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In this paper we apply the Fourier transform on the Euclidean motion group 1o solve

problems in kinematic design of binary manipulators. In recent papers it has been
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shown that the workspace of a binary manipulator can be viewed as a function on
the motion group, and it can be generated as a generalized convolution product. The
new contribution of this paper is the nwmerical solution of mathematical inverse

problems associated with the design of binary manipulators. We suggest an anzaiz
function which approximates the manipulator’s density in analytical form and has
few free fitting parameters. Using the anzatz functions and Fourier methods on the
motion group, linear and non-linear inverse problems (ie, problems of finding the
manipulator's parameters which produce the toral desired workspace density) are

solved.

1 Introduction

Robotic manipulators are usually constructed of rigid links
and actuators, such as motors or hydraulic cylinders. Recently
in the design literature, a number of independent efforts, inchud-
ing the authors’ previous work, have considered an alternative
paradigm in which finite-state actuators are used. Investigation
of bistable compliant mechanisms and MEMS devices may also
be considered part of this paradigm shift (Opdabhl, Jensen, How-
ell, 1998), {(Matoba, Ishikawa, Kim, Muller, 1994}

For actuators with only 2 finite number of states, us is the case
with stepper motors, bistable snapping actuators, of preumatic
cylinders, the resulting robotic arm has a finite number of con-
figurations and can reach only a finite number of frames {posi-
tions and orientations). Each frame may be viewed as an ele-
ment of the Euclidean motion group SE(NY? (see {Mumay et
al., 1994) for references on the motion group)

For discretely actuated manipulators the workspace density,
which is defined as the number of reachable frames per unit
volume of the motion group SE(N) (Ebert-Uphoff and Chirik-
jian, 1998}, detenmines how accurately a position and orienta-
tion can be reached. This density information is an important
factor in the kinematic design and motion planning of discretely
actuated manipulator arms (Ebert-Uphoff and Chirikjian,
1996).

In previous work, we have shown that the density function
for a manipulator with K" stales can be calculated using n
generalized convolutions. This is reduced to log; n convolutions
for 2 manipulator composed of a cascade of identical links or
platforms. In analogy with Fourier methods for functions on
the real line, on the sphere, or on finite groups, which give an
efficient way to perform convolutions and allow one to apply
Fast Fourier Transform (FFT) methods {Eliiot, Rao, 1982),
{ Driscoll, Healy, 1894), (Rockmore, 1994), the application of
Fourier methods on the motion group provides a considerable
saving in the computation time when performing the convolu-
tions on the motion group needed Lo generate manipulator work-
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spaces (Kyatkin and Chirikjian, 1999). In the present work,
Fousier methods are used to numerically solve linear and non-
linear inverse problems, ie., the problems of determining the
manipulator's parameters which produce the total desired work-
space density.

The matbematical framework for nen-commutative Fourier
methods on the two and three dimensional motion group with
applications to the solution of convolution equations are ex-
plained in {Kyatkin and Chirikjian, 1998). In the present work,
we implement these methods numericaliy for the two dimen-
siomal motion group and apply these methods to solve inverse
problems that arise in binary manipulator design

In Section 2 we give a general review of the Fourier transform
on the 2D motion group. In Section 3 we give an overview of
mathematical inverse problemns arising in binary manipulator
design. In Section 4 we supggest an anzatz function which de-
scribes the manipulator’s density in an analytical form and has
refatively few free parameters. Using anzatz functions and Fou-
vier methods we solve linear and non-linear inverse problems
in Sections 5 and 6, respectively.

2 The Fourier Transform on the Motion Group

Here we give briefly the general expressions which define
the Fourier transform on the two dimensional motion group
For more complete references for the two dimensional case and
for the three dimensional case see (Kyatkin and Chirikjian,
1998).

Each element of SE{2) is parametrized in polar coordinates
as:

cos § -—sind rcosd
grop, ) =1 sinf cosd rsind
0 i

Here r = |r| is the magnitude of the translational part of the
motion. The group kaw is simply matrix muitiplication.

The inner product of square-integrable functions on the mo-
tion group is given by

(o= Fohtedus
SE{Z)

(1)

The norm of a complex-valued function on the group is g
= ¥(f, ). The guadratic error of one function relative (o an-
other is defined as
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f [fley = f'ig)yPdulg)
SE(2)
f IF(e)*dulg)
SE()

The invariant integration measure on SE{2) is given by

dulgl(r, ¢, 83 = rdrddgd .

1
(2m)*

We need to use unilary representations of the motion group,
SE(2),! to generate the Fourier wansform on the two dimen-
sional motion group. If we use these representations then the
Fourier transform of the convolution of functions may be writ-
ten as the matrix product of the Fourier transform of each func-
tion (see below), which gives considerable savings in computa-
tion time.

A number of works including (Vilenkin, 1956), (Qrihara,
1961), (Talman, 1968) have shown that the unitary irreducible
representation matrices for SE(2), which are denoted as (g,
p). have entries given by

Unn(g(r, P, B), p) = ("M T (pr)  (3)
for m, n € Z, where J,(x) is the v™ order Bessel function, g
& SE(2), and p is a continuous parameter which enumerates
the representations, in analogy with the Fourier transform pa-
rameter on the real line.

Definition. For any integrable complex-valued function
f(g) on the motion group G = SE(2) we define the Fourier
transform as

Fify=fipy= fc FgYU(g™, p)du(g)

where g € G
The inverse Fourier transform is used to reconstruct a func-
tion from its Fourier transform as:

flg)y=F"H =J; Tr (f(p)¥(g. p))pdp (4)

Plancherel equality. The Plancherel (or generalized
Parseval) equality for square-integrable functions on the motion
group G = SE(2) is:

fG () dulg) = fo IFc )5 pdp
where [[f( )|} is the square of the Hilbert-Schmidt norm
Wil = TeVGFD,
f* is a Hermitian conjugate of f, and Tr is the race.

Convolution property. The Fourier transform of the con-
volution of two square-integrable functions is the product of

the Fourier transforms of the functions The convolution of

functions on the motion group is defined as
(h*h)g) = f KBV e g)du(h), (3)
G

and the application of the Fourier transform yields
Ffirfy = F(HIF (h), (6)
where now the product is a matrix product of the Fourier trans-

form matrices

! See { Vilenkin. Kitmyk. 1991), { Talman. 1968). { Vilenkin, 1956). (Orihara.
1961). (Sugiura, 1990). and ( Chirikjian and Kyatkin, 2000) for definitions
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F¥ o =

where fl. = F (£ )ur. We note that now the order of the product
of Fourier transforms matters. In practice, this product is trun-
cated at k = *+M, where M is a chosen finite number.

3 Inverse Problems in Binary Manipulator Design

The following inverse problems arise naturally in the area of
kinematic design of binary manipulators:

+ Given a final desired workspace density and known pa-
rameters for the fower half of a manipuiator find the kine-
matic parameters of the upper half of the manipuiator
such that the total workspace density of the manipulator
fits the desired density in the best way (in the sense of the
quadratic deviation). This is the so-called linear inverse
problem.

* Given a final desired workspace density, find the kine-
matic parameters of each half of the manipulator which
result in a workspace density which fits the desired density
in the best way. This is a non-Hnear inverse problem.

The problems above may be written respectively as linear
and non-linear integral convolution equations on the motion
group The linear inverse problem may be formulated as

(a*f)(g) = L: a(h)Blh~eg)du(h) = y(g), (7)
£(2)

where y(g) is the desired total workspace density, a{g} is the
density of the lower part of manipulator and G(g) is the un-
known density of the upper part.

The non-linear inverse problem may be written as

(ava)(g) =f a(hyalh™log)du(h) = y(g), (8)

SE()

where y(g) is the total desired density, and «( g) is the unknown
density of both the lower and upper part {assuming the manipu-
lator is homogeneous).

The direct way of solving these problems, i.e , fiiting the total
density to a given desired density for each value of manipulator
kinematic parameters, would require multiple convolutions (one
for each set of parameters) and it wouid be very costly computa-
tionally (since one could imagine doing hundreds of iterations
before the minimum is found). The problem becomes easier if
we want to fit the density of only a few modules to the given
function. So we have to reduce the problem to the fitting prob-
lem for a small number of modules which may be computed
by brute force. Because the total density, which describes the
workspace density of whole manipulator, may be writlen as
the convolution of the densities of manipulator segments, the
problem becomes simpler in Fourier space, where the convolo-
tion is just a matrix product of Fourier transform matrices.

The first kind of problem, (7), leads to the linear matrix
equation of the type

B(prya(p) = ¥(p) (9)

where &, f, ¥ denote the Fourier transform matrices of the
lower, upper, and whole desired workspace density
For a nonsingular matrix & the solution is straight forward:

Bg) = F U3 (pra~'(p)), (10}

where % ~' denotes the inverse Fourier transform.

When the matrix é& is singular the problem may be reduced
to the problem of minimization of an appropriate quadratic
functional for chosen values of regularization parameters. For
the simple functional
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ch (HlaB)(g) - v(g)|*
SE(2)

+ el ()P + w(B(g), — VIB(g))du(g)
the solution may be expressed in Fourier space as
4 =3a'aa’ + (e +phH)", (11)

where I is an identity matrix, ¢ and » are regularization parame-
ters, V> denotes the Laplacian with respect to transation, and
+ denotes Hermitian conjugate. In fact, we have to choose the
paraneters € and v as small as possible in order to minimize
the quadratic error. But the parameters canmnot be taken arbi-
trartly smal} because the solution starts to exhibit oscillatory
and singular behavior, and the quadratic norm of the solation
increases as parameters approach to zero. In fact, there is an
approximate range of *‘boundary’’ values where the norm of
the solution is of the order of norm of the «{g), for these
values further reduction of the parameters must be stopped. The
guadratic error, however, does not depend strongly on the exact
values of parameters, so0 we may pick any small values of pa-
rameters in this region

4 Analytical Deseription of Workspace Density with
an Anzatz Function,

Before we start to discuss the inverse non-linear problem we
have to find an appropriate way to describe the desired work-
space densities in analytical form. From previous work ( Chirik-
iian and Ebert-Uphoff, 1998) we observe that the density is
“shrinking’' with increasing orientation angle 6 At the same
time it is ‘‘rotating’’ in the x ~ y plane with increasing 8 and
‘‘moves’’ closer to the origin We also may characterize the
density by the point of maximal value of density for each fixed
orientation angle. We want to incorporate these important
“‘global” features of the workspace density into an anzatz®
function which has these properties and has a relatively small
number of free parameters. For ‘‘symmetric’’ manipulators
(that is, ones with no preferred bending direction} the work-
space density also has a symmetry

6~ ~8 ¢ ¢
To describe symmetric workspaces for manipulators with a

relatively small number of modules (#,.0 = 10) we suggest to
parametrize the density functional as

: _ I (g =x)
f (F, (ybr 9) _CS(O.;\/‘Z“; Cxp( ZU?{ )

\}W exp(— M) (12)

=
o 2a3

¥ {1 + ¢3 cos )"

where x = 1 (1 + cos 0)e; + 3 {1 — cos #)c;. The Gaussian
term {normal distribution) centered at x describes the radial
dependence of the workspace density We choose ¢; < ¢, 50
the center of the distribution moves closer to the origin with
increasing ¢ The term containing ¢; describes *‘shrinking’” of
the workspace with increasing 6. The power 1 is some positive
number We assume that for ¢; = 1 an allowable range of 8
values is || = arc cos (~1/cq), and f'{g) = 0 for & outside
of this range. The term containing the ¢-dependence is responsi-

5 Anzatz is a term often used ip the physical scierees when empirical chserva-
tons are used o form u model in the absence of o weli established physica
principle.
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Fig. 1 Parameters describing the model

ble for the *‘rotation’’ of the workspace with increasing § We
iliustrate the anzatz function parameters in Fig. 1

We assume that ~ v < 8 = m, —7 < ¢ = 7, and the density
function is assumed to be 2m-periodic,

We have to mention that considerable deviations from the
anzatz may appear for @ = » (this is where ‘‘disconnected”’
regions in each §-slice of the density function may appear from
counting the configurations which differ by multiples of 27 in
orientation angle 8, i.e., for angles which are outside the range
-7 < § = w). For a manipulator with a large number of
modules (n = 10) we suggest replacing the last term

: cxp(w (¢ - c;a)-)
aNw 2oy

with the term

i ‘ _ {¢p ~ 549)2
| oo (- 4 5)

+h(3)( ! cxp(w%—*-—??)—:):] {13)

an2m 2o

where cf = 4 (1 — cos 8) ¢y + £ (1 + cos 8)¢g, and () is
an even function such that #{mw) = A(—7m) = 1.

We note that the ¢; coefficient must be determined [rom the
condition )

flgydu(g) = K7
SEL2)
where K™ is the total number of configurations of the manipula-
tor. For convenience we divide the density function by K", so
the function is normalized on 1. The anzatz function describes
the high-density region of workspace where approximately 90%
of states are located.

As an example, consider a six-module variable-geometry-
truss manipulator with leg length and base width parameters
Loin = 012, Loy == 0.2, 5 = 0 2. The workspace may be approxi-
mated by the anzatz function (12) with the parameters

e =071 o =009 =03}, =10
co = (047, o, =038, c5=898 n=11.

The error of the approximation in the sense of the quadratic
norm (2) is g = 24.0%.

We may also describe the desired workspace using the anzatz
function (12) or {13) and choosing the appropriate coefficients
for this fanction.
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Fig. 2 Desired and calculated density functions for the whole manipula-
tor

5 Example Solution of the Linear Inverse Problem.

As an example, we solved the linear inverse problem for the
following anzatz function (with the modified term (13)) with
the coefficients

g =15 =09 =05
Cy = 05, Cg = 25; a = 015;
o, =046 n=20; cs=409

and the choice of h(8) = exp(—{|8| — 283)*/0.1), for |4]
= 2.83; and h(g) = 1, for || > 2.83. We note that the
particular choice of h(8) does not change considerably the norm
of the function, because it afiects only the regions of low den-
sity The anzatz function with the above parametess describes
the desired density function y{g). We choose the manipulator
density @,.,,(g) to be described by the workspace of the six
moduie manipulator with the parameters

ban = 0125 Ly = 0.20;

The anzatz function for the given values of parameters is
depicted in Fig. 2{(a).

We look for solutions using (11}, where we put 1+ = 0. The
solution exhibits singular behavior if ¢ = 0. We choose the
value of € = 0.01 (the norm of the solution is | F]? = 30.79).
The corresponding approximate solution f{g), found according
to (11), is depicted in Fig. 3(a). We note that the solution is
not strictly positive. We truncated the negative part of the solu-

s = (320

v thatawl Thota=l/5% P chogawd/& 2o theta=3/5 Fi
12F
o i} ¥ )
b4
-0 .4
-1.2
- [ 1 -1 o 3 2 -1 ] 1 3 -1 [ H 2
” thoka=0 thota=1/5 Pi thotan2/% B4 thntaw3d/s PL
1.2F
0.4f %
¥ .
-0.4F
-1.2F

-1 6 b -1 & 1 2 -3 L} 1 2 =1 a 1 2
%

Fig. 3 Calculated density functions for half of the manipulatar
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tion in the ftting precedure (the norm of positive part of the
solution is | Fuel” = 26.34).

Fitting of the six module manipulator density F.,(g) to the
function F(g) by brute force in the space of three parameters
liins Imaxe 5 (the fitting was performed at approximately 120
“points”” of the parameter’s space in 2 hours) gives the follow-
ing values of the parameters which produce the first five smallest
quadratic intermediate errors gy, {deviation of B..,{g} from

Blg)n

Imin [mu 5 Fint q
0.12 0.25 0.19 55.8% 29 4%
012 024 019 55 %% 26 1%
012 024 0.20 56.2% 26 8%
G.12 024 021 56.0% 27 6%

The error increases rapidly for other parameters, for I, = 0.15;
leax = 023, 5 = 0.19 it is 173%. We compared the Fourier
approximation of the desired anzatz function y(g} with the final
density (@ ® Bonn)(g) for these values of the paramelers and
give values of the guadratic error g in the table. We show the
convolution {@uu,* Bm.p }(g) for the smallest quadratic error g
and

Lye = G125 lone = 0245 5 = 019 (14)

in Fig. 2(b} (computed by the Fourier method with M = 4).
We note that the calculated solution is an approximate one.
The exact solution {value of the parameters of manipulator) is
located in the vicinity of these values. If better accuracy is
desired, direct fitting of {pp* B, ){ g), found by the Fourer
method, may be performed for the parameters in the vicinity of
(14). We found that (@ * Gmp){g) for the parameter values
Of Brnp(8)

Iin = 0135 e = 0.22; 5= 019

approximates y(g) with the best accuracy (in this case the error
was 14.0%). The direct fitting of the convolution i3, however,
at least 7 times more costly computationally {for cach “‘point”’
in the space of manipulator parameters} for M = 4, and more
than 30 times for M = 15 Thus, the solution of the linear
inverse problem (11} gives a fast way to find an approximate
density function A(g)} with acceptable error.

6 Example Solution of the Nonlinear Inverse Prob-
lem

The solution of the nonlinear problem may be found in a
similar fashion, ie., we find first numerically the approximate
solution of the nonlinear convolution equation and then find the
manipulator's parameters which describe the workspace density
with the smallest quadratic error,

The non-lincar problem becomes a problem of a search for
the *‘square root”” of a matrix in Fourier space, i e, the solution
must satisfy the equation

2 &(p)mk& (P )im = ?(p)n:n
k
for each value of p.

An algorithm for the approximate solution of the non-linear
problem, which uses Schur decomposition of Fourier matrices,
was described in (Kyatkin and Chirikjian, 1998). Apgain, the
solutions deperd on the regularization parameter € We have to
choose the value of the parameter ¢, which gives the value of the
norm in the tegion (a|* = 50 (for a six module manipulater).
Moreover, we have additional continuous arbitrariness of the
solution relased to the following fact The square root of a
Fourier matrix requires one to take the square roots of eigenval-
ues of the Fourier matrix ¥{p). The square root of each eigen-
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value has two branches ( positive and negative branches for real
positive numbers), and we may take different branches for
different values of the parameter p (see (Kyatkin and Chirikjian,
1998} for details) While it does not change the norm of the
solution, it changes considerably the shape of the function. From
the direct convolution of anzatz, functions we may observe that
the convolution of anzatz functions produces an anzaiz-like
function for some values of parameters, Thus, we require the
“*square root’’ solution to be anzatz-like (1.e., it may be approxi-
mated by an anzatz function with a smali error). This condition
may be implemented in Fourier space as follows. First, we
choose the branches of the square root of the eigenvalues using
the “‘trial’’ anzatz function, i.e., we convolve the trial function
with itself and choose a branch by comparing the square root
of eigenvalues of the convolution with eigenvalues of the trial
function. Then, we use this prescription for the branches of the
sguare root 10 find the solution of the non-linear problem for
the given desired total workspace density.

As an example we solve the non-lingar problem for the fol-
lowing set of coefficients of the anzatz function (with term
{13)} which describes the desired total workspace density

ey =16, ¢ =095 ¢ =035
e =08 =25 o =015
g, =045 n=20, ¢ = 385 (15)

We use a value of the regularization parameter ¢ = 0.03. We
prescribe a branch of the square root of the eigenvalues based
on trial fanction which has the coefficient values ¢, § ¢5, and
1 &, The other coefficient values for the tal function are on
the same order as those in {15).

This should yield a function similar to the solution, because
the value of ¢, is scaled approximalely by a factor of two when
two anzatz functions are convolved. Using this prescription we
found numerically the solution of the non-linear problem which
is depicted in Fig 3(b)}. Because the prescription is only ap-
proximate, small deviations from anzatz-like shape appears
{such as regions with negative values). These, however, do not
affect considerably the norm of the solution.

Fitting of the six module manipuiator density @,..,(g) to the
function a(g) performed by brute force in the space of three
parameters Ly, lnax, 5 gives the following values of the parame-
ters which minimizes the quadratic error (first three local min-
ima with the smallest values of the errors are shown)

Lin = 0127 I = 024 5 = 0.21; (58.1%) (16}
boin = 0137 he = 0245 5 =023, (5393%) {17}
Iin = 0137 g = 023, 5 = 021 (596%) (18)

The error increases rapidly for other values, for example for
Lo = 0.13; Ly = 0225 5 = 020 it is 236.7%. We computed
the vaiue of the quadratic deviation of the convolved function
(X * X 2 ) from the desired function determined by the
coefficients (15), and found that the minimum {18) has a small-
est quadratic error 18.6% (the minimum (17) gives 26.8% of
error, and (16) gives 47.0%). The contour plot of the desired
function and the manipulator densiiy for the parameters in (18)
are shown in Fig. 4(a)~ (b} for § = 0.

If better accuracy is desired the direct fitting of (a,..,
* 0, ) (2) (computed by the Fourier convelution methed) to
the desired function y{g) may be performed for the parameter
values in the vicinity of (18). We found that for the manipula-
fors parameters

boin = 0.1y g = 023 5 = 0245
the manipulator workspace density has a smallest deviation
from y{g) equals 14 6%. All convolutions were performed us~

ing M = 4
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Conclusions

In this paper we suggested an anzatz, which aliows one {o
describe the workspace densities of the two dimensional manip-
ulators in a simple analytic form with few free parameters.
Anzatz functions and Fourier methods on the motion group
allow one to solve the Bnear and non-linear inverse problems
of kinematic design with etror in the range 20-30%. Workspace
density synthesis, Fourier methods, and convolution methods
were implemented in the C programming language. Part of the
matrix computations in the inverse problems were performed
using Mathematica Z 2 programs.

We note that Fourier methods for the three dimensional mo-
tion group and apalytical examples of Fourier transforms and
solutions of linear and non-linear inverse problems are de-
scribed in { Kyatkin and Chirikjian, 1998; Chirikjian and Kyat-
kin, 2000}, though the application of these methods to 3-D
manipulator design is an open and challenging numerical prob-
lem,
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