Proceedings of the 1996 IEEE
International Conference on Robotics and Automation
Minneapolis, Minnesota - April 1996

An Efficient Method for Computing the Forward Kinematics of
Binary Manipulators

David S. Lees®
Gregory S. Chirikjiant

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218

Abstract

Binary actuators have only two discrete states (de-
noted ‘0’ and ‘I’), both of which are stable without
feedback. As a result, manipulators built with binary
actuators have a finite number of states. Compared
to a manipulator built with continuous actuators, a
binary manipulator provides good performance, and
is also relatively inezpensive. However, the number
of states of a binary manipulator grows ezponentially
with the number of actuators. While this makes the
calculation of its inverse kinematics quite difficult, the
discrete nature of a binary manipulator makes it possi-
ble to compute its forward kinematics more efficiently
than for a continuously actuated manipulator. By pre-
computing all possible configurations of each module of
a binary manipulator (a finite and usually small num-
ber) it is possible to compute the forward kinematics
from a set of joint parameters without using any tran-
scendental functions.

1 Introduction

Presently, nearly all robots are powered by con-
tinuous actuators. Continuously actuated robots can
be built to be precise and to carry large payloads,
but they usually have very high price/performance
ratios, as evidenced by the high cost of the indus-
trial robots available today. “Hyper-redundant,” dis-
cretely actuated robots are a promising alternative to
traditional robots for certain applications. A hyper-
redundant robot can be built by stacking variable ge-
ometry trusses on top of each other in a long serial
chain (See Figure 1). This approach yields a struc-
ture with good stiffness, dexterity and load-bearing
capabilities, compared to traditional non-redundant
robots. Using discrete, rather than continuous, actu-

*B-mail: lees@®polaris.me.jhu.edu

tB-Mail: greg@polaris.me.jhu.edu
This work was supported by a young investigator award and a
presidential faculty fellow award to the second author from the
National Science Foundation

0-7803-2988-4/96 $4.00 © 1996 IEEE

ators to power a truss-based robot increases the relia-
bility and lowers the cost of the system. Discrete actu-
ators (e.g. pneumatic cylinders) are less expensive and
simpler than their continuous counterparts. Further-
more, since binary actuators have only two distinct
stable states, a robot constructed with them does not
need feedback control at each actuator, which elimi-
nates the need for a very costly element of continu-
ously actuated robots.

The characteristics of binary VGT manipulators
make them well suited to a number of tasks. They
could be used for inspection or repair in constricted
spaces, where the flexibility and compactness of the
VGT structure is a distinct advantage. They are
also candidates for use in human service applica-
tions, where good performance is needed, along with
low cost. Finally, miniature “snake-like” robots are
promising as tools for performing minimally invasive
medical procedures. For example, they could be used
in a laproscope, or as an element of a catheter. For
applications on such a small scale, it is much easier
to build discrete actuators (e.g. actuators operated
by electrostatic forces [1]) than to build continuous
actuators.

While robots with binary actuators may be useful
in many applications and are very inexpensive com-
pared to continuously actuated robots, there is one
problem related to their control that is much more
difficult than the corresponding problem for a contin-
uously actuated robot: The number of possible con-
figurations of a binary robot grows exponentially with
the number of actuators. For example, a binary robot
with 30 actuators has 23° (approximately 10°) distinct
states, which makes the exhaustive enumeration of all
of its states impractical. The large number of possible
states of a binary manipulator makes it highly desir-
able to have cfficient algorithms for secarching through
some (potentially large) subset of manipulator config-
urations that satisfy a particular constraint, so that
an “optimal” configuration can be chosen.

1012

/

Figure 1: A 10 module binary manipulator built with
variable geometry trusses.

This paper discusses an efficient method for com-
puting the forward kinematics of binary manipulators.
It takes advantage of the discrete nature of binary ac-
tuators to make the calculation of the forward kine-
matics considerably more efficient than it would be
for continuous actuators. Such an algorithm is use-
ful not only for the calculation of forward kinematics,
but also as an element of more complex algorithms,
such as those for computing the inverse kinematics or
finding the workspace of binary robots.

2 Previous Work

Since the high price/performance ratio of most
robots makes them impractical for many potential ap-
plications, efforts to develop inexpensive, but capa-
ble, robots have begun to gain momentum. For ex-
ample, Canny and Goldberg [2] have proposed a re-
duced complexity paradigm for robotic manipulation.
There have also been several efforts to develop reli-
able sensorless manipulation [3, 4]. In sensorless ma-
nipulation, the geometric constraints of a task are ex-
ploited to create a manipulation strategy that is guar-
anteed to succeed even without feedback, within cer-
tain broad limits. For example, Erdmann and Ma-
son [5] have demonstrated an algorithm that can force
an “L” shaped bracket into a known orientation by
placing it on a tray and moving the tray through a
pre-determined sequence of motions.

Binary robots are a natural extension to sensor-
less manipulation. Sensorless manipulation reduces
the need to sense a robot’s environment, while binary
actuators allow us to build a robot without joint-level
sensing of position and velocity. There have been a
number of efforts in the past to build robots with
binary actuators [6, 7]. However, at the time these
projects were undertaken, effective algorithms for con-
trolling hyper-redundant manipulators had not yet

been developed, nor were computers sufficiently pow-
erful to control robots with many degrees of freedom,
even if they could have used the control algorithms
that are currently available.

More recent efforts to develop binary robots include
a project to use silicon micro-machining techniques to
build small actuators [1]. Also, an effective algorithm
has been devised to compute the workspace of hyper-
redundant binary robots [8]. Finally, methods have
been presented to synthesize a binary manipulator to
reach a specific set of points exactly [9], and to make
a binary manipulator adhere to a specified curve [10].

In the present work, and other related efforts [11,
12], we are developing a framework in which to plan
well behaved motions of manipulators with discrete
(binary) actuation. It is our hope that this will lead to
very inexpensive and reliable manipulators. In order
for the cost benefits of binary actuation to be realized
for the subset of tasks for which binary manipulators
are appropriate, the computational requirements for
the planning must be reduced to a competitive level
with continuous actuation. Providing a means for fast
computation of the manipulator forward kinematics is
one step in this direction.

3 An Efficient Forward Kinematics Al-
gorithm

The forward kinematics algorithm presented here is
designed to compute the position and orientation (rel-
ative to the base) of the center of a binary manipula-
tor’s end-effector, given the states of all the actuators
in the manipulator.

3.1 Definition of Terms

To understand the forward kinematics algorithm, it
is important to understand the following definitions,
which were originally defined in [8]:

Binary manipulator A binary manipulator is a ma-
nipulator that is composed of a set of modules
with two-state actuators, stacked one atop the
other (Fig 1). The modules are numbered from
1,..., B, starting from the base of the manipula-
tor.

Each module has a frame attached to its top (Fig-
ure 2). The frames are numbered such that frame
i is on top of module 4, and frame 0 is the frame
at the manipulator base. J; denotes the num-
ber of independent binary actuators in module 7.
Therefore, there are 27 different combinations of
binary actuator states (and corresponding config-
urations) for the it* module.

1013

X
_xty1)

MSB /777777777777777777

Figure 2: A single binary truss module shown in state
110.

Manipulator state The state of a binary manipula-
tor is a binary number, S, whose bits represent
the states of each actuator in the manipulator.
The state of an individual module in the manip-
ulator is denoted by s;, which is a J; bit binary
number. Therefore, the total number of bits in
S is given by J = Eil Ji, so the manipulator
can achieve 29 different configurations. S is con-
structed from the individual module states in such
a way that the state of the manipulator base mod-
ule corresponds to the most significant bits of S.
Le., S = {s182...58}. Also, while the actuators
in a given module of a truss manipulator have ap-
proximately the same “significance” in their effect
on end-effector motion, we have chosen to num-
ber the bits within an individual truss from left
to right (Figure 2), with the MSB being the left-
most actuator in the truss.

Configuration Set The kinematic properties of each
module in the manipulator will be represented by
a configuration set:

Cl' = {(Rlybl)a (RZs bZ)s ey
(Rzlnbz-’i)}v (1)

where: ¢ = 1,...,B, R; are orthonormal rota-
tion matrices and b; € R" are translation vec-
tors from the bottom center of a module to the
top center of a module for j = 1,...,2%. These
sets describe all possible relative orientations and
positions of frame 7 with respect to frame i — 1.

The configuration set can be represented more
efficiently for two-dimensional, planar manipula-
tors, as:

Ci - {(C11 81, bl)y (021 327b2)) ey
(cg9:, 8975, bas)} (2)

where: i = 1...B, 6; denotes the angle of the
top of module 7 relative to the bottom for state
j (where: j = 1...2%%), and s; and c; represent
sin(f;) and cos(;) respectively.

For the general case (Eq. 1), the information
can either be stored in explicit form, or the rota-
tion matrix can be represented using Euler angles,
unit quaternions, etc. The choice is a trade-off
between computational time spent on arithmetic
operations and storage space.

3.2 Algorithm Implementation

The forward kinematics algorithm is implemented
in two stages, a pre-computation stage (executed once
for any set of kinematic parameters), which generates
the configuration sets for the entire manipulator, fol-
lowed by a stage (which may be executed many times)
which computes the position of the manipulator’s end
effector for a particular state, S. A two-dimensional
VGT based manipulator and a two-dimensional serial-
revolute manipulator are used as examples in this sec-
tion. The differences in the algorithm for the two types
of manipulator are noted when appropriate. Note that
the choice of manipulator type affects only the kine-
matic equations used in the pre-calculation stage. The
main body of the algorithm is independent of manip-
ulator type, except for the choice of a two (Eq. 2) or
three (Eq. 1) dimensional configuration set. Even this
dependence can be avoided if the configuration-set is
always computed in the form of Equation 1, regard-
less of whether the manipulator is planar or three-
dimensional.

3.2.1 Pre-Calculation

The purpose of the pre-calculation phase is to compute
and store the configuration set of each module in the
manipulator.

Inputs to the Algorithm:

1. q;»""", q7%®, the joint limits for each actuator in
the manipulator in states 0 and 1 respectively, for
j=1,...,J.

2. w;, the width of the top of module ¢, for a truss-
type manipulator, or I;, the length of link i in a
serial-revolute manipulator, fori=1,..., B.

Module Kinematics:

For a serial-revolute manipulator (Figure 3) the
kinematics of an individual module in a particular
state are described by:

b,’ = (l, COS(O,‘), l.,' sin(e,')) (3)

1014

Figure 3: A four link serial-revolute manipulator.

qmin
6; = { q:f’"”"

ifs; =0
s =1 4)

The forward kinematics for a planar VGT based ma-
nipulator are described in detail in [13]. The kinemat-
ics for a single truss are presented here for convenience.
The forward kinematics obey the following geometric
constraints (Refer to Figure 2):

ei+yl = g (5)

(z1—w)?+y? = ¢ (6)

+ve = 4 (7)

(zo—21) + (o —w)’ = (8)

These equations are solved simultaneously for the co-
ordinates of the top plate of the truss:

2 2 2
@ -w
= 22— 9
= 2w)
2 g — g} —w? 2
n o= qi - (—2“,—-“) (10)
and
—b - b2 -4
Lo = (ac) (11)
2a

Yo = (g% — =) (12)

where:
a = 422 +4y? (13)
b = 4(w2:c1 - qgl:]_ - q%wl) (14)
c = qf+qs+2¢8e} — 205w® - (15)

2q;w” + w* — 4y}

We can now solve for the position and orientation of
the center of the top plate of the truss, for a particular

Time to Perform Serial Forward Kinematics (50K fterations).

80.00

60.00 /1.4
4

40.00 -

20.00

Time (sac)

e}
0.00 T rTr T T T T

5.00 10.00 15.00 20.00 25,00 30.00

\

NSUCI SNITEERITASNES]

Number of Modules
2 New Algo & Oid Algo

Figure 4: Comparison of “standard” kinematics al-
gorithm with the algorithm in this paper for serial
revolute robots with various numbers of modules. All
tests were performed on a 33MHz NeXTStation Turbo
Color system.

module, i:
b = (Zoitoni) (voityi) (16)
2 2
6; = Atan2(yii — Yo,i, T1,i — To,i) (17)

Pre-Computation Algorithm:

Once we know the forward kinematics of an individ-
ual module in the manipulator we can compute the
configuration sets of the modules as follows:

fori=1to B
for j =1 to 27
Use the kinematic param-

eters of module 7 to com-
pute C; for state j.

end

end

3.2.2 Computation of End-Effector Position
Inputs to the Algorithm:

1. S, a J bit binary number representing the current
state of the manipulator.

2. C;, fori=1,...,B, the configuration sets for the
modules in the manipulator.

Outputs from the Algorithm:

1. EEp,,, the position of the manipulator’s end ef-
fector.

1015

Time to Perform VGT Forward Kinematics (50K lterations).

200:00
g 15000 —
U 3
> 100.00
g E —
E A/A
F 50.00 3—
0.00 s T T T
500 1000 1500 2000 2500 30.00

Number of Modules

¢ New Aigo & Qid Algo

Figure 5: Comparison of “standard” kinematics algo-
rithm with the algorithm in this paper for VGT robots
with various numbers of modules. All tests were per-
formed on a 33MHz NeXTStation Turbo Color sys-
tem.

2. 8ce, Cee, the sin and cos of the end-effector ori-
entation angle for the two-dimensional case, or
R.., the rotation matrix describing end-effector
orientation, in the three dimensional case.

Main Algorithm:

After completing the pre-calculation phase, as de-
scribed in the last section, the position of the center of
the manipulator’s end-effector and its orientation can
be computed as follows:

EEp,, =0
R, = I, the identity matrix.
fori=1to B

select C;, the rotations and posi-
tion vectors for module 1.

EEyac = EEpm + Ra,-bl,-
Ru = RuRee

end

end

For a two-dimensional manipulator the sin and cos
of the end-effector orientation can be used directly in-
stead of a rotation matrix, to streamline the calcu-
lation. For either the two or three dimensional case,
the algorithm requires O(B) storage, while a “tradi-
tional” algorithm requires only constant storage. The
main body of the algorithm requires O(B) time to
compute. This is the same order as an algorithm
that computes the forward kinematics in the “obvi-
ous” way, by solving the kinematics of each module’s
structure whenever the end-effector position is needed.

Nevertheless, the absence of transcendental functions

555019183 |, 0
689978390 .71 Vs
é..l,gz o/ \
3
o i N
N 0040767

Figure 6: Forward kinematics calculations for several
states of a VGT robot.

| Platform || Old Algo | New Algo [Old/New |

HP 5.64 sec. 0.79 sec. 7.09
PC 11.10 sec. 2.12 sec. 5.25
NeXT 61.44 sec. 5.86 sec. 10.48

Table 1: A comparison of the forward kinematics al-
gorithm described in this paper with a “standard” al-
gorithm, where the position and orientation are com-
puted from the geometric parameters of the truss mod-
ules every time (As in Section 3.2.1). The 10 mod-
ule VGT manipulator in Figure 1 was used for this
test. All times are in seconds. All computer platforms
were running NeXTStep Version 3.2. The difference
in performance ratios is most likely caused by differ-
ences in the designs of the floating point units in the
various processors. l.e, some architectures compute
transcendental functions more efficiently. The HP is
a Model 720/80 workstation, the PC is a 66Mhz Intel
Pentium system, and the NeXT is a 33Mhz, NeXTSta-
tion Turbo.

in the algorithm presented here give it a very impor-
tant practical advantage. For one computer architec-
ture (see Section 3.3), it executed ten times faster than
the standard approach.

3.3 Example of the Algorithm

Figure 6 shows the results of using the algorithm
presented here to compute the forward kinematics of a
VGT robot for several different states. Table 1 shows
the time required to execute the forward kinematics
algorithm on various computer architectures. The for-
ward kinematics were evaluated 50,000 times for ran-
domly selected configurations of the ten module ma-
nipulator shown in Figure 1. The top and bottom links
of each module in the manipulator were 0.08 units
wide, and the upper and lower actuator travel limits
were 0.12 and 0.08 units repsectively for all actuated

1016

links. Figures 5 and 4 show the performances of the
forward kinematics algorithm on one computer archi-
tecture for truss and serial robots of several different
sizes. Even on a fast computer, using our algorithm
provides a significant time savings.

4 Conclusion

Binary actuation offers us a way to create manip-
ulators that are simultaneously rigid, accurate and
inexpensive. The biggest obstacle to the use of bi-
nary manipulators has been the challenge of planning
the motions of such highly redundant systems effec-
tively. In this paper, we presented an efficient algo-
rithm for computing the forward kinematics of manip-
ulators with binary actuators. This work is useful by
itself, but more importantly, this algorithm can vastly
improve the performance of other algorithms for bi-
nary manipulators, such as those for inverse kinemat-
ics, obstacle avoidance, and trajectory following, that
often require the frequent evaluation of forward kine-
matic equations.

References

[1] P. L. Bergstrom, T. Tamagawa, and D.L. Polla,
“Design and fabrication of micromechanical logic
elements”, in Proceedings of the IEEE Mi-
cro Electro Mechanical Systems Workshop, Napa,
CA, February 1990, pp. 15-20.

J. Canny and K. Goldberg, “A risc paradigm
for industrial robotics”, Tech. Rep. ESRC 93-
4/RAMP 93-2, Engineering Systems Research
Center, University of California at Berkeley, 1993.

M.T. Mason, “Kicking the sensing habit”, Al
Magazine, Spring 1993.

3]

[4] K. Goldberg, “Orienting polygonal parts without
sensors”, Algorithmica, 1992, Special robotics
issue.

M. A. Erdmann and M. T. Mason, “Exploration
of sensorless manipulation”, IEEE Journal of
Robotics and Automation, vol. 4, pp. 369-379,
August 1988.

D.L. Pieper, The Kinematics of Manipulators
under Computer Control, PhD thesis, Stanford
University, Stanford, CA, 1968.

(5]

(6]

B Roth, J. Rastegar, and V. Scheinman, “On
the design of computer controlled manipulators”,
First CISM-IFTMM Symp. on Theory and Prac-
tice of Robots and Manipulators, pp. 93-113,
1973.

i

(8]

[L0]

(1]

[12]

(13]

1017

1. Ebert-Uphoff and G. S. Chirikjian, “Effi-
cient workspace generation for binary manipula-
tors with many actuators”, Journal of Robotic
Systems, June 1995.

G.S. Chirikjian, “Kinematic synthesis of mecha-
nisms and robotic manipulators with binary actu-
ators”, in 1994 ASME Mechanisms Conference,
Minneapolis, MN, Sept 1994.

G. S. Chirikjian and D. Lees, “Inverse kinemat-
ics of binary manipulators with applications to
service robotics”, in IROS 95, August 1995.

D.S. Lees and G. S. Chirikjian, “A combinatorial
approach to trajectory planning for binary ma-
nipulators”, in Proceedings of the 1996 IEEE In-
ternational Conference on Robotics and Automa-
tion, 1996.

I. Ebert-Uphoff and G. S. Chirikjian, “In-
verse kinematics of discretely actuated hyper-
redundant manipulators using workspace densi-
ties”, in Proceedings of the 1996 IEEE Interna-
tional Conference on Robotics and Automation,
1996.

G. S. Chirikjian, “A binary paradigm for robotic
manipulators”, in Proceedings of the 1994 IEEE
International Conference on Robotics and Au-

tomation, 1994, pp. 3063-3069.

