which has the same diag-
onal elements as f?dligz

We note that the solution (34) with X (p) chosen as in (35) with X = X4, (in
particular, when X (p) is a unit matrix) is a ‘minimal’ solution, in the sense that it

minimizes the norm f clh(g) |2 du(g). This is clear from the fact that

(p) matrix.

f 1h(g)*du(g) = C / IH(p)II3 p"~"dp.

G 0

where n = 2, C = 1 for SE(2), and n = 3, C = 1/(2n?) for SE(3). Here
H(p) = X(p) Fyla(p) X' (p).

The H(p) gives the same contributions from the diagonal elements for both diag-
onal and nondiagonal X (p), but has additional nonnegative contributions from the
nondiagonal elements for nondiagonal X (p).

The solution, in general, is not unique, because the square root has two bran-
ches, and the solution may depend on arbitrary continuous functions, which come
from the matrix X (p).

While we may always find complex solutions for unitary diagonalizable func-
tion f(g), real solutions /(g) do not always exist for given real function f(g) with
unitary diagonalizable Fourier transform.

Consider, for example, a band-limited function on SE(3) with the Fourier trans-
form matrix

F(p) = —folp) - 1,

where 1 is 4 x 4 unit matrix, and fy(p) is a strictly positive function. This Fourier
transform gives a real function f(g), because symmetry relations (19) are satisfied.
However, the square root of this matrix, which gives a real function A(g), does
not exist. This is clear, because the FY 2(p)11 element is always imaginary, which
violates symmetry (19). So it gives an imaginary contribution to the Trace in the
inverse Fourier transform (13), because the ug’O;O,O(g, p) element is real and this
contribution cannot be cancelled for arbitrary fi(p).

However, we may find criteria when the real solutions of functions with uni-
tary diagonalizable Fourier transform (with an additional condition that the unitary
transformation matrix also satisfies the symmetry (18) or (19)) may be easily found.
In particular, we have:

THEOREM 4.1.4. A solution h(g) in L>(SE(N),R) (for N = 2,3) of Equa-
tion (29) may always be found for a rapidly decreasing real function f(g) with
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a unitary diagonalizable Fourier transform matrix (and the transformation ma-
trix U(p) satisfying symmetry (18) or (19)), if the elements (ﬁdiag)f,o;l,o(l?) (for
s = 0,%£1,£2,...and |l = |s|,|s| + 1,...) in the Fourier transform (for the
three dimensional case) or the element ﬁoo( p) (for the two-dimensional case) are
nonnegative functions.

Proof. We prove here the theorem for the three-dimensional case. The proof for
the two dimensional case is analogous.

The Fourier transform matrix may be written as

Fug(p) = U'(p) E(p)U(p)

_ / F@ U (p) Ui (g, p) U(p) dus(g).
SE(3)

The matrix elements of U'(p) U'(g, p) U(p) still have the same symmetry
property as given in (11), because it is a product of matrices with this symmetry
[2]. Therefore, for the real-valued function f(g) we have the symmetry of the
eigenvalues

(Fiiad)] g m(P) = (Fitag)}—mit,—m (D) (36)
We always may take a branch of the square root which satisfies (36)

~1/24 ~1/2
(Fdigg)l,m;l,m (P) = (Fdigg)?,fm;l,fm (p) (37)

for each m # 0. Moreover, the (1':”(1l /2

s
iag) 10: 1’0( p) elements are real, because elements

(ﬁdiag)f,o; 1,0( p) are nonnegative.
Then, the inverse Fourier transform of A(p) = U(p) ﬁ(;iéz( p)U T( p) (i.e. we
chose the X (p) matrix to be a unit matrix) gives a real solution

L £1/2 t 2
h(g) = 5= Tr(U (p) Fy0e(p) U'(p) U(g, p)) p~dp
2 0
1 OOT ~1/2 . 24 .,
= 27 ), t( Faing(P) - U'(p) U(g, p) U(p)) p~dp. (38)

The matrix elements of £/2(p) and U’ (p) U(g. p) U (p) satisfy (19) and (11).
The solution (38) is therefore real, because complex conjugate elements (/, m; [, m)
and (I, —m; [, —m) always come in pairs (for m # 0) in the Trace in Equation (38)
and the (/, 0; [, 0) elements are real. Hence, we have proven the existence of real
solutions provided the nonzero elements of F dliéé decay rapidly enough to zero as
p — oo for the inverse Fourier transform to converge. This is guaranteed when

f(g) is rapidly decreasing. |
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4.2. ANALYTICAL EXAMPLE OF EXACT SOLUTION OF THE CONVOLUTION
EQUATION

As an illustration, we solve here the three-dimensional convolution Equation (29)
for a simple band-limited function (i.e. a function for which only a finite number
of harmonics contribute to the Fourier transform) given in (22). For this function
exact solutions (we find particular real solutions) may be easily found. We note
that in many practical cases solutions (even complex) do not exist. We discuss the
methods for regularization of the problem and numerical methods for finding the
approximate solutions in the next section.

For the function (22) the Fourier transform is given in (24), and it is written as
a finite matrix (with three nonzero blocks) in (26) and (27). For this simple matrix
the convolution Equation (29) may be solved directly, i.e. the solution H, ; may be
found from ), I:Iik ﬁk i = I:", ;. We discuss more general algorithms for finding the
square root (and any nth-root) of a matrix in the next section. For general methods
for finding the square root (and for criteria for the existence of the solutions), see
also [15].

It may be checked that the 9 x 9 matrix

0 0 ... 0 ... 0]
K, 0 :
0 hY 0 Ay 0 hY% 0 A% 0
RS, 0 ... 0 ... .. 0
Ay=| : : (39)
0 0 ...0 ... A% 00
0 0 ... 0 ... hY, 0 0
L 0 0 0 ... .. 0]

is a solution of the equation ﬁoz = ﬁo (for the s = 0 block), where ﬁo is given in
(26), for the matrix elements

 32pm (35-42p° +3pY)
314 (1 + p2)4

iv32pm
31/4 (1 +p2)2’

8. /P (35—42p +3p*)
151/4 (1+P2)4 ’

~0r0
h21 _h4l -

70 _ 70 __
h32 _h34 -

70 _ 70 _
h36 _h38 -

N A 8i/pm
0 0
he; = hg, = AT 77 U+ 2 (40)
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Similarly, a square root of matrix (27) Fi may be chosen in the form of the
8 x 8 matrix

[0 0 0 ... At'oo0]
sl 0 hzl ... 0 00

. 0 00 ...0A 00

Hy = . 41
| 0 0 0 ... 0 00 |

where matrix elements may be taken to be

FEL_jE i32pm

21 23 51/4(1+p2)2’

. . V32 35 —42p* +3p*

P =R = pr( p-+3p7) 42)

514 (1 + p2)y4

It may be shown, using the symmetry properties (11) and the contraction of
indices (20), that the choice of matrix elements in the form (40) and (42) gives a
real-valued function h(g) for all g € SE(3). In Figure 1a we depicted the 6 —
dependence of the original function f(g) 22)forr =1;¢ =n/2; 2 =0;y =0.
In Figure 2a the 6 — B dependence of the solution A(g) is depicted for the same
parameters.

We note here that the solution (which gives real 4(g)) of the square root Equa-
tion (29) is not unique. In fact, the matrix elements

LY Y
k(p) h32(P), k(p) h34(P) (43)
(and the analogous transformations for other elements) still give the solution of the
matrix Equation (29) (k(p) can be any real function for which the inverse Fourier
transform exists). We note that k(p) = 1 is not the optimal solution in the sense
that for real valued k(p) the part of the integral fooo ||fz( p)||5p*dp which depends
on the four terms above is of the form

k(p)h,(p); k(p)hl,(p):

o0 R n 1 n R
/0 [/cz(p)ahgl(pn2 + W (PP + Tp)uhg’z(p)ﬁ - |h24(p)|2>] p*dp.

Minimizing under the integral sign with respect to k(p) indicates that the opti-
mal value is

k(p) = (”:’gz(l’)lz + |}:l(3)4(p)|2)1/4-
15, (P)P + 1A, (P)

We note that k(p) has singularities at p = (7 & 4./7/3)"/2. These singularities,
however, are integrable and the inverse Fourier integral is well defined.
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s v
S

b)

Figure 1. a) The 6 — B dependence of the original function f(g) at values of parameters given
in the text; b) The & — B dependence of the solution 4(g) for the same parameters. The scale
of 6 and B axes is given in units of 7.
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Figure 2. Quadratic error in Example 5.1.1 in Schur’s method (solid line) and diagonalization
method (dashed line).

5. Regularization Methods and Approximate Solutions
5.1. ON THE EXISTENCE OF SOLUTIONS OF A h = f

For a general square integrable and rapidly decreasing function f(g), even complex
solutions of the convolution equation may not exist. This is related to the following
reasons.

Apart from the problem of finding the square root of the matrix, which does
not always exist (see [15] for discussion of the existence of square roots), we
have an additional complication, related to the fact that the matrix elements in
the Fourier transform are functions of p. Even for the formally well-defined matrix
square root, the inverse Fourier integral may not exist, which indicates that the
inverse convolution problem does not have exact solutions. Below we show several
typical examples, which illustrate the main reasons why exact solutions do not
exists:

e appearance of singularities in the inverse Fourier integral at infinite or finite
p (Examples 5.1.1 and 5.1.2 below), or

e absence of exact square roots of the Fourier transform matrix for any or some
values of p (Example 5.1.3 below).

Following the examples below, we discuss means of regularization, which allow us
to find approximate solutions, when exact solutions do not exist.

EXAMPLE 5.1.1. Letus consider the two-dimensional problem with the function

f(r, A = e " (2 + cos 6 + cos @),
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where 6 is the SO(2) angle, r = |r| and ¢ is a polar angle of r. The Fourier
transform matrix may be computed as ([1])

. yp) 0 0
f=1| B kp) Bp) |, (44)
0 0 vy
where
y(p) = %e_"z/“;

B(p) = —1’—6ﬁ p1Fi(3/2,2; —p/4);

(where | F (a, b; x) is a confluent hypergeometric function (see, for example, [16]))
and

k(p) =e "4,
The square root of (44) is

Vv (p) 0 0

F1/2 B(p) B(p)
7=\ ooy YA oy |- (45)
0 0 NAAT))

It may be shown that the matrix terms (8(p)/(~/ ¥ (p)++/k(p))) are increasing
exponentially with p (it behaves as (exp(p?/8)/p?) for p — 00) and the inverse

Fourier integral does not exist (this problem may not arise with a different choice of
r-dependence in the function f(r, A)). One way to regularize this problem would
be to replace these matrix elements with the expression

B(p) (Wy(p) + +/k(p))
(e + Vv () + VE(P)1»)’

where € is a small positive real parameter. We will discuss how to generalize this
approach for arbitrary Fourier transforms in the following subsection.

EXAMPLE 5.1.2. Now we consider three-dimensional function
f(g) = f(r, A) = e—(r+a)2 — e_("2+az+2racos€)’

where a = (0, 0, a) and @ is a polar angle of r.

First, we calculate the Fourier transform of this function.

The direct calculation of the Fourier transform would require the computation
of an infinite number of Fourier transform matrix elements

f,‘\&o;l,o; l=0’ 1’ 2, 3,-...
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We demonstrate, however, that the appropriate left shift reduces the number of
harmonics to the single matrix element.
The left shifted function is defined as

fre=rfg log)=e",

where we choose g’ = (a, I), I is an identity matrix (i.e. g’ is a pure translation).
The Fourier transform of the left shifted function satisfies the equation

frp) = - f& o) Ut(e, p)du(e)

_ f F@U(E 03 p)du(@)
SE(3)

= < f@ U@, p) du(g’)) - U'(g p)
SE(3)

= f(p)-U'(g, p). (46)

where f (p) is the Fourier transform of f(g). We used in the equation above the
change of variables g’ ! o ¢ — g, the invariance of integration measure, and the
group property of matrix elements.

Because this function does not depend on the Euler angles of rotation, only the
‘ug’o;o’o(r, A; p) element gives a contribution.

Thus, only a single Fourier transform matrix element is nonzero:

~ _ 2
oL,o(io,o(P) = f e’ ug,o;o,o(r’ A; p)drdA
SE(3)

° _asin(pr 2
= 471/ e’ (P )rdr = (m)*e P/,
0 p

where we have used the fact that fso 3) dA = 1.

Now we may shift the function fZ(g) back, f(g) = fX(g’ o g). The analogous
Fourier transform equation is

fp) = p)-u@, p),
i.e. it is obtained by inverting (46). We have in matrix form
f0.1.0(P) = f800.0(P) - Ug o0, T p). (47)
We have shown below several matrix elements in explicit form

3/2 o= /4 sin pa_

70
f N =TT
0,0;0,0 pa ’

o V3i

Jo.0:1.0= () n¥2e P/ (sin pa — pa cos pa);
pa
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N \/gi 2 ) .
fon0= oay 732 e P * (3pa cos pa — 3sin pa + (pa)? sin pa).
.02, pa
If we truncate the matrix elements at / = 1 then the Fourier transform matrix
may be written as

f(go;o,o(p)
0
0
0

H= (48)

[=N oo}

(the structure of the matrix is similar if we truncate the Fourier transform for higher
). We denote foo,o;o,o(P) as Hy; and f(?,o;l,o(l?) as His.
It is easy to find a formal square root matrix

Ay 0 o

H'? = 0 0 0 O (49)
0 0 0 0
0 0 0 O

However, the 1:111 matrix element become zero at p = wn/a,n = 1,2,3, ....
At these points the H,5 element is not equal to zero, which leads to the appearance
of a singularities at these points. These singularities are, however, integrable and
inverse Fourier integral exists. A similar example:

f(l’l) = f(r’ A) — e*(l‘+a)2 + e,(r+a1)2’

where a = (0,0, 1) and a; = (0, 0, 1/2), has the same structure of the Fourier
transform matrix and the square root matrix as in (48) and (49). The singularities
appear at p = 2zn (n = 1,2,3,...), because the FIH matrix element become
zero at these points, while the H)3 element is not equal to zero. The singularities
become non-integrable for p = 27n (n = 1, 3,5, ...) in this case and the in-
verse Fourier integral does not exists. This means that the exact solution of the
convolution equation does not exist in this case.

The other consequence of the singularities may be seen if we try to diagonal-
ize the Fourier transform matrix, take the square root of the diagonalized ma-
trix and transform the matrix back. The matrix (48) may be diagonalized by the
transformation matrix

10—+~ 0
Hiy/ 1+ H3/Hyy |2
r=|2! 0 5 (50)
A/ 1+|Hi3/Hyy 2
00 0 1
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The inverse matrix is given by

Hi;
T
-1 — 51
00 1+ | Hjs/H;i >0 oD
00 0 1

At p = 2m, for example, the Tlgl and TSEI matrix elements become singular,
i.e. the inverse matrix is not defined. If we do not take a square root of the diago-
nalized matrix, this singularity would be cancelled by the appropriate small (zero)
eigenvalues. This cancellation is not possible here after taking the square root of
the eigenvalues.

EXAMPLE 5.1.3. In the case when the matrix can be brought by a unitary trans-
formation to the triangular matrix of the form

a(p) 0 0 0

F A o 0 Oc(p) O
U'FU=S = 0 0 0 cp)
0 0 O 0
= c(p){Jola(p)/c(p)) & J5(0)} (52)

no solutions of the matrix Equation (29) exist. We note that this matrix is already
in the Jordan normal form (right side of the equation) if we divide it by c(p) (let us
assume that a(p)/c(p) is not singular everywhere). We use the notation J,, (1) for a
Jordan block of dimension n with eigenvalues A on the diagonal. It may be proven
that no square roots of matrix (52) exist, because it contains the single Jordan block
J3(0) with zero eigenvalues (see [15]).

Another example with the same problem is a band-limited function with Fourier
transform matrix (three dimensional case, only s = 0 block)

O i 0 —i
A 120 1/2 0
0— .

120 —=1/2 0

where c(p) is a real function. We assume that c(p) gives a well defined inverse
Fourier integral. Because relations (19) are satisfied, this Fourier transform gives a
real function. It is easy to check that this Fourier transform matrix may be brought
to the Jordan normal form (we factor out c(p)):

¢(p) Ja(0) = T FO T (p) = c(p) -

[N el
[=NeNei
o = O O

SO = O



114 A. B. KYATKIN AND G. S. CHIRIKJIAN

by nonsingular transformation 7' (p)

O =

—i

10
00
i 0
0: O

0
1
0
0

J4(0) is a Jordan block with zero diagonal matrix elements of dimension four, so it
may be proven that no square roots of this matrix exist (see [15]).

5.2.  REGULARIZATION METHODS FOR FINDING APPROXIMATE SOLUTIONS

We need to develop regularization methods in cases when exact solutions of the
convolution equation do not exist. The absence of exact solutions may exhibit itself
in the appearance of singularities in the inverse Fourier integral, or the Fourier
matrix may not have an exact square root for some p. We propose below two
methods of regularization which allow approximate solutions in such cases, i.e
approximate solutions /(g) which approximate the original function f(g) with
good accuracy in the sense of quadratic norm

/G (h# h)(g) — F(g)P dule) < /G @) due). (53)

A Regularization Method Using the Schur Decomposition

As was clear from Examples 5.1.1 and 5.1.2, singularities appear when the denom-
inator of matrix elements of the Fourier transform becomes zero or approaches
zero as p — oo faster than the numerator. Both these cases may be regularized by
adding the small parameter € > 0 to the denominator in the following way

X Xy

y (e +1[y%)
We suggest a generalization of this procedure for the matrix case. Any square

matrix ' may be brought by the unitary transformation U to upper triangular form
(Schur decomposition) [19]

F(p)=U(p) S(p)U'(p),

where S(p) is upper triangular. Because the matrix U(p) is unitary, the matrix
elements of U(p) are bounded for any p (|U;;j(p)| < 1). Moreover, because the
function f(g) is square integrable, it may be shown, using the Parseval identity,
that each matrix element S;;(p) is square integrable as a function of p. We as-
sume below that the matrix elements of F (p) (and, therefore, of S(p)) are rapidly
decreasing functions of p at p — oo.
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A method of finding the square root R (R> = S) of the upper triangular matrix
has been proposed in [17, 18]. The matrix elements of R (which is also upper
triangular) may be found using the algorithm in [18] as follows:

Ry = 51 (54)

11

(both branches of the square root are allowed) for diagonal elements, and

i1
r _ S = Yicisi Ru Ry
N Rii + Rjj

.oi<] (55)

for superdiagonal elements. The matrix elements may be computed one super-
diagonal at a time. This algorithm gives exact solutions (complex, in general) if
Rii(p) + Rjj(p) # Oforany i, j atany p.

We propose the algorithm which regularizes (55) at singular point where R;; +
R;; ~ 0 (at some or any p). We discretize the p interval (for functions rapidly
decreasing at infinity we may take a finite interval for p), decompose the matrix F
and find a square root R of the triangular matrix S using (54) for diagonal elements
and the regularized expression (where € > 0)

(Sii — 1{:1‘1+1 Rix Rkj) (R”TRJJ)

R; =
’ (€ + |Rii + Rj;1»)

s i< (56)

for the superdiagonal elements. Then the approximate square root solution H may
be received by the unitary transformation

H=URU". (57)

This method is accurate if R;;(p) + R;;(p) are not equal to zero almost every-
where except at a finite (or countably infinite) number of points. It works also
in cases when R;;(p) + R;;(p) asymptotically approach zero for p — oo. The
addition of e regularizes the singularities in both cases. For sufficiently small € this
procedure does not change significantly the matrix elements for R;;(p)+ R;;(p) #
0. Moreover, the diagonal elements of R are not effected by €. This guarantees
that this method provides a good approximation for the matrix H in the sense of
the Hilbert—-Schmidt norm (i.e. the condition (53) is satisfied). We estimate the
accuracy of the method for practical example in the next section.

We have to note that the solution provided by this method is not unique. First,
each square root may have two branches. We, therefore, may choose different
branches of the square root of eigenvalues R;;(p) for different p. If, however,
we require additional conditions on smoothness of derivatives of the solution (for
example, minimizing the functional which contains the term

© | dH
f du(g) = / ”pd—
G 0 P

2 2

oh
pdp
2

r—

or
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in the two-dimensional case [1], see [2] for three-dimensional operational proper-
ties), we have to switch square root to the other branch at branching points of R;; (p)
as a function of p, where the eigenvalue S;; (p) switches its value from positive to
negative (or from negative to positive) in order to minimize the contribution of this
term. Another restriction is imposed by the requirement that the solution must be
real. The matrix elements of the Fourier transform satisfy the symmetry relations
(18) or (19). To have a real solution we have to take the branches of square root
of (m,m) and (—m, —m) (m # 0) which conserve the symmetry relations (18)
(the same is valid in the three-dimensional case). Particularly, the eigenvalues of
solution must appear in complex conjugate pairs to have a solution real (according
to Theorem 3.1.1).

Moreover, we have to note that the solution given by (57) is not the most general
solution, the matrix H =UXRX"'U" is also a solution of the Equation (29) (in
analogy with (34)), if X is a matrix which commutes with matrix S (it may not
commute with R) [15]. We investigated only the case when X is proportional to a
unit matrix.

Because in general the solution provided by this method is not real, we may
take a real part of the solution as an approximate real solution, or, what is more
preferable, restore the symmetry relations (18) or (19) among the matrix elements
of the Fourier transform. This gives a real approximation to the solution and allows
us to easily control the deviation of (k& * h)(g) from f(g). We may calculate only
‘half’ of the matrix elements of H (N(N —1)/2 elements and (0, 0) element in the
two-dimensional matrix of dimension N = 2M + 1) and receive the other matrix
elements according to (18) or (19) (we have to choose elements which provide the
smallest quadratic error). If we have some additional symmetries among the matrix
elements we may uniquely define other methods to restore symmetry (18) or (19).

This method may not work well for band-limited functions with only few non-
zero harmonics (when R;; (p) + R;;j(p) equals zero for any p and Ry, # O for
k =i, j; m > k). We have to use analytical methods (see [15]) for finding the
square root in these cases, or add small contribution to the diagonal elements of S
and apply the algorithm described above, as in the example below.

EXAMPLE 5.2.1. Let us consider the matrix in Example 5.1.3 when the Fourier
matrix may be transformed to the form (52). No square root of the matrix exists.
We may apply, however, the algorithm (54), (56), which gives the approximation
to the square root matrix as

Va(p) 0 00
0 000
0 000
0 000

(58)

However, it may not be a good approximation if the modulus of c(p) is large. We
may improve this approximation if we add the small elements €;(p) (for exam-
ple €:(p) = € e‘pz) to the zero diagonal elements of (52) (it does not change
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a Hilbert—Schmidt norm of the matrix much). After this addition we may apply
algorithms (54) and (56). The presence of the parameter € guarantees that matrix
elements of the square root do not become large when the small function € (p)
appears in the denominator in (56).

A particular choice of the values of the parameter ¢ (and possible additional
parameter such as €; in Example 5.2.1) and branches of the square root is dictated
by the several factors. First, we have to take the values of the parameters and pick
up the branches of the square root which minimize the functional

C = /G |(h % h)(2) — f(2)Pdu(e),

or the more complicated functional like

c= /G (% 1)) — £ + vk + pIVeh(9)]P) dus(g).

where v > 0 and p > 0 are penalty parameters, and V; is a gradient with respect
to translation. Also, we may choose the values of the parameters and square root
branches, which give the best solution from the point of view of some additional
‘physical’ or design principles.

Algorithm for Multiple Convolutions

We note that using the approach of [17, 18] the algorithm (54), (56) may be easily
generalized for the solution of the equation

R" =S8, (59)

where S is an upper triangular matrix. The convolution equation for multiple n-fold
convolutions may be written as

(hshx---xh)(g) = f(g)
After taking the Fourier transform it has the form of matrix equation

H"(p) = F(p). (60)
Using Schur’s decomposition

F=UsuU"

this equation may be reduced to (59).
The following algorithm gives a regularized solution of (59). We introduce
auxiliary matrices

R*=R,; R*=Rsy; ... R"'=R,_,
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and use notations R; = R and Ry = 1, where 1 is a unit matrix. Then the solution
for diagonal elements is

(R)ii = (Si)/™, forl=1,...,n—1

(all n branches of Sfl/ " are allowed, but only one is chosen).
For superdiagonal elements we have equation

n—1 j—1
(R)ij = (Sij - Z (Ru—i-1)ii Z (R)ik (Rl)kj> X
=1

k=i+1

(37 (Rai-1)ii (RD ;)

- s i< (61)
(e + | S (Rui—1)ii (R);;1?)
and equations for auxiliary matrices
(R)ij = (R)ii (Ri—1)ij + (R)ij (Ri—1)jj +
j—1
+ Y (R (R i<, (62)
k=i+1
forl =2,...,n — 1. Equations (61) and (62) allow us to find the matrix elements

of R; (for each /) one superdiagonal at a time. The presence of parameter € > 0 in
(61) guarantees the regularization of possible singularities which may come from
zeros of Z?:_ol (Ru—i—1)ii (R) jj-

The solution of (60) is given by

H=URU". (63)

We note that (63) is not the most general solution. The continuous dependence
on arbitrary matrix function X (p) may appear in (63) (in analogy with (34)). We
put X (p) = 1 in our algorithm.

Regularization Using Diagonalization

We also propose another method of regularization which uses the diagonalization
of the matrix.

Because not any matrix may be diagonalized, this method is less general that the
previous method. At values of p where the precise Fourier matrix may be brought
only to the Jordan normal form [15], the square root calculated according to

H=TVAT! (64)

(where T is a transformation matrix and /A is a diagonal matrix with the diagonal
values equal to the square root of eigenvalues) gives an error. This, error, however,
may be small, if, for example, the measure of points p, where the matrix cannot be
diagonalized, is negligible. As we will see in the example of Section 6 the accuracy
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of this method is comparable with the accuracy of the Schur decomposition method
for small € and it is worse for larger €. If the matrix has only few harmonics (with
many zero elements for all p), the method may be inaccurate.

As we saw in Example 5.1.2, even for Fourier matrices which may be diagonal-
ized everywhere, the absence of the exact solutions exhibits itself in the appearance
of the singularities in matrix elements of 7! at finite p (or as p — o0). To find a
regularized solution we propose to use a pseudoinverse matrix instead of singular
inverse matrix

HAH=TJVAT (TT" +€1)", (65)

where € is a small positive parameter and 1 is a unit matrix. For n-fold convolutions
we have to take the A'/" power of the diagonal matrix.

To get a real solution we restore the symmetry in H using the symmetry rela-
tions (18) (or (19)).

5.3. EXAMPLE OF FINDING THE APPROXIMATE REGULARIZED SOLUTION

We find here the regularized solution of Example 5.1.1 where no exact real or
complex solution of the equation exists due to the divergence of the inverse Fourier
integral. We used both regularization methods and we restored the symmetry (18)
in order to have a real solution. We use ‘half’ of the matrix (to restore the other
‘half”) which gives a smaller quadratic error. In Figure 2 we depicted the quadratic
error

s 1B xh)(g) — f()Pdu(g)
Jse | F(@)2du(e)

where /(g) is the approximation to the solution of the convolution equation, calcu-
lated by the method (54) and (56) (solid line), and by method using diagonalization
(dashed line). We see that the first method gives a smaller error (for the same €)
than the method which uses diagonalization.

We cannot choose a value of € as small as we wish, because the solution devel-
ops a singularity when ¢ — 0. We may start from some value of € and approach
zero value. When the solution starts to exhibit ‘unpleasant’ behavior further reduc-
tion of € must be stopped. Another method to fix a value of € is to impose some
additional conditions. We may require € to minimize a value of the functional

(66)

C =f (I(h x h)(g) — f(Q)I* + vIh()*) du(g) (67)
SE(2)

for some value of ‘cost’ parameter v. For example, for v = 0.1 the functional (67)
is minimized for € = 0.07 in Schur’s decomposition method. For this value of ¢
quadratic error is 1.68% in Schur’s method.

As an example, we depict the contour plot of the solution found in Schur’s
method for particular values of SO(2) angle 6 in Figure 3b (we take only the first
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Figure 3. a) The contour plot of the original function of Example 5.1.1; b) The approximate
regularized solution.

(positive) branch of the square root of the eigenvalues, which are positive for all p).
We depicted contour lines in the range from 0.1 to 3 spaced with with values 0.32,
the original function at the same parameters is depicted on Figure 3a. We note also
that the solution has negative regions at 0 2> 3/4m and ¢ ~ 7.

We also plot in Figure 4 the convolution (4 * h)(g), where h(g) is an approx-
imate solution. We see that this approximation deviates from the original solution
at r =~ 0, because we change the asymptotic of the solution at p — oc. For
less divergent examples we receive more accurate approximation. The peak of the
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Figure 4. The plot of (h*h)(g), where h(g) is approximate solution of convolution equation.

convolution is ‘flat” compare with the peak of the original function, the quadratic
deviation, however, is small.

Conclusion

In this paper we apply Harmonic Analysis on the motion group to the solution of
a nonlinear convolution equation. We investigated cases when no solutions of the
convolution equation exist and we suggested numerical regularization methods and
algorithms for search of the approximate solution in such cases. An explicit exam-
ple of the solution technique was given and the quadratic error which estimates the
deviation of the convolution of the approximate solutions from the original function
was calculated. We note that the numerical example provided was motivated by a
robotics problem described in [23].

Appendix. Some Useful Definitions

We define the associated Legendre polynomials as
Pm _ lml 2m/2dm P A-1
/() = (DA = xR (x). (A-1)

The functions P,fm (z) are given as in [6]

m—n m+n

(1 —m)\ +m>’]1/2(1 -2 (1+2)""
(—m)'l+n)! 2" (m —n)!

Pl = [

1—
><2F1<l+m+l,—l+m;m—n+l; 2Z>,
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where , F is the hypergeometric function. This expression is valid for m —n > 0,
the corresponding expressions for other possible values of m, n may be received
using the properties of the hypergeometric functions and the symmetry properties
of P! (z). We note that P!, (z) satisfy

mn

PL ()= (=1)"" Pl (2),
P, () =(D""P, (),
Prlnn (Z) = Pin,fm (Z)

Spherical functions are defined as

204+ 1 (I —m)!

"o, ¢) = P/"(cos 0) ™. (A-2)

47 (I + m)!
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