Computer Vision and Image Understanding
Vol. 74, No. 1, April, pp. 22—35, 1999

®
Atrticle ID cviu.1999.0745, available online at http://www.idealibrary.coml DE &l.

Pattern Matching as a Correlation on the Discrete Motion Group

Alexander B. Kyatkin and Gregory S. Chirikji&in

Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218
E-mail: gregc@jhu.edu

Received November 3, 1997; accepted January 6, 1999

for fixed natural numbeN andi €[0, N — 1] (Re SQ2) for
In this paper we develop a correlation method for the template  the continuous motion groupE2)).! The group law is simply
matching problem in pattern recognition which includes transla- matrix multiplication.
tions, rotations, and dilations in a natural way. The correlation The problem of template matching is quite old and has bee
method is implemented using Fourier analysis on the “discrete  approached in a number of different ways. Perhaps the mc
motion group” and fast Fourier transform methods. A brief in- common (and oldest) approach is that of “matched filters” [2
troduction to Fourier methods on the discrete motion group is | this approach the Fourier transform of the image and templa
given and the efficiency of these methods is discussed. Results of 50 taken, these are multiplied, and a peak is sought. This mett
the numerical implementation are given for particular examples. . g .
© 1999 Academic Press can be mplemented via digital com_puter, or by analog opt|c:
Key Words: pattern analysis; object recognition and indexing. computanon [3]. The d_rawback of this standard approach s th
rotations are handled in a very awkward manner. Several wor
have considered rotation-invariant approaches (e.g., [4]). Insu
1. INTRODUCTION approaches, polar coordinates are used and images are expat
in series of Zernike polynomials (see, e.g. [5]) or by using th
In this paper we address a two-dimensional problem in pattéfankel transform. The problem with such approaches is th
recognition. For a given template object we want to find if thisotational invariance is often gained at the expense of the trar
template object is presentin a given image, and, if itis found, detional invariance offered by the classical Fourier transform.
termine its position and orientation. We use a correlation methodA number of works have considered using invariants of im
(see [1] and references therein) for this purpose, which is eages for recognition (e.g. [6]). When one begins discussing il
tended in a natural way to include rotations and dilations of thariants, the most natural analytical tool is group theory. In thi
template object in addition to translations. Essentially, we transerk we apply an area of group theory called nhoncommutativ
late, rotate, and dilate the template object, overlap it with the@rmonic analysis to the template matching problem. In shol
image and compute an overlap area (weighted by the intenghis area of mathematics deals with the generalization of tt
value at each pixel) with the proper normalization. The novelgoncept of convolution and Fourier transforms to functions o
of our approach is that the correlation method is implemented @geups. In particular, if we are given a functidiix), the gener-
ing the Fourier transform on the “discrete motion group.” Fourielized Fourier transform developed and applied in this paper
methods on the discrete motion group also provide a fast mettathatrix function which has the property
to distinguish “identical” images (up to possible translations and

rotations of the image) from “different” ones. F(F(RT(x — a))) = F(f(X)U(R, a),
The discrete motion group can be viewed as the set of matrices
of the form whereU is a unitary matrix that depends on rotati®hand
translationa, andF denotes the nonabelian Fourier transform
g= < R r> 1) The above expression cannot be written as a matrix prodt
o' 1)’ for the usual abelian Fourier transform f&=£identity, al-

though it is completely analogous to the behavior of the abeli
where Fourier transform applied to translated functions. In other word
noncommutative harmonic analysis provides a natural tool fc

costi/N  —sin2ri/N @
~ \sin2ri/N  cosZi/N
1The notationSE?2) stands for “special Euclidean” group &2, i.e. the
group of all rigid-body motions in the plane. It is also called the Euclidear
* To whom all correspondence should be addressed. motion group, or simply the motion group.
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PATTERN MATCHING AS A CORRELATION 23

translatiorandrotation invariant pattern matching. Furthermore;lose to one. We note that the integral
sinceU is unitary |[UF(f)|l2= ||IF(f)|l2, and so this general-
ized Fourier transform provides a tool for generating a whole
continuum of pattern invariants under rigid-body motion.
The connection between group theory and the theory of wave-
lets (which has become a very popular tool in image analysis)just the square of norm of functiofs (for k=1),
has been well established. In essence, expanding a function in a
wavelet basis is achieved by starting with a mother wavelet and 2 2
superposing affine-transformed versions of the mother wavelet Az(fZ(X)) d°x.
to best approximate a given function. The interested reader is
pointed to [7—10] for further reading on the subject of wavelets, According to the Cauchy—Schwarz inequality,
their applications in image analysis, and their connection with
group theory. 1/2
The approach presented in this paper is to use the nonabelian| f1(x) f2(x) d*x < [/(1‘1(><))2 dZX/(fz(X))2 dzx} ,
Fourier transform and generalized concepts of convolution and
correlation. Thisis very differentthan wavelet approaches. Wh
wavelets typically allow one to efficiently approximate function
(or images), they have the drawback of not behaving well un

operations such as convolution, which is the most natural t%) t change if we change overall intensity of the original image

in matched filtering. or template obiect.

In Section 2 we describe the correlation method. Sectlo'n éForaF\)diIatior{ coefficienk = 1 we observe that the correlation
qnnctionq =((a, R)isafunction onthe Euclidean motion group
C§E(2) [22, 16], which is the semidirect product of translation

‘oup R?, +) and the rotation groupQ(2). It appears that this

up has not been used extensively in applications to the imac

/ (o Rk — a)))? (4)
RZ

H‘?e correlation coefficient (3) is always smaller or equal to one
nd it is equal to one for an identical pattern and windowec
age. We note that the value of a correlation coefficient doe

group. In Section 4 we describe the implementation of the ¢
relation method using the Fourier transform on the discrete
tion group. Section 5 describes the invariant constructions whi
may be used inimage analysis problems. Section 6 examines cessing; the authors are aware of only a few previous work
computational complexity of the approach. Section 7 describ@g '

. : ) : ) ~using this group (e.g., [11, 12, 15]).
practical numerical examples: Subsection 7.1 gives numerlca(Jsing Fourier methods on the motion group we compute th

examples of the correlation method which includes tranSIat'o_E'Srrelation coefficient in a much more efficient way than us-

and rotations; Subsection 7.2 illustrates applications of the 'iﬂ'g direct integration. Indeed, the direct computation of integra

variants on the discrete motion group for comparison of imageig) is very costly (we consider for simplicity the=1 case).

For Ny = Nk - Ny samples of the image (and template) on ar
2. METHOD FOR PATTERN RECOGNITION Ny x Ny rectangular grid, and foN samples of orientation,
we need to performO(N?N) computations (and we need to
In this paper we extend the correlation method for pattemompute the convolution-like integrals twice, in the denomi-
recognition [1] to include, in a natural way, rotations and dilarator and numerator of (3)). Fi¥; = 256x 256 andN = 60,
tions (in addition to translations) as the allowed transformatiotite computations require>610'* operations, which requires a
of the image. To find if the template object is presentin the imagay of computer work on a 250 MHz workstation. In this pa-
we take a section from the image and compare it with a rotatgmr we use the advantages of Fourier methods on the “discre
translated, and dilated version of the template pattern. Takingption group” (i.e. the subgroup &H2), where the orienta-
a section from the image is equivalent to multiplication of thtion angle has discrete values from g subgroup ofSQ2),

image by a “window” function, which is rotated, translated, anél=2zi /N for i =0, ..., N —1), and fast Fourier transform
dilated the same way as the template pattern. (FFT) methods [17, 18] to compute the correlation coefficient ir
Mathematically the correlation function is written as O(N N; log N;) computation. In addition, Fourier methods on
the discrete motion group provide a very fast method for com
q(a R, k) parison of two images which are translated and rotated relativel
g2 FLOOW(R(kx — @) f2(R~2(kx — &) d2x to each other.

= [/ 22 (F100)2(W(R(kx — a))2 82x] 72 f po( Fal(R-(kx — a))2 d2x]/2 A natural_ guestion to ask is how the cpmputatipnal reqL_lire‘
ments of this approach compare to classical Fourier techniqu

(3) applied to matched filtering. The answer is that they are on th

same order. However, the benefit of our formulation is that it pro

whereRe SQ2), ac R? ke R* close to one, andV(x) is a vides a clean notation in which to treat translations and rotation
window function. For a similar template pattern and windown a unified way. This paper also serves as an introduction of th
from the image the value of the correlation coefficient should limage understanding community to techniques which are nc



24 KYATKIN AND CHIRIKJIAN

widely known outside of pure mathematics. In the next sectiaf the Fourier transform elemerit§a; p) = exp(p - &), which
we discuss briefly Fourier methods on the discrete motion groudpprm a complete and orthonormal set of elements for all possib
values of the Fourier parameter vecpprWe note that/{(a; p)
3. FOURIER TRANSFORM ON THE DISCRETE are matrix elements (complex numbers in this case) of unitary i
MOTION GROUP reducible representations [25, 26] of the translation grougfof
We use a similar approach in order to get a simple expre
The concept of convolution of functions on a wide variety ojon for the convolution integral on the motion group in Fourie

abstract groups is well known in the pure mathematics literatusgace. We have to use a generalized Fourier transform with t
[14]. A detailed study of the concrete case of convolution @froperty that (see Appendix)

functions onSH?2) in the context of robot kinematics can be
found in [13].

Building on this previous work, we note that the numera-
tor (and denominator) in the correlation function (3) ko= 1
may be written formally as a convolution-like integral on th&vhere f > are functions on the motion group. This will provide

F(f1* f2) = F(f1) F(F2),

Euclidean motion group a tool for fast calculation of integrals like those in Eq. (5).
Awell-developed theory for such generalizations of the Fouri
/ f2(x) f(RL(x — &) dx tr.ansform exists. Itis ca!led noncqmmutative harmonic qnal)
R2 sis. A key element of this theory is the enumeration of linea

. . operatorslJ, which have the homomorphism property
= / fi(x, A fo(R(x —a), R"1 o A)d®x d A
SQ2)J R?

. U(91; p)U(%2; p) = U (91 0 G2; ), (6)
= [ T fag o mduh) )

SH2) whereg; » are group elements of a group, p is a general-
whereA e SQ2) andd A= dé/(2r) is the normalized integra- ized Fourier parameter (or set of parameters), and the opera
tion measure or8Q(2), and in the template-matching Iorobproduct may be understood as a matrix product (of, in gener:
lem functionsfy , are explicit functions only of position, i.e., infinite dimensional matrices).

f1.2(x, A) = f2(x) (henceforth we do not distinguish between Th_is h_omomorphism prqperty allows one to. reducg the cot
f1» and f1 ,).2 Furthermore,f1 »(x) are nonnegative real func- volution mtegrals.to.a matrix product equation in Fourier spac
tions (we formally writef, as the complex conjugate of itself toT "€ Property (6) is just part of the definition of a group repre
use the properties of the Fourier transform later). sentation [25] and is required to define Fourier transforms wit

The group elements, h are inSE2), the group product is the the con\_/olu_tion property. The operatduisca_n be thought of as
group product on the motion grod@ndd«(h) = d2x dé /(2r). gengrahzauon; of the complex exponentlals,useq in usual_

We assume that the orientation angles are restricted to valfi@grier analysis. Eacd can be expressed as a unitary matrix.
from the discrete subgroupy of the rotation grousQ(2). We To generatg the complete and orthonormal basis in which
refer to the subgroup of the motion group with a discrete ran§&Pand functions on the group, we have to calculate the m
of allowed rotations as the discrete motion gragip. trix elements oirreducible andunitary representations (IURS)

For the discrete motion group the integration over orientatidA> 26] of the group. A detailed review of the general theory i
should be replaced by summation through (which can be Provided is the Appendix.

viewed as elements of the groQ, or as matrices of the form The elements of the matrices for the discrete motion group
in Eq. (2)): may be written as (see Appendix for details)

N—1 .
f (dA—> =30, Umn(@ 0) = Umn(Aj. 15 P 6) = €775, (7)
sa2) N =

Inthe case of the translation group the usual Fourier transfo{here A1 is the inverse of the discrete rotatia andu‘,f de-
onR? may be used to get a simple expression for convoluti@pyies the vector to the angle= ¢ + 2k/N on the unit circle
in Fourier space (i.e. the product of Fourier transforms). In fag, the intervalF = [27k/N, 27 (k + 1)/N], k=0, ..., N -1
this property is based on the property (¢ measures the angle on this segment @< 27/N). The

U(a; p) - Ub: p) = U(a+ b: p) vect(_)ru‘(f is analogous to the 2D Fou_riervec_p)in ordinary 2D
Fourier transform (normalized to unit magnitude) and, thus, h:

, _ , _ - a dependence on the continuous arfglevhich just measures

Any function onR< can also be viewed as one 8i2) which is constant the polar angle OD We note that each element of the discrete
over all orientations. P 9 ’

3 Forg=(x, R) andh =y, A) the group product is defined g® h = (Ry + mOtiQn group can be expressed as a pai (A ,_r) and each
X, Ro A), whereRo Aiis a group product foBQ(2). Fourier parameter can be expressed as thegpai(p, ¢).
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The direct Fourier transform is defined as where¢ is measured froms2q/N. For the second expression
N-1 we used the unitarity of the matrix elemetis,, and the fact
fron(P, ) = [F(F)]mn = Z/ f(ALNDULYA L T; p, ) d?r.  that the expression is real (i.e., we take the complex conjuga
i—0 /R? of the integral). The matriced{ 2)mn are the Fourier transforms
(8) (as defined in Eq. (8)) of the functiorfg 2(x, A). We note that

by the rotationA, (which transformFo to Fyy) from ug, uﬁ1 the expression depends only on three indices.

Amu?. The parametep denotes the position inside the segment Because functions, o(x, Aj) = f15(x) do not depend on the
Fo. orientationsA;, matrix elements in the same column are the

The inverse Fourier transform is same, i.e.,
FHH (f12)mn = (f12)an
1 i for an i i
_ . ym, g. This may be observed from the expression
B 47T22m:2n:/0\ \/O fmn(p’ ¢)Unm(Ahru pv ¢)pdpw,
©) Unn(g™5 P, ¢) = eiiPUﬁAréAflun,um

where the angle is measured from =27n/N. We note that (the exponent depends only on tindex), the definition of the
this result is in agreement with [11]. direct transform (8), and the fact that the functions do not depen
on the orientation. Thus, we compute a row of the Fourier matri;
4. APPLICATION TO THE CORRELATION METHOD  for a particular orientation (for exampléy =1, the identity

element)
The convolution-like integrals in the numerator and denomi-

nator of (3) may be formally written (for simplicity we consider (fLon = (f12)an.
thek =1 case) as integrals ’ '

1 N2 This may be done using the 2D FFT for the functiding(x) and
c(x, Aj) = NZ/Rz f1(y, Ai)fz(Aj‘l(y — X), Al-‘lAi) d?y interpolating the Foureir values to points on a polar coordinat
i grid.
(10) The value ofp is determined byp|, the values ofn andv are
(where the functiond; , are orientation-independent). determined by the angular pargmfThis requireD(N: log(N))
The correlation function, however, is a function®g, sowe computations.
may use the Fourier transform on the discrete motion g@dyp ~ Thus, the integrals in Eq. (3) may be written as
to write this integral as a product of Fourier transforms. Because

the functions are real the integral in the numerator of Eq. (3) may(x A
be written as
—CZZ/ / (Faa(p. ) fin(P. $))Una(g; p. 4)p dp dp,
1 N—-1 (12)
T [ RE A Ay - 0. AR
=0 7% whereC =1/N.
_ — 1 We observe that the convolution-like integrals may be com
- /GN fuh fa(g ") du(h). puted by taking the Fourier transform, computing the produc

of transforms, and taking the inverse Fourier transform on th
where we denote integratia.(h) over the discrete motion discrete motion group.
group,Gy, to mean integration ové&? and summation through
the A, and the group elements are of the faes (X, Aj). Using 5. INVARIANTS OF THE DISCRETE MOTION GROUP
the orthogonality and homomorphism properties of the Fourier
matrix elements, this integral may be written as Let us assume that one wants to compute properties of tt
image (object) which are invariant with respect to translation:
1 2z /N —_— and rotations of the image. The Fourier transform on the discret
N Z Z/O /(; Z (flmanmq)an(g L p.¢)pdp dp motion group provides a very efficient tool to compute these
@ n m invariants. Let us construct a function with valuesRin,
27/N

1 e — A

= — f m f mn Un ; 5 d ) NilT -~

N;Z/o ] 2 (Fanaunn)Une(g: - #)P p(df’l) 1P 8) = 3 [ Fn(P: ) n(Ps D). (13)
m=0
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for each fixeds =0, ..., N, — 1, WherefAm(p; $) is the Fourier which proves the invariance of (13). We note that the invarian
transform on the discrete motion group 6€x). Then (13) is written in the form (14), is valid also for orientation-dependen
invariant with respect to rotations and translationd ¢f); i.e., functions (i.e. for generalfunctions on the discrete motion grouy
n(p; ¢) does not change if we compute (13) using the Fouridhe use of invariants for pattern recognition was suggested
transform on the motion group fdr'(x) = f (R™1(x — a)). [11].

We note that for orientation-independent functions (i.e., for
functions onR?) the Fourier transform elements, may be g EFFICIENT CALCULATION OF CONVOLUTION-

arranged as a matrix which has the same matrix elements in thi§KE INTEGRALS USING THE FOURIER METHOD
same column,

A . . As we mentioned before, the direct integrations of (3) re
fam= frm = fm. quiresO(N2N) computations foCy, whereN; is the number
of sampling points in aik? region.

Then (13) may be written also as a trace . ) . .
(13) may Using the Fourier transform on the discrete motion group w

n(p:¢) = T f1(p; ) f(p; 9)], (14) have to compute direct Fourier transforms for image and ter

plate, compute the matrix product (in our case itis a column—ro

where fT(p; ¢) is the Hermitian conjugate matrix. product) of the Fourier transform, which describes the Fouri

According to (8),fAClm for f(x) may be written as transform of the convolved functions, and then calculate the ii
verse Fourier transform.

fam(P; ¢) = / f(h)Uq*r%(h; P, ¢) du(h), The calculation of direct Fourier transform and the “matrix’

N (column-row) product is a fast computation. The direct Fourie

where the integral oveBy denotes integration with respect totransform for fy,2(x) may be computed using a usual two-

x andsummation through the elements@y, and f (h) = f (x). d?mensional FFT [18] irD(N; Iog_Nr) computations. The FFT
The function f'(x) = f (R-1(x — a)) may be formally written gives, however, values of Fourier elements computed on tl

_ o : Cartesian square (rectangular) gridp¥alues. To receive the
f(g~' o h), whereg=(a, R . Then f/, is written . - . .
22 (g7 o h), whereg=(a R) € Gn en fom Is writte Fourier transform element$y(p, ¢) on the discrete motion

group we have to interpolate values on the Cartesian grid
&1 e o\ -1 1. a polar coordinate grid, thp value is the magnitude qf, the
Fam(Pi6) = / (@ o WUqm(hi p. @) dulh). m and¢ indices are determined by the angular parpgthus,

. ) . ) ) ) the constraintNy; Ny N~ N, may be used). The linear inter-
Using the invariance of the integration measure we write thb%lation requireO(N;) computations. The product of Fourier

integral as column T (p, ¢) and row fy(p, ¢) which gives Fourier ma-

N

- B trix Fmn(p, ¢), may be performed i©(N2NyN4) = O(N N;)
’ . _ ’ 1 ’. ’ mn p
Fam(Pi ) = /G F(MUgm(g o 1’ p. ¢) du(h). computations. We note that the trace in invariants (13) may |
_ : . o computed inO(N NpN,) = O(N;) (for all ¢-values).
Using the homomorphism propertiesldfwe write it as Thus, the direct Fourier transform and the “matrix” produc

may be computed iIO(N; log N, + O(N N;) computations.

f”am(p; P) = [/ f()Ug (0'; p. ¢>)dlt(h')] U g p. ) The inverse Fourier transform calculation is a slower compt

Gn tation. One element from each row and columrigf(p, ¢) is
used in computation of the inverse Fourier transform for eac
rotation elemen# . First, we interpolate the value of the Fourier
transform on the square grid x N; of p to polar coordinates.
The radial coordinate ip = |p|, the polar angle is determined
by the values ofn and¢ (the value ofn is determined bym
and the index of rotation n=m+ i, thus we takdfm,mﬂ ele-
~ ~ 4, ments from the Fourier matrix to compute the inverse transfor
f'(p.¢) = T(p.9)U(g; . ¢). for fixed orientatior4; ). After inverse interpolation to Cartesian
coordinates (which may be done@(N N,) computations), the
inverse Fourier integration may be performedd(N; log(N,))

= fqr (P ®)U(9: P, ).
where we have used a unitarity propertyfThus, the Fourier

matrix is transformed under rotations and translatigrsG
as

Using the cyclic property of Tr and unitarity &f it is clear

that for each of theN nonzero matrix elements &f using the FFT.
. - Thus, inO(N N: log(N;)) computations we reproduce the func-
(1) (P, ¢) T'(P. ¢)] tion for all A;. We note that the inverse Fourier transform compu
— Tr{U(g; p, #) F1(p., ) f(p, 9)UT(g: p, 9] tation isO(N) (or O(log N;), depending which is larger) times

N ) more time-consuming, because we reproduce a function on t
=Tr[ f(p, ¢) f(p, )], discrete motion group, rather than a functionkh
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FIG. 1. The image—256 256 array of grey values.

Thus, the total required ©(N N: log(N;)) computations, and the correlation function as matrix products in Fourier space
these computations are, for the most part, calculations of thiealso gives an efficient way to construct image invariants
inverse Fourier transform. We also note that we have to perfoifhese invariants may be used in image processing proble
calculations twice, to compute convolution-like integrals in thésee Section 7.2 for numerical examples). Of course it can b
denominator and numerator of (3). argued that the classical (scalar) Fourier transforms of rotate

The total order of computations using classical Fourier analersions of images can be arranged to form a Fourier matrix lik
ysis is of the same order as in our implementation, but tlers. If this arrangement is performed, then knowingly or not
Fourier transform on the motion group has additional nice propre is calculating the Fourier transform on the discrete motio
erties. For example, it allows one to neatly write integrals igroup.
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FIG.2. The template pattern. The arrow is used as a reference to find the position and orientation of this pattern in the image.

7. NUMERICAL EXAMPLES We choose a template, depicted in Fig. 2, which is a rotate

71 Correlation Method. Includina Rotati dT lati %it angled = —m/3), and the translated pattern taken from th
-1. Correlation Method, Including Rotations and Translation age. The arrow shown on the picture is used as a refere

In this section we compute the correlation function, Eqg. (3rrow to find the position and orientation of this template in th
(for dilation k= 1) for some practical examples. We computanage. The correlation function depicted for the- 7 /3 angle

most examples folN; =256x 256 andN =60 (Cgo group), isdepictedinFig. 3. The highestvalue of the correlation functio

although the computing time for other arrays is also reportedis at the original position and orientation of the pattern in th
We consider the image depicted in Fig. 1. ThisisaR%%6 image. We also find positions and orientations of local maxi

array of grey values (256 grey levels of intensity for each pixelj each ofim x m subregions of the originalimage. For= 8 the
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FIG. 3. The correlation function depicted for the= /3 orientation angle.

250

positions and orientations of local maxima in each of subregionsln the table below we listed the computing time of the methoc
are shown in Fig. 4. The highest value is depicted by the arrofgiven in minutes and seconds, on a 250-MHz SGI workstation)
which is rotated and translated from the arrow in Fig. 2. Othe@nplemented in the C programming langualyeis listed along
local maxima (with a value of correlation which is greater thatihe horizontal, the right column lists the time to compute the
0.85) are depicted by a white square; a small line attached to ttwerelation coefficients at 64 maxima using direct integration
square shows the orientation. The N, array size is given along the vertical.

We note that the precise values of correlation at the locations of

64 maxima may be found by direct integration, and the Fourier N=60 N=30

N=10 Dir. int.

method may be used as a fast filter method to find Iocat|oR§ — 256 % 256 4:06 2:11
of these maxima. It is especially important to compute precq@ 128 % 128 1:12 0:36
values in the case when the template object does not mam 64 % 64 0:25 0:12
exactly the pattern in the image.

0:48 0:55
0:16 0:13
0:04 0:03
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The image. Positions and orientations of the absolute maximum (shown by the arrow) and local maxima of the correlation function are depic

7.2. Using the Invariants on the Motion Group of invariant functionsfy »(p, ¢), computed for two different
to Compare Images images,

As we have shown before, function (13) is the same forimages
which are rotated and translated relative to each other. It may [ f1(p, ¢) f2(p, ¢)pdp
be used to compare images and determine if they are identical 7(¢) = . : :

= 12, roo 12"
(similar) or not. Again, we compute the correlation coefficient (Jo fu(p.¢)?pdp)"“(f5~ f2(p. ¢)?pdp)
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50|

0 50 100 150 200 250

FIG.5. Animage.

This is afast computation of the ord®(N,Ny) ~ O(N; /N)
(to computeN, coefficients) and it may be done using the ¢
usual integration techniques. As we mentioned before, the direct
Fourier transform may be computed @(N; log(N;)) compu- v 0016 0.017 0.017 0017 0016 0016
tation; computation of the sum in (13) may be doned(N;)
computations. We see that values are very close for differgnthus we may

We compare the images depicted in Fig. 5 and Fig. 6, whiclsev for any one of thep values. The values are small which
are just rotated and translated relative to each other. We usdicates very strong correlation.
the valuev = (1.0 — ) x 10° to compare images, which is more If we compare Fig. 6 with a not-quite-the-same rotated an
convenient to use foy values which are close to 1.0. The greatdaranslated image (taken from an image after application of direc
v is, the worse the correlation is. In the table below we showand inverse Fourier transform), we get a valuevot 0.107
forg =0,...,5. which indicates a moderate correlation. The time to comput

0 1 2 3 4 5
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FIG. 6. Arotated and translated version of the image in Fig. 5.

direct Fourier transforms and correlationsvas aroud 3 s on APPENDIX

a 250 MHz workstation.
In this appendix we review the essentials of noncommutati

harmonic analysis which is the generalization of Fourier analys
to functions on groups. Much of the review material presente
8. CONCLUSIONS here may be found in [13, 14, 16, 25].
Recall that the Fourier transform pair for a suitable scalz
In this paper we use technigues from noncommutative hdunction, f (x), for x € R is defined as
monic analysis to formulate problems in template matching and

construction of image invariants. The main contribution is to f(p) = /oo Fu(x. p)dx
illustrate that problems in image understanding can be cleanly oo ’ ’

formulated using mathematical techniques which are not stan- (A1)
dard tools in the community. Numerical examples are provided f(x) = 1 /OO f d

to demonstrate the techniques. ) = 21 J_ oo (p)u(x. p)dp.
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whereu(x, p) =€P*. Note thatu(x + y, p) =PV =¢gpx. transforms), wherelv(p) is an appropriately defined measure
ePY = u(x, p)u(y, p). This is an example of group homomor- on the dual space of the group,*
phism In general, a homomorphism is a mapping between twoBecause of the homomorphism propett(g; o gz; p) =
groupsh : (G, o) — (H, 8) such thah(g; o g) =h(gy) 5h(gy). U (91; p)U(92; p), the convolution theorem
In particular, the function(-, p) maps R, +) — (U, -) for each R .
w € R, whereU is the set of complex numbers with unit mod- F(frx f2) = () f1(0)
ulus, and is scalar multiplication.
The convolution theorerfor functions on the real line statesholds, where convolution is defined as [13, 16, 14]
that (f1(x) = f2(x)) = f1(p) f2(p). This is a direct result of the

facts that (fi* f2)(9) = /G f1(h) f2(h* o @) du(h).

U(=(x+y), P) = u(=x, p)u(=Y. p) The problem then becomes the enumeration of all inequi

. . L . _ valent IURs for a given group.
and integration on the real line is translation invariant.

Nqncommutative harmonic gnalysis egtends the concept of Unitary Representations of SE(2)
Fourier transform and convolution to functions on groups. At the
core of this area of mathematics is the enumeration of functions® unitary representations @H2) is defined by the unitary
analogous tai(x, p). Unlike the Abelian case where such funcoperator
tions are scalars, in the noncommutative context these functions . i .
are matrices called irreducible unitary representations (IURS). U(g; p) f(x) = €PCY f(R™x) (A.2)

A representatiorof a groupG is a homomorphisnt : G —
T(G) C GL(V). V is a vector space called the representatiddr eachg=(R, b) e SH2). The form of this operator results
space, an@L(V) is the group of all invertible linear transfor-from the semi-direct product structure of the grasig2); €
mations ofV onto itself.T(g) for g € G is expressed in a given is the scalar exponential functiop,= peR", i =+/-1, and

basis ofV as an invertible matrix, and X -y =X1Y1 + X2Y2. The vectox is a unit vectorX - x=1), and
f(-) € £2(SY), whereS! is the unit circle.
T(gio@) =T(Q)T(g), T(g™H =T, Since only one angle is requireg to parameterize a vectc
on the unit circle,x=(cosy, siny)’, and f(x) = f(cosy,
T(e) = 1€ GL(V). siny) = (). Henceforth we will not distinguish between

and f.
Representations thatcanbe expressed as unitarymablicks( gy definition, group representations observe the homomor
U™ in an orthonormal basis of are called unitary represen-phism property, which in this case is seen as

tations. Irreducible representations are those which cannot be

block-diagonalized. |.e., they are the smgllest representatlons U(ge: p)U(gz; p) F(X) = U(gs; p)(U (g2 p) (X))
and cannot be further reduced. The functigr, p) is an exam- (030 .
ple of a one-dimensional (and hence irreducible) unitary repre- = U(9y; p)(ep z f(sz))

sentation. . . . — gPbrx)gipb2RIX) ¢ (RT RTX)
For a general unimodular group (i.e., a group which possesses 2’1
aleft and right invariant volume measure), the Fourier transform = @Pbr+Rib)X £ (R R,)Tx)

of a suitable functiorf (g) is defined as
= U(910 92 p) F(%).

£ —1.

Hp) = F(1(9) = /G HQU(g: p) di(g). Any function f () € £2(S') can be expressed as a weighted
sum of orthonormal basis functions &) = 3", a,e€"”. Like-
whered(g) is a left—right invariant volume measure @Gnand wise, the matrix elements of the operattbfg; p) are expressed
p is a dual (frequency-like) parameter which enumerates allthis basis as
the different IURs of the group. The parametecould be a
scalar, vector, or other quantity, depending on the group under  Unn(g, p) = (€™, U(g; p)e"¥) vm,ne Z,
consideration. The inverse Fourier transform

f(g) = / trace(f (0)U (g; p)) dv(p) 41t is worth noting that the measureg. anddv have not been determined
G for all unimodular groups, although they are well known for both the Euclidear
group and the discrete motion group, which is all that is important in the contex
reconstructs the function from its spectrum (collection of Fourief this paper.
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where the inner product,() is defined as The matrix elements (A.5) are exact expressions for the m
trix elements of the unitary representations of the discrete motit

21 L group. The set of matrix elements (A.5) is, however, incomplet

(f1, f2) = E/ f1(y) f2(y) dy. This means, that the direct and inverse Fourier transforms, c

0 fined using these matrix elements, would reproduce the origin

. function with O(1/N) error; i.e.,
Itis easy to see that((g; p) f1, U(g; p) f2) = (f1, f2), and that

U(g; p) is therefore unitary with respect to this inner product. o,
The matrix with elements,, is “infinite dimensional.” Fur- FF(E(ALT) = f(A, 1)+ O(1/N)).
thermore, the matrix of a unitary operator expressed in an or-
thonormal basis is a unitary matrix, which meahg, = Unp. The reason for this is that summing through all possible se:
A number of works including [22] have shown that the matrixnents cannot replace integration over all possible angles on t
elements of this representation are given by circle. It is also clear that the additional continuous paramet:
which enumerates possible angles inside each segment on
Unn(Q(T, ¢, 6), p) = i MeilM+m-mol 3 o) (A.3) circle must give the complete set of the matrix elements.
Thus, the matrix elements must be modified as

whereJ, (X) is thevth order Bessel function argir, ¢, 6) is an o
element ofSH2), where the translational part is parameterized Unn(Aj, T; p, ¢) = Pt S AL, U (A-6)
in polar coordinates( ¢).

, . whereuﬁ’ denotes the vector to the angle- ¢ + 27 k/N on the
A.2. The Discrete Motion Group unit circle on the interval [2k/N, 27(k +1)/N], k=0, ...,

In order to get the IURs of the discrete motion group wél — 1 (¢ measures the angle on this segment). The vedfprs
restrict possib|e orientation ang|es to the values flomand are illustrated in Fig. 7. The Fourier parameter in this caseis tl
choose the appropriate pulse orthonormal basis functionsp@r o = (P, ¢).
compute the representation matrices using property (A.2).  This is expression (7) in the text.

We choose a pulse orthonormal basjgn(u) on S; i.e., we
subdivide the circle into identical segmerits and choose the
f-functions to satisfy the orthonormality relations

27 (m+l) /N

1
2_/ fN,n(u) me(U) d9 == (Snm.
T Js

We choose the orthonormal functions as

(N)Y? ifueFy,
fnon(p) = e
0 otherwise;
n=0,..., N—1 enumerates different segments. We denoi

these pulse functions aslike functions fy n(u) = (1/N)Y?
3n(u, up), whereu, is the vector to the center of thg, seg-
ment.

The matrix elements in this basis are

Un A P) = 5 [ TP fun(A 0y do. ()

It may be shown that this integral may be approximated as

Umn(Aj I p) = ipum~f3Ai,1um.un’ (A.5)

FIG. 7. lllustration for vectorsu‘r’}, in the matrix elements of IURs of the
Whel’eéAIlumMn =d8m—jn in this case. discrete motion group.



10.

11.

12.

. R. Murenzi, Wavelet transforms associated toHtkmensional Euclidean 21

PATTERN MATCHING AS A CORRELATION

REFERENCES 13.

B. JahneSpatio-Temporal Image Processing: Theory and Scientific Appli-
cations Springer-Verlag, Berlin, 1993. 14.

. G. L. Turin, An introduction to matched filtel®E Trans. Inf. Theor{T-6,

1960, 311-329. 15,

. M. A, Karim and A. A. S. Awwal,Optical Computing An Introductign

Wiley, New York, 1992. 16.

. H. H. Arsenault and Y. N. Hsu, Chalasinsk—Macukow, rotation-invariant

pattern recognitionQpt. Eng.23, 1984, 705-709. 17.

. A. B. Bhatia and E. Wolf, On the circle polynomials of Zernike and related

orthogonal setfroc. Cambridge Philos. SoB0, 1954, 40-48. 18

. Y. S. Abu-Mostafa and D. Psaltis, Recognition aspects of moment invari-

ants,|IEEE Trans. Pattern Anal. Mach. IntelPAMI-6, 1984, 698. 19

. M. Antonini, M. Barlaud, P. Mathieu, and |. Daubechies, Image coding

using wavelet transformlEEE Transactions on Image Processi#§(2),

1992, 205-220. 20.

. J.-P. Leduc, Spatio-temporal wavelet transforms for digital signal analysis,

Signal Processing0, 1997, 23—41.

group with dilations: Signals in more than one dimensionWMavelets:
Time-Frequency Methods and Phase Spgdc®l. Combes, A. Grossmann, 29
and Ph. Tchamitchian, Eds.), pp. 239-246.

J. Segman and Y. Zeevi, Image analysis by wavelet-type transforms: Gro%p
theoretical approaclipurnal of Mathematical Imaging and Visi@1993, '
51-77. [“Estimation with a Pattern Recognition (ICPR’86), Washington
DC, 1986
J. P. Gauthier, G. Bornard, and M. Sibermann, Motion and pattern analysis:
Harmonic analysis on motion groups and their homogeneous spag#s, 25.
Trans. Syst. Man Cyber@1, 1991, 159-172.

R. LenzGroup Theoretical Methods in Image Processibgcture Notesin  26.
Computer Science, Springer-Verlag, Berlin/Heidelberg/New York, 1990.

35

G. S. Chirikjian and I. Ebert-Uphoff, Numerical convolution on the
Euclidean group with applications to workspace generatieBE Trans.
Robotics Automatiof4(1), 1998, 123-136.

G. B. FollandA Course in Abstract Harmonic AnalysiSRC Press, Boca
Raton, FL, 1995.

K. Kanatani, Group-Theoretical Methods in Image Understanding
Springer-Verlag, Berlin/Heidelberg/New York, 1990.

G. Chirikjian, Fredholm integral equations on the Euclidean motions groug
Inverse Problemd2, 1996, 579-599.

J. W. Cooley and J. Tukey, An algorithm for the machine calculation of
complex Fourier seriedfath. Computl9, 1965, 297-301.

D. F. Elliott and K. R. Radrast Transforms: Algorithms, Analyses, Appli-
cations Academic Press, New York, London, 1982.

H. Choi and D. C. Munson, Direct-Fourier reconstruction in tomography
and synthetic aperture radémt. J. of Imaging Systems and Technol®gy
1998, 1-13.

H. Stark, J. W. Woods, I. Paul, and R. Hingorani, Direct Fourier recon-

struction in computed tomograpHEEE Trans. Acoustics, Speech, Signal
ProcessingASSP-29 1981, 237-245.

. A. Kyatkin and G. Chirikjian, Regularized solutions of a nonlinear convo-

lution equation on the Euclidean grougsta Appl. Math53, 1986, 89-123.

. N. J. Vilenkin, Bessel functions and representations of the group o

Euclidean motiongJspehi Mat. Naukl11, 1956, 69—-112. [Russian]

J. Canny. A computational approach to edge deted&®E Trans. Pattern
Anal. Mach. Intell.8, 1986, 679-698.

24. H. Dym and H. McKeankourier Series and IntegraJsAcademic Press,

New York, 1972.

M. Sugiura,Unitary Representations and Harmonic Analystsd ed.,
Elsevier Science, Amsterdam, 1990.

D. GurarieSymmetry and Laplacians. Introduction to Harmonic Analysis,
Group Representations and Applicatipdsevier Science, 1992.



	1. INTRODUCTION
	2. METHOD FOR PATTERN RECOGNITION
	3. FOURIER TRANSFORM ON THE DISCRETE MOTION GROUP
	4. APPLICATION TO THE CORRELATION METHOD
	5. INVARIANTS OF THE DISCRETE MOTION GROUP
	6. EFFICIENT CALCULATION OF CONVOLUTION-LIKE INTEGRALS USING THE FOURIER METHOD
	7. NUMERICAL EXAMPLES
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.

	8. CONCLUSIONS
	APPENDIX
	FIG. 7.

	REFERENCES

