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In this paper we develop a correlation method for the template
matching problem in pattern recognition which includes transla-
tions, rotations, and dilations in a natural way. The correlation
method is implemented using Fourier analysis on the “discrete
motion group” and fast Fourier transform methods. A brief in-
troduction to Fourier methods on the discrete motion group is
given and the efficiency of these methods is discussed. Results of
the numerical implementation are given for particular examples.
c© 1999 Academic Press
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In this paper we address a two-dimensional problem in pa
recognition. For a given template object we want to find if t
template object is present in a given image, and, if it is found
termine its position and orientation. We use a correlation me
(see [1] and references therein) for this purpose, which is
tended in a natural way to include rotations and dilations of
template object in addition to translations. Essentially, we tr
late, rotate, and dilate the template object, overlap it with
image and compute an overlap area (weighted by the inte
value at each pixel) with the proper normalization. The nov
of our approach is that the correlation method is implemente
ing the Fourier transform on the “discrete motion group.” Fou
methods on the discrete motion group also provide a fast me
to distinguish “identical” images (up to possible translations
rotations of the image) from “different” ones.

The discrete motion group can be viewed as the set of mat
of the form

g =
(

R r

0T 1

)
, (1)

where

R=
(

cos 2π i /N −sin 2π i /N

sin 2π i /N cos 2π i /N

)
(2)
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matrix multiplication.
The problem of template matching is quite old and has b

approached in a number of different ways. Perhaps the m
common (and oldest) approach is that of “matched filters” [
In this approach the Fourier transform of the image and temp
are taken, these are multiplied, and a peak is sought. This me
can be implemented via digital computer, or by analog opti
computation [3]. The drawback of this standard approach is
rotations are handled in a very awkward manner. Several wo
have considered rotation-invariant approaches (e.g., [4]). In s
approaches, polar coordinates are used and images are exp
in series of Zernike polynomials (see, e.g. [5]) or by using
Hankel transform. The problem with such approaches is
rotational invariance is often gained at the expense of the tr
lational invariance offered by the classical Fourier transform

A number of works have considered using invariants of i
ages for recognition (e.g. [6]). When one begins discussing
variants, the most natural analytical tool is group theory. In t
work we apply an area of group theory called noncommuta
harmonic analysis to the template matching problem. In sh
this area of mathematics deals with the generalization of
concept of convolution and Fourier transforms to functions
groups. In particular, if we are given a functionf (x), the gener-
alized Fourier transform developed and applied in this pape
a matrix function which has the property

F( f (RT (x− a))) = F( f (x))U (R,a),

whereU is a unitary matrix that depends on rotationR and
translationa, andF denotes the nonabelian Fourier transfor
The above expression cannot be written as a matrix prod
for the usual abelian Fourier transform forR 6= identity, al-
though it is completely analogous to the behavior of the abe
Fourier transform applied to translated functions. In other wor
noncommutative harmonic analysis provides a natural tool

1 The notationSE(2) stands for “special Euclidean” group ofR2, i.e. the
group of all rigid-body motions in the plane. It is also called the Euclide
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PATTERN MATCHING

translationandrotation invariant pattern matching. Furthermo
sinceU is unitary‖UF( f )‖2=‖F( f )‖2, and so this general
ized Fourier transform provides a tool for generating a wh
continuum of pattern invariants under rigid-body motion.

The connection between group theory and the theory of wa
lets (which has become a very popular tool in image analy
has been well established. In essence, expanding a function
wavelet basis is achieved by starting with a mother wavelet
superposing affine-transformed versions of the mother wav
to best approximate a given function. The interested read
pointed to [7–10] for further reading on the subject of wavele
their applications in image analysis, and their connection w
group theory.

The approach presented in this paper is to use the nonab
Fourier transform and generalized concepts of convolution
correlation. This is very different than wavelet approaches. W
wavelets typically allow one to efficiently approximate functio
(or images), they have the drawback of not behaving well un
operations such as convolution, which is the most natural
in matched filtering.

In Section 2 we describe the correlation method. Sectio
is an introduction to Fourier analysis on the discrete mot
group. In Section 4 we describe the implementation of the c
relation method using the Fourier transform on the discrete
tion group. Section 5 describes the invariant constructions w
may be used in image analysis problems. Section 6 examine
computational complexity of the approach. Section 7 descr
practical numerical examples: Subsection 7.1 gives nume
examples of the correlation method which includes translati
and rotations; Subsection 7.2 illustrates applications of the
variants on the discrete motion group for comparison of imag

2. METHOD FOR PATTERN RECOGNITION

In this paper we extend the correlation method for patt
recognition [1] to include, in a natural way, rotations and di
tions (in addition to translations) as the allowed transformati
of the image. To find if the template object is present in the im
we take a section from the image and compare it with a rota
translated, and dilated version of the template pattern. Ta
a section from the image is equivalent to multiplication of t
image by a “window” function, which is rotated, translated, a
dilated the same way as the template pattern.

Mathematically the correlation function is written as

q(a, R, k)

=
∫
R2 f1(x)W(R−1(kx− a)) f2(R−1(kx− a)) d2x[∫

R2( f1(x))2(W(R−1(kx− a)))2 d2x
]1/2∫

R2( f2((R−1(kx− a)))2 d2x]1/2
,

(3)

where R∈SO(2), a∈R2, k∈R+ close to one, andW(x) is a

window function. For a similar template pattern and windo
from the image the value of the correlation coefficient should
AS A CORRELATION 23
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close to one. We note that the integral∫
R2

( f2(R−1(kx− a)))2 d2x (4)

is just the square of norm of functionf2 (for k= 1),∫
R2

( f2(x))2 d2x.

According to the Cauchy–Schwarz inequality,

∫
f1(x) f2(x) d2x ≤

[∫
( f1(x))2 d2x

∫
( f2(x))2 d2x

]1/2

,

the correlation coefficient (3) is always smaller or equal to o
and it is equal to one for an identical pattern and window
image. We note that the value of a correlation coefficient d
not change if we change overall intensity of the original ima
or template object.

For a dilation coefficientk= 1 we observe that the correlatio
functionq=q(a, R) is a function on the Euclidean motion grou
SE(2) [22, 16], which is the semidirect product of translatio
group (R2,+) and the rotation groupSO(2). It appears that this
group has not been used extensively in applications to the im
processing; the authors are aware of only a few previous wo
using this group (e.g., [11, 12, 15]).

Using Fourier methods on the motion group we compute
correlation coefficient in a much more efficient way than u
ing direct integration. Indeed, the direct computation of integ
(3) is very costly (we consider for simplicity thek= 1 case).
For Nr = Nx · Ny samples of the image (and template) on
Nx × Ny rectangular grid, and forN samples of orientation
we need to performO(N2

r N) computations (and we need t
compute the convolution-like integrals twice, in the denom
nator and numerator of (3)). ForNr = 256× 256 andN= 60,
the computations require 5× 1011 operations, which requires
day of computer work on a 250 MHz workstation. In this p
per we use the advantages of Fourier methods on the “disc
motion group” (i.e. the subgroup ofSE(2), where the orienta-
tion angle has discrete values from theCN subgroup ofSO(2),
θ = 2π i /N for i = 0, . . . , N− 1), and fast Fourier transform
(FFT) methods [17, 18] to compute the correlation coefficien
O(N Nr log Nr ) computation. In addition, Fourier methods o
the discrete motion group provide a very fast method for co
parison of two images which are translated and rotated relati
to each other.

A natural question to ask is how the computational requ
ments of this approach compare to classical Fourier techniq
applied to matched filtering. The answer is that they are on
same order. However, the benefit of our formulation is that it p
vides a clean notation in which to treat translations and rotati

w
be
in a unified way. This paper also serves as an introduction of the
image understanding community to techniques which are not
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widely known outside of pure mathematics. In the next sec
we discuss briefly Fourier methods on the discrete motion gr

3. FOURIER TRANSFORM ON THE DISCRETE
MOTION GROUP

The concept of convolution of functions on a wide variety
abstract groups is well known in the pure mathematics litera
[14]. A detailed study of the concrete case of convolution
functions onSE(2) in the context of robot kinematics can
found in [13].

Building on this previous work, we note that the nume
tor (and denominator) in the correlation function (3) fork= 1
may be written formally as a convolution-like integral on t
Euclidean motion group∫

R2
f1(x) f2(R−1(x− a)) d2x

=
∫

SO(2)

∫
R2

f̃1(x, A) f̃2(R−1(x− a), R−1 ◦ A) d2x d A

=
∫

SE(2)
f̃1(h) f̃2(g−1 ◦ h) dµ(h), (5)

whereA∈SO(2) andd A= dθ/(2π ) is the normalized integra
tion measure onSO(2), and in the template-matching pro
lem functions f̃1,2 are explicit functions only of position, i.e
f̃1,2(x, A)= f1,2(x) (henceforth we do not distinguish betwe
f̃1,2 and f1,2).2 Furthermore,f1,2(x) are nonnegative real func
tions (we formally writef1 as the complex conjugate of itself
use the properties of the Fourier transform later).

The group elementsg, h are inSE(2), the group product is th
group product on the motion group,3 anddµ(h)= d2x dθ/(2π ).

We assume that the orientation angles are restricted to v
from the discrete subgroupCN of the rotation groupSO(2). We
refer to the subgroup of the motion group with a discrete ra
of allowed rotations as the discrete motion groupGN .

For the discrete motion group the integration over orienta
should be replaced by summation throughAi (which can be
viewed as elements of the groupCN , or as matrices of the form
in Eq. (2)): ∫

SO(2)
(·) d A→ 1

N

N−1∑
i=0

(·).

In the case of the translation group the usual Fourier trans
onR2 may be used to get a simple expression for convolu
in Fourier space (i.e. the product of Fourier transforms). In f
this property is based on the property
U(a; p) · U(b; p) = U(a+ b; p)

2 Any function onR2 can also be viewed as one onSE(2) which is constant
over all orientations.

3 For g= (x, R) andh= (y, A) the group product is defined asg◦ h= (Ry+
x, R◦ A), whereR◦ A is a group product forSO(2).
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of the Fourier transform elementsU(a; p)= exp(i p · a), which
form a complete and orthonormal set of elements for all poss
values of the Fourier parameter vectorp. We note thatU(a; p)
are matrix elements (complex numbers in this case) of unitary
reducible representations [25, 26] of the translation group ofR2.

We use a similar approach in order to get a simple expr
sion for the convolution integral on the motion group in Fouri
space. We have to use a generalized Fourier transform with
property that (see Appendix)

F( f1 ∗ f2) = F( f1)F( f2),

where f1,2 are functions on the motion group. This will provid
a tool for fast calculation of integrals like those in Eq. (5).

A well-developed theory for such generalizations of the Fou
transform exists. It is called noncommutative harmonic ana
sis. A key element of this theory is the enumeration of line
operators,U , which have the homomorphism property

U (g1; ρ)U (g2; ρ) = U (g1 ◦ g2; ρ), (6)

whereg1,2 are group elements of a groupG, ρ is a general-
ized Fourier parameter (or set of parameters), and the oper
product may be understood as a matrix product (of, in gene
infinite dimensional matrices).

This homomorphism property allows one to reduce the co
volution integrals to a matrix product equation in Fourier spa
The property (6) is just part of the definition of a group repr
sentation [25] and is required to define Fourier transforms w
the convolution property. The operatorsU can be thought of as
generalizations of the complex exponentials,U , used in usual
Fourier analysis. EachU can be expressed as a unitary matri

To generate the complete and orthonormal basis in which
expand functions on the group, we have to calculate the m
trix elements ofirreducibleandunitary representations (IURs)
[25, 26] of the group. A detailed review of the general theory
provided is the Appendix.

The elements of theU matrices for the discrete motion grou
may be written as (see Appendix for details)

Umn(g; ρ) = Umn(Aj , r ; p, φ) = eipuφm·rδA−1
j um,un

, (7)

whereA−1
j is the inverse of the discrete rotationAj , anduφk de-

notes the vector to the angleθ =φ + 2πk/N on the unit circle
in the intervalFk= [2πk/N, 2π (k + 1)/N], k= 0, . . . , N− 1
(φ measures the angle on this segment, 0≤φ≤ 2π/N). The
vectoruφk is analogous to the 2D Fourier vectorp in ordinary 2D
Fourier transform (normalized to unit magnitude) and, thus,
a dependence on the continuous angleθ , which just measures
the polar angle ofp. We note that each element of the discre

motion group can be expressed as a pairg= (Ai , r ) and each
Fourier parameter can be expressed as the pairρ= (p, φ).
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The direct Fourier transform is defined as

f̂mn(p, φ) = [F( f )]mn =
N−1∑
i=0

∫
R2

f (Ai , r )U−1
mn(Ai , r ; p, φ) d2r.

(8)

The vectoruφm, which is inside the segmentFm may be received
by the rotationAm (which transformF0 to Fm) from uφ0 , u

φ
m=

Amuφ0. The parameterφ denotes the position inside the segme
F0.

The inverse Fourier transform is

F−1( f̂ )

= 1

4π2

∑
m

∑
n

∫ ∞
0

∫ 2π/N

0
f̂mn(p, φ)Unm(Ai , r ; p, φ)p dp dφ,

(9)

where the angleφ is measured fromθ = 2πn/N. We note that
this result is in agreement with [11].

4. APPLICATION TO THE CORRELATION METHOD

The convolution-like integrals in the numerator and denom
nator of (3) may be formally written (for simplicity we conside
thek= 1 case) as integrals

c(x, Aj ) = 1

N

N−1∑
i=0

∫
R2

f1(y, Ai ) f2
(
A−1

j (y− x), A−1
j Ai

)
d2y

(10)

(where the functionsf1,2 are orientation-independent).
The correlation function, however, is a function onGN , so we

may use the Fourier transform on the discrete motion groupGN

to write this integral as a product of Fourier transforms. Beca
the functions are real the integral in the numerator of Eq. (3) m
be written as

1

N

N−1∑
i=0

∫
R2

f1(y, Ai ) f2
(
A−1

j (y− x), A−1
j Ai

)
d2y

=
∫

GN

f1(h) f2(g−1h) dµ(h),

where we denote integrationdµ(h) over the discrete motion
group,GN , to mean integration overR2 and summation through
theAi , and the group elements are of the formg= (x, Aj ). Using
the orthogonality and homomorphism properties of the Fou
matrix elements, this integral may be written as

1

N

∑
q

∑
n

∫ ∞
0

∫ 2π/N

0

∑
m

(
f̂ 1mn f̂ 2mq

)
Uqn(g

−1; p, φ)p dp dφ

= 1 ∑∑∫ ∞∫ 2π/N ∑(
f̂ f̂

)
U (g; p, φ)p dp dφ,
N q n 0 0 m
2mq 1mn nq

(11)
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whereφ is measured from 2πq/N. For the second expressio
we used the unitarity of the matrix elementsUmn and the fact
that the expression is real (i.e., we take the complex conju
of the integral). The matrices (̂f1,2)mn are the Fourier transform
(as defined in Eq. (8)) of the functionsf1,2(x, Ai ). We note that
this integral is the inverse Fourier transform off̂ †2 · f̂1, and thus,
the expression depends only on three indices.

Because functionsf1,2(x, Ai )= f1,2(x) do not depend on the
orientationsAi , matrix elements in the same column are t
same, i.e.,

( f̂1,2)mn = ( f̂1,2)qn

for anym,q. This may be observed from the expression

Umn(g
−1; p, φ) = e−i puφn ·rδA−1

i un,um

(the exponent depends only on then-index), the definition of the
direct transform (8), and the fact that the functions do not dep
on the orientation. Thus, we compute a row of the Fourier ma
for a particular orientation (for exampleA0= 1, the identity
element)

( f̂1,2)n = ( f̂1,2)nn.

This may be done using the 2D FFT for the functionsf1,2(x) and
interpolating the Foureir values to points on a polar coordin
grid.

The value ofp is determined by|p|, the values ofm andv are
determined by the angular part ofp. This requiresO(Nr log(Nr ))
computations.

Thus, the integrals in Eq. (3) may be written as

c(x, Aj )

= C
∑

q

∑
n

∫ ∞
0

∫ 2π/N

0
X f̂2q(p, φ) f̂1n(p, φ)CUnq(g; p, φ)p dp dφ,

(12)

whereC= 1/N.
We observe that the convolution-like integrals may be co

puted by taking the Fourier transform, computing the prod
of transforms, and taking the inverse Fourier transform on
discrete motion group.

5. INVARIANTS OF THE DISCRETE MOTION GROUP

Let us assume that one wants to compute properties o
image (object) which are invariant with respect to translatio
and rotations of the image. The Fourier transform on the disc
motion group provides a very efficient tool to compute the
invariants. Let us construct a function with values inR+,

N−1∑

η(p;φ) =

m=0

[ f̂ m(p;φ) f̂m(p;φ)], (13)
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for each fixedφ= 0, . . . , Nφ −1, where f̂m(p;φ) is the Fourier
transform on the discrete motion group off (x). Then (13) is
invariant with respect to rotations and translations off (x); i.e.,
η(p;φ) does not change if we compute (13) using the Fou
transform on the motion group forf ′(x)= f (R−1(x− a)).

We note that for orientation-independent functions (i.e.,
functions onR2) the Fourier transform elementŝfm may be
arranged as a matrix which has the same matrix elements i
same column,

f̂ qm = f̂ rm = f̂ m.

Then (13) may be written also as a trace

η(p;φ) = Tr[ f̂ †(p;φ) f̂ (p;φ)], (14)

where f̂ †(p;φ) is the Hermitian conjugate matrix.
According to (8), f̂ qm for f (x) may be written as

f̂ qm(p;φ) =
∫

GN

f (h)U−1
qm(h; p, φ) dµ(h),

where the integral overGN denotes integration with respect
x andsummation through the elements ofCN , and f (h)= f (x).
The function f ′(x)= f (R−1(x − a)) may be formally written
as f (g−1 ◦ h), where g= (a, R)∈GN . Then f̂ ′qm is written
as

f̂ ′qm(p;φ) =
∫

GN

f (g−1 ◦ h)U−1
qm(h; p, φ) dµ(h).

Using the invariance of the integration measure we write
integral as

f̂ ′qm(p;φ) =
∫

GN

f (h′)U−1
qm(g ◦ h′; p, φ) dµ(h′).

Using the homomorphism properties ofU we write it as

f̂ ′qm(p;φ) =
[ ∫

GN

f (h′)U−1
qr (h′; p, φ) dµ(h′)

]
·U−1

rm (g; p, φ)

= f̂ qr (p, φ)U †rm(g; p, φ),

where we have used a unitarity property ofU . Thus, the Fourier
matrix is transformed under rotations and translationsg∈GN

as

f̂ ′(p, φ) = f̂ (p, φ)U †(g; p, φ).

Using the cyclic property of Tr and unitarity ofU it is clear
that

Tr[( f̂ ′)†(p, φ) f̂ ′(p, φ)]

= Tr[U (g; p, φ) f̂ †(p, φ) f̂ (p, φ)U †(g; p, φ)]
= Tr[ f̂ †(p, φ) f̂ (p, φ)],
CHIRIKJIAN

ier
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which proves the invariance of (13). We note that the invaria
written in the form (14), is valid also for orientation-depende
functions (i.e. for general functions on the discrete motion gro
The use of invariants for pattern recognition was suggeste
[11].

6. EFFICIENT CALCULATION OF CONVOLUTION-
LIKE INTEGRALS USING THE FOURIER METHOD

As we mentioned before, the direct integrations of (3)
quiresO(N2

r N) computations forCN , whereNr is the number
of sampling points in anR2 region.

Using the Fourier transform on the discrete motion group
have to compute direct Fourier transforms for image and te
plate, compute the matrix product (in our case it is a column–r
product) of the Fourier transform, which describes the Fou
transform of the convolved functions, and then calculate the
verse Fourier transform.

The calculation of direct Fourier transform and the “matri
(column–row) product is a fast computation. The direct Four
transform for f1,2(x) may be computed using a usual two
dimensional FFT [18] inO(Nr log Nr ) computations. The FFT
gives, however, values of Fourier elements computed on
Cartesian square (rectangular) grid ofp values. To receive the
Fourier transform elementŝfm(p, φ) on the discrete motion
group we have to interpolate values on the Cartesian grid
a polar coordinate grid, thep value is the magnitude ofp, the
m andφ indices are determined by the angular part ofp (thus,
the constraintNp Nφ N≈ Nr may be used). The linear inter
polation requiresO(Nr ) computations. The product of Fourie

column f̂ T
m(p, φ) and row f̂ n(p, φ) which gives Fourier ma-

trix F̂mn(p, φ), may be performed inO(N2NpNφ)=O(N Nr )
computations. We note that the trace in invariants (13) may
computed inO(N NpNφ)=O(Nr ) (for all φ-values).

Thus, the direct Fourier transform and the “matrix” produ
may be computed inO(Nr log Nr + O(N Nr ) computations.

The inverse Fourier transform calculation is a slower com
tation. One element from each row and column ofF̂mn(p, φ) is
used in computation of the inverse Fourier transform for ea
rotation elementAi . First, we interpolate the value of the Fourie
transform on the square gridNr × Nr of p to polar coordinates.
The radial coordinate isp= |p|, the polar angle is determine
by the values ofm andφ (the value ofn is determined bym
and the index of rotationi, n=m+ i , thus we takeF̂m,m+i ele-
ments from the Fourier matrix to compute the inverse transfo
for fixed orientationAi ). After inverse interpolation to Cartesia
coordinates (which may be done inO(N Nr ) computations), the
inverse Fourier integration may be performed inO(Nr log(Nr ))
for each of theN nonzero matrix elements ofU using the FFT.
Thus, inO(N Nr log(Nr )) computations we reproduce the fun
tion for all Ai . We note that the inverse Fourier transform comp
tation isO(N) (or O(log Nr ), depending which is larger) time

more time-consuming, because we reproduce a function on the
discrete motion group, rather than a function onR2.
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FIG. 1. The image—25

Thus, the total required isO(N Nr log(Nr )) computations, and
these computations are, for the most part, calculations of
inverse Fourier transform. We also note that we have to perf
calculations twice, to compute convolution-like integrals in
denominator and numerator of (3).

The total order of computations using classical Fourier a
ysis is of the same order as in our implementation, but
urier transform on the motion group has additional nice pr
ies. For example, it allows one to neatly write integrals
× 256 array of grey values.

the
orm
he

al-
the

the correlation function as matrix products in Fourier spa
It also gives an efficient way to construct image invarian
These invariants may be used in image processing probl
(see Section 7.2 for numerical examples). Of course it can
argued that the classical (scalar) Fourier transforms of rota
versions of images can be arranged to form a Fourier matrix
ours. If this arrangement is performed, then knowingly or n
op-
in
one is calculating the Fourier transform on the discrete motion
group.
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FIG. 2. The template pattern. The arrow is used as a refe

7. NUMERICAL EXAMPLES

7.1. Correlation Method, Including Rotations and Translatio

In this section we compute the correlation function, Eq.
(for dilation k= 1) for some practical examples. We compu
most examples forNr = 256× 256 andN= 60 (C60 group),
although the computing time for other arrays is also reporte
e consider the image depicted in Fig. 1. This is a 256×256
y of grey values (256 grey levels of intensity for each pixe
rence to find the position and orientation of this pattern in the image.

ns

(3)
te

d.

We choose a template, depicted in Fig. 2, which is a rota
(at angleθ = −π/3), and the translated pattern taken from t
image. The arrow shown on the picture is used as a refer
arrow to find the position and orientation of this template in
image. The correlation function depicted for theθ =π/3 angle
is depicted in Fig. 3. The highest value of the correlation funct
is at the original position and orientation of the pattern in
l).
image. We also find positions and orientations of local maxima
in each ofm×msubregions of the original image. Form= 8 the
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FIG. 3. The correlation function de

positions and orientations of local maxima in each of subregi
are shown in Fig. 4. The highest value is depicted by the arr
which is rotated and translated from the arrow in Fig. 2. Ot
local maxima (with a value of correlation which is greater th
0.85) are depicted by a white square; a small line attached to
square shows the orientation.

We note that the precise values of correlation at the location
64 maxima may be found by direct integration, and the Fou
method may be used as a fast filter method to find locati
of these maxima. It is especially important to compute prec
es in the case when the template object does not ma
ctly the pattern in the image.
picted for theθ =π/3 orientation angle.
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In the table below we listed the computing time of the meth
(given in minutes and seconds, on a 250-MHz SGI workstatio
implemented in the C programming language.N is listed along
the horizontal, the right column lists the time to compute t
correlation coefficients at 64 maxima using direct integratio
The Nr array size is given along the vertical.

N= 60 N= 30 N= 10 Dir. int.

Nr = 256× 256 4 : 06 2 : 11 0 : 48 0 : 55
tch
Nr = 128× 128 1 : 12 0 : 36 0 : 16 0 : 13
Nr = 64× 64 0 : 25 0 : 12 0 : 04 0 : 03
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7.2. Using the Invariants on the Motion Group
to Compare Images

As we have shown before, function (13) is the same for ima
which are rotated and translated relative to each other. It
used to compare images and determine if they are iden
imilar) or not. Again, we compute the correlation coefficie
m (shown by the arrow) and local maxima of the correlation function are de

ges
ay

of invariant functions f1,2(p, φ), computed for two different
images,

∫∞ f1(p, φ) f2(p, φ)p dp

tical
nt

η(φ) = 0(∫∞
0 f1(p, φ)2 p dp

)1/2(∫∞
0 f2(p, φ)2 p dp

)1/2 .
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This is a fast computation of the orderO(NpNφ) ≈ O(Nr /N)
(to computeNφ coefficients) and it may be done using th
usual integration techniques. As we mentioned before, the d
Fourier transform may be computed inO(Nr log(Nr )) compu-
tation; computation of the sum in (13) may be done inO(Nr )
computations.

We compare the images depicted in Fig. 5 and Fig. 6, wh
are just rotated and translated relative to each other. We
the valueν= (1.0− η)× 103 to compare images, which is mor
convenient to use forη values which are close to 1.0. The grea
e worse the correlation is. In the table below we showν

0, . . . ,5.
e
ect

ich
use

r

φ 0 1 2 3 4 5

ν 0.016 0.017 0.017 0.017 0.016 0.016

We see that values are very close for differentφ; thus we may
useν for any one of theφ values. The values are small whic
indicates very strong correlation.

If we compare Fig. 6 with a not-quite-the-same rotated a
translated image (taken from an image after application of di

and inverse Fourier transform), we get a value ofν = 0.107
which indicates a moderate correlation. The time to compute
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FIG. 6. A rotated and translated version of the image in Fig. 5.
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direct Fourier transforms and correlationsν was around 3 s on
a 250 MHz workstation.

8. CONCLUSIONS

In this paper we use techniques from noncommutative
monic analysis to formulate problems in template matching
construction of image invariants. The main contribution is
illustrate that problems in image understanding can be cle
formulated using mathematical techniques which are not s
ls in the community. Numerical examples are provid
nstrate the techniques.
ar-
nd
to
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APPENDIX

In this appendix we review the essentials of noncommuta
harmonic analysis which is the generalization of Fourier analy
to functions on groups. Much of the review material presen
here may be found in [13, 14, 16, 25].

Recall that the Fourier transform pair for a suitable sca
function, f (x), for x ∈ R is defined as

f̂ (p) =
∫ ∞
−∞

f (x)u(−x, p) dx,

(A.1)∫

ed f (x) = 1

2π

∞

−∞
f̂ (p)u(x, p) dp,
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Umn(g, p) = (eimψ,U (g; p)einψ ) ∀m, n ∈ Z,

4 It is worth noting that the measuresdµ anddν have not been determined
PATTERN MATCHING

whereu(x, p)= eipx. Note thatu(x + y, p)= eip(x+y)= eipx ·
eipy= u(x, p)u(y, p). This is an example of agroup homomor-
phism. In general, a homomorphism is a mapping between
groupsh : (G, ◦)→ (H, ◦̂) such thath(g1 ◦ g2)= h(g1) ◦̂ h(g2).
In particular, the functionu(·, p) maps (R,+)→ (U, ·) for each
ω ∈ R, whereU is the set of complex numbers with unit mod
ulus, and· is scalar multiplication.

Theconvolution theoremfor functions on the real line state
that (f1(x) ∗ f2(x)) = f̂1(p) f̂2(p). This is a direct result of the
facts that

u(−(x + y), p) = u(−x, p)u(−y, p)

and integration on the real line is translation invariant.
Noncommutative harmonic analysis extends the concep

Fourier transform and convolution to functions on groups. At
core of this area of mathematics is the enumeration of functi
analogous tou(x, p). Unlike the Abelian case where such fun
tions are scalars, in the noncommutative context these funct
are matrices called irreducible unitary representations (IUR

A representationof a groupG is a homomorphismT : G→
T(G)⊂GL(V). V is a vector space called the representat
space, andGL(V) is the group of all invertible linear transfor
mations ofV onto itself.T(g) for g ∈ G is expressed in a given
basis ofV as an invertible matrix, and

T(g1 ◦ g2) = T(g1)T(g2), T(g−1) = T−1(g),

T(e) = 1 ∈ GL(V).

Representations that can be expressed as unitary matrices (U−1=
U †) in an orthonormal basis ofV are called unitary represen
tations. Irreducible representations are those which canno
block-diagonalized. I.e., they are the “smallest” representati
and cannot be further reduced. The functionu(x, p) is an exam-
ple of a one-dimensional (and hence irreducible) unitary rep
sentation.

For a general unimodular group (i.e., a group which posse
a left and right invariant volume measure), the Fourier transfo
of a suitable functionf (g) is defined as

f̂ (ρ) = F( f (g)) =
∫

G
f (g)U (g−1; ρ) dµ(g),

wheredµ(g) is a left–right invariant volume measure onG and
ρ is a dual (frequency-like) parameter which enumerates
the different IURs of the group. The parameterρ could be a
scalar, vector, or other quantity, depending on the group un
consideration. The inverse Fourier transform

f (g) =
∫

Ĝ
trace(f̂ (ρ)U (g; ρ)) dν(ρ)
reconstructs the function from its spectrum (collection of Four
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transforms), wheredν(ρ) is an appropriately defined measu
on the dual space of the group,Ĝ.4

Because of the homomorphism propertyU (g1 ◦ g2; ρ)=
U (g1; ρ)U (g2; ρ), the convolution theorem

F( f1 ∗ f2) = f̂ 2(ρ) f̂ 1(ρ)

holds, where convolution is defined as [13, 16, 14]

( f1 ∗ f2) (g) =
∫

G
f1(h) f2(h−1 ◦ g) dµ(h).

The problem then becomes the enumeration of all ineq
valent IURs for a given group.

A.1. Unitary Representations of SE(2)

A unitary representations ofSE(2) is defined by the unitary
operator

U (g; p) f̃ (x) = eip(b·x) f̃ (RTx) (A.2)

for eachg= (R, b)∈SE(2). The form of this operator result
from the semi-direct product structure of the groupSE(2); ez

is the scalar exponential function,ρ= p∈R+, i =√−1, and
x · y= x1y1+ x2y2. The vectorx is a unit vector (x · x= 1), and
f̃ (·)∈L2(S1), whereS1 is the unit circle.

Since only one angle is required to parameterize a ve
on the unit circle,x= (cosψ, sinψ)T, and f̃ (x)= f̃ (cosψ,
sinψ)≡ f (ψ). Henceforth we will not distinguish betweeñf
and f .

By definition, group representations observe the homom
phism property, which in this case is seen as

U (g1; p)U (g2; p) f (x) = U (g1; p)(U (g2; p) f (x))

= U (g1; p)
(
eip(b2·x) f

(
RT

2 x
))

= eip(b1·x)eip(b2·RT
1 x) f

(
RT

2 RT
1 x
)

= eip(b1+R1b2)·x f ((R1R2)Tx)

= U (g1 ◦ g2; p) f (x).

Any function f (ψ) ∈ L2(S1) can be expressed as a weight
sum of orthonormal basis functions asf (ψ) =∑n aneinψ . Like-
wise, the matrix elements of the operatorU (g; p) are expressed
in this basis as
ier

for all unimodular groups, although they are well known for both the Euclidean
group and the discrete motion group, which is all that is important in the context
of this paper.
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where the inner product (·, ·) is defined as

( f1, f2) = 1

2π

∫ 2π

0
f1(ψ) f2(ψ) dψ.

It is easy to see that (U (g; p) f1,U (g; p) f2) = ( f1, f2), and that
U (g; p) is therefore unitary with respect to this inner produc

The matrix with elementsUmn is “infinite dimensional.” Fur-
thermore, the matrix of a unitary operator expressed in an
thonormal basis is a unitary matrix, which meansU−1

nm = umn.
A number of works including [22] have shown that the mat

elements of this representation are given by

umn(g(r, φ, θ), p) = i n−me−i [nθ+(m−n)φ] Jn−m(pr ), (A.3)

whereJν(x) is theνth order Bessel function andg(r, φ, θ) is an
element ofSE(2), where the translational part is parameteriz
in polar coordinates (r, φ).

A.2. The Discrete Motion Group

In order to get the IURs of the discrete motion group
restrict possible orientation angles to the values fromCN and
choose the appropriate pulse orthonormal basis function
compute the representation matrices using property (A.2).

We choose a pulse orthonormal basisfN,n(u) on S; i.e., we
subdivide the circle into identical segmentsFn and choose the
f -functions to satisfy the orthonormality relations

1

2π

∫
S

fN,n(u) fN,m(u) dθ = δnm.

We choose the orthonormal functions as

fN,n(p) =
{

(N)1/2 if u ∈ Fn,

0 otherwise;

n= 0, . . . , N− 1 enumerates different segments. We den
these pulse functions asδ-like functions fN,n(u)= (1/N)1/2

δN(u, un), whereun is the vector to the center of theFn seg-
ment.

The matrix elements in this basis are

Umn(A, r ; p) = 1

2π

∫
S

fN,m(u)eipu·r fN,n(A−1u) dθ. (A.4)

It may be shown that this integral may be approximated a

Umn(Aj , r ; p) = eipum·rδA−1
j um,un

, (A.5)
whereδA−1
j um,un

= δm− j,n in this case.
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The matrix elements (A.5) are exact expressions for the
trix elements of the unitary representations of the discrete mo
group. The set of matrix elements (A.5) is, however, incompl
This means, that the direct and inverse Fourier transforms
fined using these matrix elements, would reproduce the orig
function with O(1/N) error; i.e.,

F−1(F( f (Ai , r )) = f (Ai , r )(1+ O(1/N)).

The reason for this is that summing through all possible s
ments cannot replace integration over all possible angles on
circle. It is also clear that the additional continuous param
which enumerates possible angles inside each segment o
circle must give the complete set of the matrix elements.

Thus, the matrix elements must be modified as

Umn(Aj , r ; p, φ) = eipuφm·rδA−1
j um,un

, (A.6)

whereuφk denotes the vector to the angleθ =φ+ 2πk/N on the
unit circle on the interval [2πk/N, 2π (k+ 1)/N], k= 0, . . . ,
N− 1 (φ measures the angle on this segment). The vectorsuφm
are illustrated in Fig. 7. The Fourier parameter in this case is
pairρ= (p, φ).

This is expression (7) in the text.
FIG. 7. Illustration for vectorsuφm in the matrix elements of IURs of the
discrete motion group.
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