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Abstract

We apply the Fourier transform on the discrete-motion group to the
problem of computing the configuration-space obstacles of mobile
robots which move among static obstacles, the problem of finding
the workspace density of binary manipulators with many actuators,
and the problem of determining workspace boundaries of manipula-
tors with continuous-motion actuators. We develop and implement
Fourier transforms for the discrete-motion group of the plane. These
transforms allow us to apply fast Fourier transform methods to the
computation of convolution-like integrals that arise in robot kine-
matics and motion planning. The results of the implementation are
discussed for particular examples.

1. Introduction

In this paper, we address two problems in robotics which may
be solved using similar mathematical tools: (1) the problem
of computing configuration-space obstacles for mobile robots,
and (2) the problem of calculating the workspaces of highly
articulated serial and hybrid serial-parallel manipulators. In
the context of problem 2, we focus on the problem of comput-
ing the workspace density function for discretely actuated m-
link revolute manipulators and variable-geometry truss (vgt)
manipulators. We also illustrate how these techniques are
applied to the case of continuous-motion actuation.

All of these problems may be solved by using techniques
from an area of mathematics called noncommutative har-
monic analysis (Chirikjian and Kyatkin, 1999a). In partic-
ular, we use the Fourier transform on the Euclidean motion
group (i.e., the group of translations and rotations of a rigid
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body) and a closely related group called the discrete-motion
group. The Euclidean motion group (also called the special
Euclidean group) is denoted as SE(n), and can be viewed as
the setof all (n+1) x (n+1) homogeneous transform matrices
of the form

R b

8 = .

o 1
where R € SO(n) (i.e., R is an n x n proper orthogonal
matrix: RRT = 1 and det(R) = +1), b € R”, and the
group operation is matrix multiplication of two homogeneous
transform matrices.'

For the case of rigid-body motion in the plane (SE(2)), the

homogeneous transforms take the particularly simple form

cosf —sinf by
g(by,by,0) = sinf cosf by
0 0 1

The subgroup of SE(2) where § = 27 i/N fori =0, ...,
N — 11s called the discrete-motion group of the plane. While
SE(n) has been studied previously in various applications in
physics and robotics (e.g., Vilenkin 1956; McCarthy 1991;
Basavaraj and Duffy 1993; Murray, Li, and Sastry 1994; Park
and Brockett 1994), and discrete subgroups of SE(N) (where
both rotation and translation are discretized) have been stud-
ied extensively in crystallography (e.g., Janssen 1973), the
discrete-motion group defined above is far less familiar to the
robotics community. In fact, the authors are aware of only
one previous work using this group (Gauthier, Bornard, and
Sibermann 1991).

* The word “on” is shorthand for “of functions on.”
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1. Often throughout the text, motion-group elements are expressed simply as
a translation-rotation pair, and written as (R, b) or (b, R). In addition to b,
the symbols X, y, a and r are used for translations. Rotations are denoted as
R and A.

601



602 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / June 1999

We develop and apply harmonic analysis on the discrete-
motion group. Robotics applications of harmonic analysis on
SE(N) have been addressed previously by the authors in sev-
eral works in the context of discretely actuated manipulators
(Ebert-Uphoff and Chirikjian 1995; Kyatkin and Chirikjian,
1999a). While we have devoted extensive effort to the con-
cept of discretely actuated manipulators, it is actually quite
an old idea. The concept can be traced back to work done in
the Stanford robotics group more than a quarter of a century
ago (Pieper 1968; Roth, Rastegar, and Scheinman 1973). In-
dependently, research in the former Soviet Union along these
lines was performed more than a decade ago (Koliskor 1986).
Despite these efforts, we believe the concept did not catch on
in the robotics community because two important tools did
not exist: (1) a framework to handle the combinatorially ex-
plosive nature of the inverse-kinematics problem, and (2) a
means for designing discretely actuated manipulators so that
they could reach a finite set of specified frames in space.

The authors and their coworkers revived the concept of dis-
cretely actuated manipulators in the context of binary (two-
state) actuation. In a series of papers, we have explored the
design problem of selecting actuator stops so as to exactly
reach a finite set of desired positions (Chirikjian 1994, 1995).
We have also introduced the concept of workspace density
together with algorithms to calculate this quantity (Ebert-
Uphoff and Chirikjian 1995, 1996b). The workspace den-
sity of a binary manipulator (and each of its subunits) is an
important quantity for performing inverse kinematics using
the techniques of Ebert-Uphoff and Chirikjian (1996a). This
technique is one of a number of techniques we have devel-
oped which circumvent the combinatorial explosive problems
of binary manipulator inverse kinematics and trajectory plan-
ning. See the works of Ebert-Uphoff, Chirikjian, and Lees for
other techniques (Ebert-Uphoff and Chirikjian 1996a; Lees
and Chirikjian 1996a, 1996b, 1996¢; Chirikjian 1997).

The workspace-density concept has greater importance
than its application in binary manipulator inverse kinematics.
It also provides a measure of how accurately any discretely
actuated manipulator (including robots actuated with stepper
motors) can reach any given position and orientation. The
concept is also useful for manipulators with continuous ac-
tuation, since the range of each joint of a continuous-motion
manipulator can be divided into discrete increments, and our
methods can be easily applied. In another recent work, we ex-
plain how the propagation of error in serial and hybrid serial-
parallel manipulators is formulated as an SE(n)-convolution
of error density functions (Chirikjian and Kyatkin, 1999a).
Given the wide variety of robotics applications mentioned
above, we have therefore explored in great detail techniques
from noncommutative harmonic analysis. Thus far the main
problem we have addressed using these methods is the math-
ematical inverse problem of designing manipulators to have
a desired workspace density (Chirikjian 1996; Kyatkin and
Chirikjian, 1999a). We have also recognized that exactly the

same techniques can be used to reformulate mathematical in-
verse problems in medical imaging in an elegant and compu-
tationally efficient way (Chirikjian and Kyatkin, 1999a).

The present work differs from our other works which use
the Fourier transform on the Euclidean motion group, in that
our goal here is not to synthesize a manipulator, but rather to
generate the density for a given manipulator in an extremely
efficient way. This builds on previous work (Ebert-Uphoff
and Chrikjian 1995, 1996b), where the connection between
manipulator workspaces, swept volumes, and convolution of
functions on the Euclidean group has been explored. Here
we define a group called the discrete-motion group, which
approximates the Euclidean group. We use usual Abelian FFT
techniques together with harmonic analysis on the discrete-
motion group to approximate Euclidean group convolutions
very efficiently. This not only has applications in robotics,
but also in pattern matching (Kyatkin and Chirikjian, 1999b).

The advantage of using the discrete-motion group is that
this allows us to apply fast Fourier transform (FFT) algorithms
(Cooley and Tukey 1965; Elliott and Rao 1982). In practice,
this reduces the time required from hours to minutes for the
examples in this paper.

We develop and implement Fourier methods (using the
FFT) on the discrete-motion group for the 2-D case, and apply
them to the calculation of the configuration-space obstacles of
mobile robots and the problem of computing the workspace
density of binary vgt and revolute manipulators. This work
is a greatly expanded version (with full mathematical detail)
of ideas presented in an earlier work (Kyatkin and Chirikjian
1998a).

‘We begin by reviewing briefly these problems.

1.1. Computing the Configuration-Space Obstacles of
Mobile Robots

The question of computing the configuration-space obstacles
of a mobile robot has been considered in a number of pa-
pers (e.g., Lozano-Perez 1983; Newman and Branicky 1991;
Guibas, Ramshaw, and Stolfi 1983; Kavraki 1995). Some of
these algorithms (Lozano-Perez 1983) compute analytically
the boundary of the regions of free configuration space for
polygonal robots and obstacles. In this paper, we develop
and implement a method that builds on the works of Kavraki
(1995) and Guibas, Ramshaw, and Stolfi (1983), which may
be applied to both polygonal and nonpolygonal shapes. We
suggest a faster implementation of this method of computing
configuration-space obstacles.

The mathematical formulation of the method is given be-
low. We compute a function on the configuration space (the
space of translations and rotations of the robot) which has
nonzero values only in regions where the robot hits the obsta-
cle. The magnitude of this “density function” is the ratio of
the overlapping volume (area) of the robot to its total volume
(area); i.e., it changes from O to 1 in the overlapping regions.
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To calculate this value, we compute the integral

Jpe F1) (AT (y —x))d"y
Jpn F2(y) dy ’

where f12(x) are equal to 1 if the vector x is inside or on the
boundary of the obstacles (robot), and zero otherwise; n =
2, 3 for 2-D (3-D) coordinate space; and d"*y = dy;...dy, is
the usual integration measure for R”. The function c(x, A)
(where x € R” and A € SO(n)) is normalized to have a
maximal value of 1; i.e., it is divided by the volume (area) of
the robot. The geometrical meaning of this function is that it
is zero when the obstacle and robot do not intersect, and has
increasing positive value as the area of intersection increases.

To compute this integral directly, or simply to check pixel
by pixel, that the obstacle fi(y) and the rotated and translated
robot f2(A~! (y — x)) do not overlap, we need to perform
O(N N,Z) computations, where N is the number of sampled
orientations, and N, is the number of sampled points in a
bounded region of R”. For a large 3-D array of values, the
computation of this integral by direct summation may be quite
slow. The “overlap function” ¢(x, A), however, may be com-
puted in O(N N, log N,) computations using Fourier meth-
ods on the discrete-motion group and FFT methods. This
implementation is addressed in Sections 2 and 3. We discuss
applications of this method to mobile-robot configuration-
space generation in detail in Section 4.1.

c(x,A) =

ey

1.2. Generating Workspaces of Manipulators

We also apply the Fourier transform on the discrete-motion
group to the workspace generation of planar manipulators,
with a particular emphasis on binary manipulators; for a
review of binary manipulators, see the works of Chirikjian
and Ebert-Uphoff (Chirikjian 1994, 1995; Ebert-Uphoff and
Chirikjian 1995).

Binary manipulators are robot arms with discrete-state
actuators. The workspace density, defined as the number
of reachable frames per unit volume of the Euclidean mo-
tion group SE(n) (Chirikjian and Ebert-Uphoff 1998; Ebert-
Uphoff and Chirikjian 1996b) determines how accurately a
position and orientation can be reached. The workspace-
density information is important for the kinematic design of
manipulators and for planning the motions of discretely actu-
ated manipulator arms (Ebert-Uphoff and Chirikjian 1996a).
In Figure 1, we depict a six-module binary vgt manipulator
and gray scale of the & = 0 (zero end-effector orientation
angle) slice of the workspace density. The workspace density
of m-link discretely actuated revolute manipulators like the
one shown in Figure 2 is treated in exactly the same way. An
alternative visualization of workspace density is to view level
curves of each slice of the workspace for fixed 6.

To compute the workspace-density function using brute
force and iterating is computationally unrealistic for a large
number of actuators m, because it requires K™ evaluations of
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Fig. 1. A six-module manipulator and its workspace density
for a @ = 0 orientation angle.

Fig. 2. Illustration of a six-link discretely actuated revolute
planar manipulator.
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the kinematic equations relating actuator state to the result-
ing end frame for a manipulator with m actuated modules,
each with K states. However, as has been shown (Chirikjian
and Ebert-Uphoff 1998; Ebert-Uphoff and Chirikjian 1996b),
partitioning the manipulator into segments, computing the
workspace-density function for each segment, and comput-
ing the workspace-density function of the whole manipulator
as a convolution of those for each segment is an efficient way
to solve this problem. Using the convolution approach allows
us to reduce the exponential growth in m to linear growth in
m for inequivalent segments and to O(logm) for identical
segments.

We note that the concept of workspace density, while ini-
tially motivated by binary manipulators, is also applicable to
manipulators with continuous motion. In the context of con-
tinuous actuation, a manipulator’s workspace-density func-
tion is calculated by discretizing the range of each joint, and
calculating it in exactly the same way as for a binary manipu-
lator. The density function is thus an easily computable mea-
sure of redundancy of the arm in the sense that it immediately
yields the number of configurations of the arm that can reach
a given voxel in SE(n). If one is uninterested in this density,
only the location of SE(n) voxels where the density transitions
to zero can be stored, thus yielding the workspace boundary
in position and orientation. The importance of calculating
manipulator workspaces has been explained elsewhere in the
literature (e.g., Kwon, Youm, and Chung 1994; Ceccarelli and
Vinciguerra 1995).

The key to the formulation presented here is that the
workspace density of a manipulator which has double the
number of identical modules as one with workspace density
f(g) may be generated as a convolution on the motion group

F(g) = (f* g = f f) f(h™" o )duh), (2)

SE(n)

where d 1 (h) is a left- and right-invariant integration measure
on SE(n),i.e.,du(goh) =duhog) =du(g).

Throughout this paper, we will interchange notations for
this convolution. For instance, any function on the Euclidean
motion group SE(n) can be written as f(g) = f(x, A), where
x € R" and A € SO(n). Using this notation, the above
convolution integral is written as

F(x, A) = f /f(y, R) F(R ' (x—y). R A)d"ydR,

S0(@m) R"

where dR is the normalized left-right-invariant integration
measure on SO(n). While the idea of such integration mea-
sures is relatively new in the robotics literature (Basavaraj and
Duffy 1993; Murray, Li, and Sastry 1994; Park and Brockett
1994), such measures have been known in the mathematical
physics literature for decades (Vilenkin 1956), and so we do
not discuss them here.

In this paper, we concentrate on the planar case, where this
convolution integral is written in its most concrete form as

1 o0 oo T
)2 / / / F O, yas )
—00 —00 —T
f((x1 —y1)cosa + (x2 — y2) sina,
—(x; —ypsina 4+ (xp — yp)cosw; 0 —a)dy; dy, d6.

F(x1,x2;0) =

This integral> may be computed efficiently using the Fourier
transform on the motion group (in analogy with the use of the
usual Fourier transform to compute convolutions of functions
on the real line). This problem is addressed in Sections 2, 3,
and 4.2. The efficiency of the Fourier transform is discussed
in Section 3.

2. Fourier Transform on the Discrete Motion
Group

To get a simple expression for the convolution integral in
Fourier space, we have to use a generalized Fourier transform
with the property that

F(f1 * f2) = F(L)F(f1).

A well-developed theory for such generalizations of the
Fourier transform exists. It is called noncommutative har-
monic analysis. A key element of this theory is the enumera-
tion of linear operators, U, which have the property

U(g1)U(g2) = U(g1082). 3)

where g1, are group elements of a group G, and the op-
erator product may be understood as a matrix product (of,
in general, infinite dimensional matrices). This homomor-
phism property allows one to reduce the convolution integral
(eq. (2)) to a matrix-product equation in Fourier space. The
property described by eq. (3) is just part of the definition of
a group representation (Sugiura 1990), which tells us that we
have to use these operators to get Fourier transforms with
the convolution property. The operators U can be thought of
as generalizations of the complex exponentials used in usual
Fourier analysis.

‘We have to use a complete and orthonormal set of Fourier
matrix elements (to make sure that the application of the direct
and inverse Fourier transform reproduces the original func-
tion, and, again, to reduce the convolution integral to a matrix-
product equation). To generate the complete and orthonormal
set of matrix elements, we have to use irreducible and unitary
representations. A representation is irreducible if no nontriv-
ial subspace exists in the space of functions where the oper-
ators of the representation act (Sugiura 1990; Gurarie 1992).

2. The factor of 1/(27!)2 is a matter of choice which is consistent with the
mathematics literature (e.g., Sugiura 1990).
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The representation is a unitary representation, if it does not
change the inner product on that space (Sugiura 1990; Gurarie
1992),

- f,U-h) = (fh),

where f, h are the functions in the space (called the represen-
tation space, and denoted as V), where the operators act. The
inner product (-, -) acts on functions in the space V, and the
actual form of the linear operators U (computed as matrices)
depends on which basis for V is chosen.

For example, the functions exp(i m6) in the usual Fourier
series on the unit circle are the irreducible unitary represen-
tations of SO(2), enumerated by the integer m. In this case,
the representation matrices are one dimensional.

2.1. Irreducible Unitary Representations of the Discrete-
Motion Group

In this subsection, we define matrix elements of the irreducible
unitary representations (IURs) of the discrete-motion group
G = R? > Cy, where Cy is the N-element finite subgroup
of SO(2) (i.e., the group of rotational symmetry operations
of a regular N-gon), and the notation > means a semidirect
product (which in the present context means nothing more
than that group elements are expressed as homogeneous trans-
forms). The continuous-motion group SE(2) = R? > SO(2)
is considered by Vilenkin (1956), Orihara (1961), Talman
(1968), Chirikjian (1996) and Kyatkin and Chirikjian (1999a).
Fourier analysis and FFTs for certain classes of finite groups
are considered by Rockmore (1994), and sampling theorems
for compact groups are presented by Maslen (1993). How-
ever, the discrete-motion group is neither finite nor compact,
and so these methods are not directly applicable here.

The IURs U(r, A), for (r, A) € SE(2), act on func-
tions f(u) € L2(S ]), where S! is the unit circle, and
u = (cosh,sind)T is a vector to a point on the unit circle.
The inner product of functions on the circle is

1 -
(f 0 =5 f F@) h(®) do,
JT
Sl

and 6 is the angle measured counterclockwise from the x-axis.
The IUR operators are defined by the expression

(U(r, A; p) H) = P f(A 'w)
= PT (AT (p/p)),

where A € SO2), p € R*, and p = pu is the vector to
arbitrary points in the dual (frequency) space of R? (p is its
magnitude and u is its direction).

We define an orthonormal set of pulse functions fy ,(u)
on S' by subdividing the circle into identical segments, Fy,,
and choosing the pulse functions to satisfy the orthonormality
relations

“)
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1
) / SN @) fnm@)dO = Sy
JT

s!

‘We may choose the orthonormal functions as

B (N)I/Z
fN,n(p) = { 0

ifueF,
otherwise,

where n = 0, ..., N — 1 enumerates different segments. We
denote these pulse functions as §-like functions fy ,(u) =
(l/N)l/2 Sy (u, uy), where u,, is the vector to the center of
the F, segment.

The matrix elements of U in this orthonormal set of func-
tions are

1 P _
Um (A, x5 p) = Z/ fN,m(u)elpurfN,n(A lll)de.
St

®)

Using the “delta-function” notations, this may be written as

1 o
Unn(A.: p) = m/(m(u,umn”’”
Sl
Sn(A™u, uy) db.

This integral may be approximated as
Unn(A.x:p) ~ 1/N e PU T oy (A w, wy). (6)
‘We approximate delta functions as

]/NSN(A_lllm,lln) = 8Aflumaun
if A”wy =,

1
B { 0 otherwise,

which means that we restrict rotations to the rotations A ; from
the finite subgroup Cy of SO(2), and A;lum =U, j=u,.

Thus, the matrix elements of the irreducible unitary repre-
sentations of the “discrete” motion subgroup G = R? &> Cy
are given as

Umn(Aj’ r;p) = eipum~r (SAf'um . 1)
J sYn

where § , -1

A7 u = ;- j,» in this case.

2.2, Fourier Transforms on the Discrete-Motion Group

The matrix elements of eq. (7) are exact expressions for the
matrix elements of the unitary representations of the discrete-
motion group. The set of matrix elements in eq. (7) is,
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however, incomplete. This means that the direct and in-
verse Fourier transforms, defined using these matrix elements,
would reproduce the original function with O (1/N) error;i.e.,

1
FUF(ALD) = f(Ai 1)1+ O(Z)-

The reason for this is that summing through all possible
segments cannot replace integration over all possible angles
on the circle. It is clear that an additional continuous parame-
ter that enumerates possible angles inside each segment on the
circle is required to enumerate the complete set of the matrix
elements.

Thus, the matrix elements are modified as

. ¢
Umn(Ajs r; ]7, ¢) = elpllm raAjTlllm,un’ (8)

where uf denotes the vector to the angle 6 on the unit circle on
the interval F, = 27 k/N ,2n (k+1)/N],k=0,...,N —1
(¢ measures the angle within this segment).

The completeness relation

oo 2m/N

Unn(Ai,r1: p, @) Upp(Aj,ra;
zz// o T

p.¢) pdpdp = (27)* 8*(r1 — 12) 84,4,

is exact, because the integration is now over the whole space of
p values. This may be proven using the integral representation
of the § function

/e"l”aﬂp = 8%(r).

RrR2

2n)?

The orthogonality relation is written as

N-1

> [ Uon B E 7o) U A ) P =
i=0 Rn (10)
8(p—p")
@2n)? % St S (b — ¢)-

The direct Fourier transform is defined as

N—1
funpo®) = > / F(ALD Upl(Ai s p. ) dPr. (11)

i=0

R2

The vector uff,, which is inside the segment F,,, may be re-
ceived by the rotation A,, (which transforms Fj to F;,) from
ug , u?;, = Au, ug’. The parameter ¢ denotes the position
inside the segment Fjp.

The inverse Fourier transform is

12)

Fon(D, ) Upm(Ai, x5 p, $) pdpdé.

We note that this result is in agreement with Gauthier,
Bornard, and Sibermann (1991), and is a result of the com-
pleteness relation (eq. (9)) and the orthogonality relation
(eq. (10)).

‘We define convolution on the discrete-motion group as

1 N—1
FrAj) = 5— Z/ fi(a, A )
i=0 >

fZ(A;] (r —a), Aj_i)dza.

The normalization factor corresponds in the limit N — oo to
the normalization of the convolution on the continuous (Eu-
clidean) motion group, which is discussed by Kyatkin and
Chirikjian (forthcoming).

The Fourier transform of the convolution of functions on
the discrete-motion group is just a product of the Fourier ma-
trices with the corresponding normalization

A

FS.(p) = N

N—1
S ) (). (14
k=0

where A is the area of the compact region of R? where the FFT
is computed. The functions f;(-) must have support inside the
area A, and they are considered periodic outside of this region.
The area factor arises because the discrete Fourier transform
may be obtained as an approximation of the continuous case
using
L. 27 .

ry — Vrl N D1 — Tl,
(and analogously for the second component). Here L is the
length of the compact region in the x- (y-) direction. While
the factor L is canceled out of equations if we apply direct
and inverse discrete-motion-group Fourier transforms to the
function, it appears in the convolution, defined in eq. (13).

3. Efficiency of Computation of Convolution
Integrals using the Fourier Transform

In this section, we show that using the Fourier transform on the
discrete-motion group is a fast method for computing convolu-
tion integrals on the discrete-motion group (we assume below
that the finite-rotation group has N elements). Particularly,
we show that the convolution of a function f(r, A;) sampled
at Ny = N - N, points (N, is the number of samples in an R2
region) may be performed in O (N, log N;)+ O (N, N) oper-
ations, instead of the O (N 82) computations required in direct
coordinate-space integration using the “plain” integration in
eq. (13). The structure of matrix elements in eq. (7) allows one
to apply fast Fourier methods and reduce the amount of com-
putations (without the application of FFT, the amount of com-
putations using the Fourier transform method is O (N, g /N)).



Kyatkin and Chirikjian / Computation of Robot Configuration and Workspaces

First, we estimate the amount of computations to perform
the direct and inverse Fourier transforms of f(g). We restrict
p values to a finite interval and sample it at N, points, and
sample the ¢ values at Ny points. We also assume that the
total number of harmonics N, Ny N2 = Ng = NN,.

Let us consider the direct Fourier transform in eq. (11).
Each term i (for fixed A;) gives one nonzero term in each row
and column of the Fourier matrix f,Zn (p) (because only one
element in each row and column of U,:ml (g; p, ¢) is nonzero).
For each fixed i, we may compute the usual FFT of f(r; A;),
which may be computed in O (N, log(N,)) operations. The
Fourier transform elements calculated by the FFT are com-
puted on a square grid of p values. We, however, may inter-
polate the Fourier elements computed on the grid to Fourier
elements computed in polar coordinates. The radial part p
is determined by the length of p, the angular part determines
the indices m and ¢, and the index n is determined uniquely
for given A;. We linearly interpolate values on a square
grid to values on a polar grid. Such an interpolation may
be performed in O(N,) computations. Each term i in eq.
(11) may be computed in O (N, log(N,)) computations. The
whole Fourier matrix may be computed in O (N N, log(N,))
computations.

Again, one element from each row and column is used in
the computation of the inverse Fourier transform for each rota-
tionelement A;. Afterinverse interpolation to Cartesian coor-
dinates (which may be done in O (N,) computations), the in-
verse Fourier integration may be performedin O (N, log(N,))
for each of the N nonzero matrix elements of U using the
FFT. Thus, in O(N N, log(N,)) computations, we reproduce
the function for all A;.

The matrix product of fm¢n (p) may be computed directly
in O(N?) computations > for each value of p and parameters
¢. This means that the convolution (which is a matrix product
of Fourier matrices) may be performed in O(N3N p Ny) =
O(N Ng) computations.

Therefore, the convolution of functions on the discrete-
motion group may be performedin O (N, log N;)+O(Ng N)
using Fourier methods on the discrete-motion group and
the usual FFT, without assuming any special matrix-
multiplication technique.

It may be shown that without the application of the FFT
the convolution may be performed using the Fourier transform
in O(N, gz /N), which is still faster than evaluating the direct
integration.

4. Applications of the Fourier Transform on the
Discrete-Motion Group

In this section, three example applications of these techniques
in robotics are demonstrated. In Section 4.1, a configuration-

3. Estimates as fast as O (N2-38) have been reported (Coppersmith and Wino-
grad 1987; Rockmore 1994), which, depending on how they are implemented,
have the potential to increase speed further.
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space obstacle of a mobile robot is calculated. In Section
4.2, the workspace-density function of a variable-geometry-
truss-manipulator is calculated. In Section 4.3, the workspace
density of an m-link revolute manipulator is calculated.

4.1. Configuration-Space Obstacles of a Mobile Robot

Here we apply the numerically implemented Fourier trans-
form on the discrete-motion group of the plane to the compu-
tation of the free configuration space of a rigid mobile robot
moving among static 2-D obstacles. To find the configuration-
space obstacles, we compute the integral (eq. (1)) using
the above-described Fourier methods for the discrete-motion
group. Because the obstacles and the robot are functions only
of Cartesian position (i.e., to use eq. (1), we need to compute
the Fourier transform of f>(x) only for one fixed orientation),
the direct Fourier transform is performed faster than for an
arbitrary function on the motion group.

A function of position may be considered as a function
on the discrete-motion group which does not depend on the
orientation; i.e., f(x, A;) = f(x). The “overlap” function of
eq. (1) may be formally written as the integral

c(x,Aj) =
N-1
~1 -1 2
Z/fl(y,Ai)fz(Aj ¥ —x. A7 ApdPy

1 i=0
N

E (15)

/ fH(y) d*y
R2

Because the functions are real the integral in the numerator
may be written as

1 N—-1
~ Z/ Fily. AD fr(AT (v =%, AT A &Py
i=0po

_ / Fi) 2™ hyduh),
Gy

where we denote integration d (k) over the discrete-motion
group, Gy, to mean integration with respect to R? and the
summation through the A;, and the group elements are of
the form g = (x, A;). Using the orthogonality properties of
the Fourier matrix elements of eq. (10), this integral may be
written as
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1 [ Ao
4n2NZZ//Z(ﬁm" Fom)
q "o ¢ ™
Ugn(g™" po,o¢) pdpdg (16)

1 -
= 2 X [ [ (Fone i)
q noy P m
Unq(g; p- ) pdpdg,

where integration with respect to ¢ is integration on the circle
in the interval F, = [2mw q/N , 27 (g + 1)/ N ]. For the sec-
ond expression, we used the unitarity of the matrix elements
and the fact that the expression is real (i.e., we take a com-
plex conjugate of the integral). The matrices ( fl’z) mn are the
Fourier transforms of the functions f] 2(x, A;).

Because functions fi 2(x, A;) = f1,2(x) do not depend on
the orientations A;, matrix elements of the Fourier transforms
in the same column are the same; i.e.,

(fl,Z)mn = (fl,2)qn

for any m, g. This may be observed from the expression

P
—1. - :
U™ :p.@un = e P rSAi_lun’Um

(the exponent depends only on the n-index), the definition of
the direct transform (eq. (11)), and the fact that the functions
do not depend on the orientation. Thus, we compute a row of
the Fourier matrix for a particular orientation (for example,
Ag=1),

(fl,Z)n = (fl,Z)nn-

This may be done using the 2-D FFT for the functions fi 2(X)
and interpolating the Fourier values to points on a polar co-
ordinate grid. This requires O (N, log(N,)) computations.
Thus, the “overlap” function, eq. (1), is written as

C
C(X, Aj) = m

Sy Sl fy (g Fin) Unales . @) pdpd
Jaz P2 &2y

a7

3

where C = % The product of the column fz and the row fl
may be performed in O(N; = N, N) computations, and the
inverse transform may be performed in (N, log(N;)) com-
putations. The normalization of the function f>(x) may be
computed by direct integration in O(N,). Thus, the inverse
transform is the largest time-consuming computation. We
note that the direct Fourier transform is performed only for
one orientation. This is N times faster (for discrete-rotation
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group Cy) than to perform the FFT for each orientation as is
done by Kavraki (1995), but the inverse transform is of the
same order of computations. Thus, as N becomes large, there
is a built-in factor of two speed increase using our method. We
also mention that inverse problems, i.e., problems of finding
the allowed shape of the robot for the given desired configura-
tion space and the shape of the obstacles, may be solved using
Fourier methods on the motion group, because it is reduced to
a functional matrix equation (regularization methods for the
solution of singular functional matrix equations are discussed
by Kyatkin and Chirikjian (1998b)).

‘When we discretize the coordinate regions and use the FFT
to compute eq. (1), the coefficient C in eq. (17) must be de-
fined as C = A/N, where A is the area of the compact region
of x values where the FFT is computed (the functions must
have a support inside the area A; the functions are consid-
ered periodic outside of this region). The area factor arises
because the discrete Fourier transform is an approximation of
the continuous case when using the transformation

L g 21 .
X1 — Frl . P1— Tl
(and analogously for the second component). Here L is the
length of the compactregion in the x- (y-) direction. While the
factor L is canceled out of equations if we apply the direct and
inverse discrete Fourier transform to the function, it appears
in the convolution-like integral (eq. (1)).

Thus, we compute the 2-D FFT of f; »(x), interpolate the

Fourier elements to a polar grid, arrange them into the Fourier

column and row, multiply column and row fmn = fzm fl s
and take the inverse Fourier transform (the corresponding el-
ements m = n — i from the Fourier matrix f,,m must be taken
for each orientation A;, and interpolated back to a Cartesian
grid to take the 2-D inverse FFT).

We implemented the computation of eq. (17) using the FFT
in the C programming language. Time to compute c(X, A ;)
was 30 sec (on a 250-MHz SGI workstation) for a 256 x 256
square grid in R? forthe C1o group (N = 10, and we subdivide
each segment into Ny = 20 subsegments).

Because for small values of ¢(x, A ;) the function exhibits
oscillations (due to finite discretization of the integration
area in the Fourier transform), we depict the boundary of
the configuration space, defined by the contour line where
c(x, Aj) = €. The smallest possible choice of € in our exam-
ples was in the region 0.005 — 0.035. To increase accuracy,
we used the following method. We increased the value of
f2(x) in the region near the border of the robot. For a con-
vex robot this may be done by scaling down the robot and
increasing the value of f,(x) between the scaled boundary of
the robot and the original boundary.

While changing the function values in this “rim” region
does not change the shape and size of the robot, the over-
lap of the robot and obstacle is effectively made more sensi-
tive. If the overlap is completely in the “rim” of the increased
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values near the boundary, the following estimate is valid for
the intersection area €’ for given value of e:

€ = ¢€/q,
N A
V-1/k2(V-1)
the area scaled down by the factor k, and increased to the
value V in the “rim” near the boundary of the robot). ¢’ is
a more accurate estimate of eq. (1) than is obtained by using
the Fourier technique directly.

In addition, we may increase the size of the robot and depict
the configuration space for the scaled robot. The area between
the two configuration boundaries (of the scaled robot and the
original robot) is the “near-collision” area of the robot and the
obstacle. This is an important region for motion planning. We
note that the direct method (i.e., direct integration of eq. (1)
or a direct check if the robot and the obstacle overlap) can
be used to find a precise boundary in the “near-collision”
area. This may be performedin O (N, gz A/A;) computations,
where A/A;, is the ratio of the “near-collision” region to
the total region of the coordinate space. Because this ratio
is generally small, this gives very considerable (hundreds of
times) savings in computations over using the direct method
for all configurations.

We note that this method may not give good results if a very
narrow and long object is attached to the robot (i.e., when the
intersection area is not sensitive to the overlap). However,
the value of f>(x) may be increased in these regions, and this
method may be useful for some of these shapes.

As an example, we depict slices of the configuration space
in Figures 3 and 4. The obstacle has a polygonal shape.* The
robot has an elliptic shape. The size and orientation of the
robot are depicted in the lower-right corner on the figures.
The solid line outside the obstacle depicts the boundary of the
configuration space (¢ & 0.030 — 0.035). We increase the
value of the function f, to 10 in the rim of the robot depicted
in Figure 3. In this example, the rim is the region between
the original boundary of the robot and the boundary scaled
down by a factor k = 1.1. We also depict in the pictures the
boundary (dashed line) that describes the configuration-space
obstacles for the robot when the robot is located completely
inside the walls of the obstacle (g(x, A) = 0.95 — 0.97).

The figures also depict the corresponding boundaries for a
scaled robot (enlarged by a factor of 1.27). Inside this region is
where the exact position of the configuration-space boundary
may be found by direct integration.

where g = (the function f> is equal to 1 in

4.2. The Workspace Density of Two-Dimensional Binary
Manipulators

First, we discuss briefly implementation of the Fourier trans-
form of functions on the discrete-motion group for this case.

4. The Fourier method is applicable both in the cases of polygonal and
“smooth” obstacles. The results are better for “smoother” obstacles; i.e.,
the value of € may be chosen smaller.
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Fig. 3. A configuration-space obstacle for the & = 0 orienta-
tion of the robot (as shown in the lower-right corner).

Fig. 4. The configuration-space obstacle for the 6 = 4w /5
orientation of the robot.
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The matrix elements of the Fourier transform in eq. (7) for
the rotation subgroup Cp may be written as

"
Umn(Ajs r;p,¢) = e,pumram—j,na

anduﬂ-r = rcos(2r/N m+2n/(NNy) ¢ —6), wherem =
0, ..., N — 1; discrete values of ¢ are ¢ =0, ..., Ny — 1 (Ny
is a number of sample points on the interval [27w/Nm, 2w /N
(m + 1)]); and @ is the polar angle of r.

The direct Fourier transform is given by eq. (11). Each
term in the sumi = 0, ..., N — 1 through the elements of the
rotation group Cy gives one element of the Fourier transform
matrix in each row and each column, and summing through
alli =0, ..., N — 1 gives the whole matrix. For each term i in
eq. (11), we restrict integration with respect to r to a compact
region, sampled on the N, x N, square grid.

Since we want to use the advantages of the fast Fourier
transform, we compute the two-dimensional FFT (for each i)
and interpolate the value of the Fourier transform on the N,
x N, square grid of p values to polar coordinates. The radial
coordinate is p = |p|, and the polar angles are determined by
the values of m and ¢ (the value of n is determined from m
and the index of rotation 7). Thus, we must compute N FFTs
to obtain the whole Fourier matrix in the case of N discrete
rotations.

In the inverse Fourier transform, we have to interpolate
back the Fourier parameter p from the polar coordinate to
values of p on the square grid (we take one element from
each row and column of the Fourier matrix for each rotation
element i), and compute the two-dimensional inverse FFT for
each rotation i. Again, the whole function f(g) is reproduced
in N FFTs.

The Fourier transform of convolution (eq. (13)) is defined
by eq. (14).

We implemented the two-dimensional Fourier transform
on the discrete-motion group in the C programming language.

We note that already for the Cy¢ group, the quadratic de-
viation of the convolved functions on the discrete-motion
group from the convolved functions on the continuous group
is small. We calculated a 3.7% error in the quadratic devi-
ation for the example below, where we defined a quadratic
deviation of f(g) from f/(g) as

;= Zf\,:BI fRQ | f(x, Aj) — f/(x, A,‘)|2d2x
SN Jee I f (5, A Pd%x '

Thus, the Fourier transform on the discrete-motion group
is a fast way to convolve functions (and it gives a good ap-
proximation to convolved functions on the continuous group).
We calculate below the workspace-density function of a 12-
module binary vgt manipulator,’ calculated as the convolution

5. Each truss element is either a two-state actuator with stable lengths
Imin>Imax, or a fixed element with length s. Each “module” is composed
of three linear actuators and therefore has eight states

of a 6-module manipulator workspace density with itself. The
workspace density of the six-module manipulator, computed
by brute force, © is depicted in Figure 5a (for the manipulator
parameters Iy, = 0.12, Inax = 0.2, s = 0.2, see Fig. 1).
The convolved workspace density is depicted in Figure 5b. It
describes the workspace of the 12-module manipulator. Time
to compute the convolution for all orientation angles (i.e., to
compute the direct Fourier transform, interpolation, matrix
product, and inverse Fourier transform) is around 35 sec on a
250-MHz SGI workstation for a 128 x 128 x 10 array. We
used the power-of-two Cooley-Tukey FFT algorithm (Elliott
and Rao 1982; Cooley and Tukey 1965).

If very precise positioning of the end effector is not re-
quired, even regions with density values as low as 10~th
of maximal density value may be important for applications.
To emphasize such low densities (which might otherwise be
lost when using Fourier methods), and to handle the case of
workspaces of continuously actuated manipulators, we aug-
ment our approach in the following way. First, for a segment

6. “Brute force” means that each of the 8° discrete configurations of this arm
are calculated, the forward kinematics are computed, and each of the resulting
reachable frames are stored in an array corresponding to a discretization of
SE(2). The density function is the number of reachable frames divided by
the volume of each discretization.

Fig. 5. The workspace of a six-module binary manipulator
(computed by brute force) for & = 0 — 37 /5 orientations
of the robot (a). The convolved workspace of a 12-module
binary manipulator (computed by Fourier transform on the
discrete-motion group) for & = 0 — 37 /5 orientations of the
robot (b).
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of the manipulator, define a function that is equal to a con-
stant value everywhere where the workspace density of this
segment has nonzero value. In this example, we will take the
segment to be half of a manipulator consisting of two identical
parts. Next we convolve these piecewise-constant functions.
The result is a function on the workspace that is much more
sensitive to low-density areas for the whole manipulator. The
border where such a workspace function crosses zero is de-
picted in Figure 6 for the orientation angles shown. For a
continuously actuated manipulator, this workspace boundary
(and not the density information) may be all that is important.
If the manipulator were broken into multiple segments, the
density function could be redefined after each convolution so
as to be constant on the composite segment’s workspace and
zero otherwise, and the process could be repeated.

As an example to compare the Fourier transform on the
discrete-motion group with the continuous case, we computed
the convolution of the function

£, 8,60) = es(—— exp(— L)
) ) - 5 0’1 2]1 p 20_12
1 (¢' —cs6)?
x(1 + c3 cos6)? por exp(—T) (18)

with itself, where 6 is an orientation angle, and ¢’ is a polar
angleofr,x = 1/2 (14cos8), c;+1/2 (1—cos ) ¢, (amod-
ified version of this “anzatz” function describes the workspace
density of two-dimensional binary manipulators (Kyatkin
and Chirikjian, 1999a)). We assume that —7 < 6 < m,
—7 < ¢’ < 7, and the density function is assumed to be 27 -
periodic. We assume that the orientation angle 6 has discrete
values 27 i /N (i =0, ..., N — 1).

As an example, in Figure 7a we depict the “slice” 8 = 0
for the values of the parameters

c1 =09, =06, ¢3=0.8, c5=25.66,

c4 =05, o1 =0.15 o =0.46.

We consider the Cyq discrete subgroup of SO(2) (N = 10).
For other orientation angles, the function is “rotated” and
“shifted” toward the origin, decreasing in magnitude.

=0 O=n/5 =2 /5 =3 n/5 8=4 /5 O=n
2101 2-2-1012-2-101 2-2-101 2-2-10 1 2

000 Q)

2-10 2-2-17012-2-1012+-2-1012-2-1012-2-10 1 2

o =

o= O e

'

®

[ g 5
|

Fig. 6. An approximate boundary of workspace for a
12-module binary manipulator, found by Fourier method.

Fig. 7. The contour plot of f(g) for the orientation angle
0 = 0 (a); and the contour plot of the convolution F(g) =
(f * f)(g) (depicted at & = 0), which is computed using the
FFT (b).
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In Figure 7b, we show the convolved function, for 6 = 0,
computed by the above-described Fourier transform (on a
256 x 256 grid, N, = 20). Time to compute the convolu-
tion for all orientation angles (i.e., computation of the direct
Fourier transform, interpolation, matrix product, and inverse
Fourier transform) is around 70 sec on a 250-MHz SGI work-
station.

We depicted also in Figure 8a the convolution computed by
direct integration on the discrete-motion group (time to com-
pute is several hours for each slice). In Figure 8b, the convo-
lution of the continuous function (N = 200) computed by the
continuous Fourier transform is depicted. The quadratic error
of the implemented Fourier transform on the discrete-motion
group and the continuous motion group is around 3.7% (the
difference between Fig. 8b and Fig. 7b, for all slices). Thus,
convolution on the “discrete” motion group approximates ac-
curately convolution on the continuous group when the func-
tions being convolved do not oscillate rapidly. Note that the
function g(x, A;) computed in the previous section by the
Fourier method on the discrete group is identical to the con-
tinuous case for the orientations from the C group, because
the convolution-like integral on the discrete group (eq. (15)) is
identical to the integral (eq. (1)) for orientation-independent
functions.

4.3. The Workspace of a Discretely Actuated Revolute
Manipulator

In this subsection, we apply the Fourier method to generate
the workspace density of the discretely actuated m-link planar
revolute manipulator, shown in Figure 2. We assume that
each link has one of N orientations (which is an element of
Cy) relative to the previous link, and the length of each link
L; has a fixed value. In our example we want to generate
the workspace density of a six-link manipulator, assuming
that we know the workspace density of each three-link half-
manipulator.

We note that the position and orientation of the end effec-
tor for such a discretely actuated planar revolute manipulator
takes values from the discrete-motion group G = R? > Cy.
For a small enough number of links, m, each with relatively
few states, N, the workspace density of end-effector positions
per unit volume of the discrete-motion group may be com-
puted by brute force because N configurations can be han-
dled. We assume below that each link may reach 60 possible
angles relative to the other link. The gray-level workspace-
density values for three-link manipulator parameters,

L1 =02, L,=03, Lsy=03 (19)
are depicted in Figure 9 for 6 = 0 and 6 = /2 orientation
angles. The boundary of the workspace (which coincides with
the boundary of the workspace for the continuous manipula-
tor) may be also clearly observed.

b)

Fig. 8. The convolution (for & = 0) of the piecewise-
continuous function, computed by direct integration (a); and
the convolution of the continuous function computed using
the Fourier transform on the continuous-motion group (b).
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0.3

-2.3

b)

Fig. 9. The gray-level workspace-density values (for 6§ =
0) of the three-link discretely actuated revolute manipulator,
found by brute force (a); and the workspace density for 6 =
/2 (b).
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For alarge number of links, the number of brute-force com-
putations increases exponentially. We may use, however, the
same method as for the binary vgt manipulator; i.e., partition
the manipulator into segments and convolve the workspace
densities of these segments. As an example, we generated
the workspace density of the six-link manipulator by con-
volving the workspace density of the three-link manipulator
with parameters given by eq. (19) (for the lower part) and the
three-link upper half with the parameters

Ly =02, Ls=03, Lg=04.

We computed the workspace on a 256 x 256 x 60 grid using
the Fourier method on the discrete-motion group (with a Cgg
rotation subgroup). The whole computation took 15 min on
a 250-MHz workstation. The convolved workspace density
is depicted in Figure 10 for the orientation angles 6 = 0
and 6 = 7/2. The boundary of the workspace also may be
observed.

5. Conclusions

This paper develops Fourier analysis on the discrete-motion
group and applies the resulting theory to problems in robot
kinematics and motion planning. These problems include
the fast calculation of mobile-robot configuration-space ob-
stacles, and the workspace-density functions of manipulator
arms with finite-state actuators. All of the problems presented

Fig. 10. The workspace density (for & = 0) of the six-link
revolute manipulator, found by convolution on the discrete-
motion group using the Fourier method (a); and the convolved
workspace density for & = 7 /2 (b) (see next page).
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Fig. 10. Continued from previous page.

here can be formulated as Euclidean group convolutions. Us-
ing the discrete-motion group as an approximation to the Eu-
clidean group allows us to apply FFT techniques to calculate
these generalized convolutions in a very efficient way.
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